首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feldspar phenocrysts, microphenocrysts, groundmass feldspar, interstitial material of feldspar composition, and residual SiO2-K2O-rich glass in 24 rocks of the tholeiitic, alkalic, and nephelinic suites from Haleakala and West Maui volcanoes, Maui, Hawaii, were analyzed quantitatively with the electron microprobe. Rocks studied include tholeiite, olivine tholeiite, oceanite, alkalic olivine basalt, alkalic basalt, hawaiite, mugearite, trachyte, basanite, and basanitoid. Results and conclusions: i) In all rocks studied, An decreases and Or increases from phenocrysts to microphenocrysts to groundmass feldspar to interstitial material of feldspar composition. ii) Phenocrysts occur in rocks of the tholeiitic and alkalic suites and, in spite of differences in bulk rock compositions, overlap in composition. iii) Groundmass feldspar in rocks of the tholeiitic suite are nearly identical in composition; the same is true for rocks of the nephelinic suite. However, in the highly differentiated alkalic suite, groundmass feldspar composition ranges from labradorite to sanidine; i.e. the higher the bulk rock CaO, the higher is the An content, and the higher the bulk K2O, the higher is the Or content. iv) In general, rocks with phenocrysts have groundmass feldspar less An-rich than those without phenocrysts. v) In rocks of the tholeiitic suite, normative feldspar approaches modal feldspar. However, in rocks of the alkalic and nephelinic suites, normative feldspar, because of the presence of highly alkalic interstitial material and the absence of nepheline in the mode but its presence in the norm, is drastically different from modal feldspar. vi) Hawaiites contain labradorite and not andesine, as per definition, and mugearite contains andesine and not oligoclase, as groundmass feldspar. In fact, when considering phenocrysts and interstitial material of feldspar composition, hawaiites range from bytownite to sanidine and mugearite from andesine to sodic sanidine, but normative feldspar plots in the andesine field for hawaiites and the oligoclase field for mugearite. vii) Rocks of the three suites can be distinguished on the basis of Or and An in groundmass feldspar, the presence of thin rims of groundmass composition of phenocrysts of rocks of the alkalic suite, and the presence of interstitial material of anorthoclase to sanidine composition in rocks of the alkalic and nephelinic suites. iix) Rocks transitional between the tholeiitic and alkalic suites are observed and are characterized by transitional mineral compositions.This paper was first presented as a talk before the 68. Annual Meeting of the Cordilleran Section of the Geological Society of America, Honolulu, Hawaii, March 29–April 1, 1972.  相似文献   

2.
The oldest igneous rocks in the Paleoproterozoic (~1.88–1.85 Ga) North Baikal postcollisional volcanoplutonic belt of the Siberian craton are the basaltoids of the Malaya Kosa Formation (Akitkan Group). The youngest are the composite (dolerite–rhyolite) and doleritic dikes cutting the granitoids of the Irel’ complex and the felsic volcanic rocks of the Khibelen Formation (Akitkan Group). The position of Malaya Kosa basaltoids in the Akitkan Group section and published geochronological data on the felsic volcanic rocks overlying Malaya Kosa rocks suggest that their age is ~1878 Ma. The rhyolites from the center of a composite dike were dated by the U–Pb zircon method at 1844 ± 11 Ma, and the dolerites in the dikes are assumed to be coeval with them. Malaya Kosa basaltoids correspond to high-Mg tholeiites and calc-alkaline andesites, whereas the dolerites in the dikes correspond to high-Fe tholeiites. Geochemically, these basaltoids and dolerites are both similar and different. As compared with the dolerites, the basaltoids are poorer in TiO2 (an average of 0.89 vs. 1.94 wt.%), Fe2O31 (9.54 vs. 14.71 wt.%), and P2O5 (0.25 vs. 0.41 wt.%). However, these rocks are both poor in Nb but rich in Th and LREE, εNd(T) being negative. According to petrographic and geochemical data, they derived from compositionally different sources. It is assumed that the basaltoids originated from subduction-enriched lithospheric mantle, whereas the dolerites originated from refractory lithospheric mantle metasomatized by subduction fluids. The isotopic and geochemical features of mafic rocks in the North Baikal belt are well explained by their formation during crustal extension which followed subduction and collision in the region. The early stages of postcollisional extension evidenced the melting of subduction-enriched lithospheric mantle with the formation of parent melts for Malaya Kosa basaltoids. At the final stages of the formation of the North Baikal belt, during the maximum crustal extension, Fe-enriched melts rose to the surface and generated the dolerites of the dikes.  相似文献   

3.
“三江”义敦岛弧带玄武岩喷发序列与裂谷—岛弧转化   总被引:4,自引:1,他引:4  
岩石-构造组合是恢复古板块构造历史的最有效手段之一,同时是表征古板块边界与板内环境的最重要的地质证据。本文拟从岩石-构造组合角度,通过对义敦岛弧带玄武岩,特别是前岛弧期玄武岩喷发序列、岩石组合、地球化学特征和其形成背景的研究,试图从较深层次上揭示岩浆-构造内在联系,探索义敦古岛弧的形成与发展。  相似文献   

4.
北祁连山元古宙末-寒武纪主动大陆裂谷火山作用   总被引:13,自引:2,他引:13  
北祁连山元古宙末-寒武纪大陆裂谷火山岩系为双峰式火山岩套,主要由基性与酸性火山岩组成。基性火山岩有磁性玄武岩与拉斑玄武岩两个岩浆系列,且富集LREE与LIL,其岩浆源区为与洋岛玄武岩源相似的富集地幔柱源。软流圈地幔柱上涌导致岩石圈地慢部分熔融,其熔体与地幔柱衍生熔浆混合,形成本区具有中等钕,锶同位素比值特点的基性岩浆。基性岩浆上侵至陆壳,引起下部陆壳深熔,产生长英质岩浆。地幔柱上隆促使大陆扩张,及至形成北祁连山元古宙末-寒武纪大陆裂谷。  相似文献   

5.
During the Late Paleozoic or Early Mesozoic the Zayarskaya dolerites (diabases) were intruded into rocks of the Lower Cambrian Usol'ye series (salt strata separated by carbonate and sulfate-carbonate layers) in the Angara-Ilim watershed area of the Irkutsk amphitheater. Both field observations of the two dolerites intruded into salt strata and experimental data on the system dolerite-NaC1 indicate these dolerites were implaced at low water-vapor pressures. They appear little changed except for veinlets or inclusions of halite and calcite, and rocks of skarn mineralogy result where they have intruded nonsalt strata. Contacts between dolerites and salt are sharp, and between the NaCl and dolerite melts none of intermediate composition were found experimentally. In general, iron-bearing sublimates are evolved from the superposition of trap magma onto halogen rocks. No migration of volatile iron chlorides is evident in the Zayarskaya intrusives because the requisite high water-vapor pressures and outlet channels (fissure system, fractures, etc.) were absent. – P. W. Wood.  相似文献   

6.
The term ‘Zamu Dolerite’ is proposed here to replace ‘Zamu Complex’, the name originally applied to the predominantly mafic intrusives of the South Alligator River area, and to include the other mafic supracrustal intrusive rocks that, with minor felsic differentiates, were emplaced into the strata of the Pine Creek Geosyncline before an 1800 m.y. phase of regional metamorphism. This suite of lower Proterozoic rocks generally forms conformable intrusive tabular bodies which are folded and, in most places, metamorphosed with the enclosing strata. The intrusions are mostly now amphibolite, but in the type area of Zamu Creek, folded but unaltered dolerite rocks are found. The Zamu Dolerite occurs in two broad zones of regional meta‐morphic grade: medium and/or high grades in the northeastern part of the region, and low grade elsewhere. Late‐orogenic Carpentarian granite diapirs have, however, locally superimposed a contact metamorphism on the low‐grade regional metamor‐phic event. Low‐temperature retrograde metamorphism is locally present throughout the Pine Creek Geosyncline, being particularly prevalent within areas of uranium mineralization.

Compared with the dolerites, the amphibolites have the following chemical characteristics: total Fe and Ti enrichment; Mg, K, and Sr depletion; similar values for Zr, Y, Nb, and P2O5; lower K:Rb and higher K:Ba ratios. The dolerites and amphibolites are orthopyroxene normative and their major‐ and trace‐element chemistry demonstrates that they closely parallel the trends of continental tholeiitic suites. Compositions of the mafic suite of the Zamu Dolerite recast into the 1‐atm phase diagrams for simplified anhydrous tholeiitic magmas suggest that the more evolved members of this suite were produced by olivine and, possibly, plagioclase fractionation.  相似文献   

7.
宋晨  苏尚国  伍月  蔡楠  刘美玉 《岩石学报》2014,30(11):3375-3382
位于华北板块西缘赋存于超镁铁质岩中的金川矿床,是目前世界第三大镍硫化物矿床.金川铜镍硫化物矿床的原生岩浆问题一直存在着较大的争议,前人通过研究金川铜镍硫化物矿体中的堆晶橄榄岩中橄榄石的成分,从而推导原生岩浆的成分.而作者通过对金川铜镍硫化物矿体内部的基性岩脉深入研究,从另一个角度探究金川铜镍硫化物矿床的原生岩浆成分.通过对岩脉岩相学、主量元素的研究表明金川铜镍硫化物矿体中的岩脉主要是辉绿岩,因其MgO的含量的不同可以划分为高镁辉绿岩和低镁辉绿岩.辉绿岩脉的主量元素和微量元素显示这两类岩脉发生过分离结晶作用.PGE元素特征显示辉绿岩脉和金川矿床是同一期次产物,Pmelts的模拟演化得出本文中辉绿岩脉的液相线矿物橄榄石的牌号为Fo86,与金川矿床发现最高牌号Fo86一致.同时Ol-CATS-Q相图表明JC100925-5样品形成的源区在3GPa以上.多种因素显示这种高镁的岩浆是金川矿区的原生岩浆.  相似文献   

8.
We present evidence for the origin of the Lyngen Gabbro of the Ordovician Lyngen Magmatic Complex in Troms, Northern Norway. The two magmatic suites of the Lyngen Gabbro strike parallel NNE-SSW, and have distinct magmatic signatures. We define these signatures by using major and trace-element analyses together with selected major- and trace-element mineral analyses and 143Nd/144Nd-isotope whole-rock analyses of gabbroic to tonalitic plutonic rocks from seven detailed cross-sections from this large gabbro-complex. The Western suite of the Lyngen Gabbro precipitated from magma that may have been derived from the same system as the associated volcanic rocks. The gabbros have high An-content (An>90) of their plagioclases relative to co-existing mafic minerals. Together with somewhat high Nd(t) values (+6), this implies that the parental magmas were hydrous tholeiites similar to those found in back arc basins today. The Eastern suite, on the other hand, consist of cumulates that were precipitated from melts resembling those of ultra-depleted high-Ca boninitic magmas found in fore-arcs. Extremely high-An plagioclases (An>95) co-exist with evolved mafic minerals and oxides, and the Nd(t) values are lower (+4) than in the Western suite. The Eastern suite has no volcanic counterpart, but dikes intersecting the suites have compositions that possibly represent its parental magma. The oceanic Rypdalen Shear Zone generally separates the two suites in the north, but several non-tectonic transitions from boninitic to tholeiitic signatures southwards advocate that the magmatism happened concurrently. The magmatic proximity between the suites, the hydrous magmatism and the absence of a silicic or calc-alkaline mature arc section, suggests that the Lyngen Gabbro formed in the Iapetus Ocean under conditions presently found in incipient arcs later emplaced as outer arc highs.  相似文献   

9.
Chemical Composition of Hawaiian Lavas1   总被引:1,自引:0,他引:1  
One hundred and forty-three new chemical analyses of Hawaiianlavas are presented. These demonstrate that the ‘primitive’rocks of all Hawaiian volcanoes are tholeiitic, that there isno difference between those of volcanoes that later gave riseto hawaiites and ankaramites and those that later produced mugearitesand trachytes, that there is complete chemical gradation betweentholeiitic and alkalic basalts, and that tholeiitic and alkalicbasalts are interstratified in a thin transition zone. Transitionfrom tholeiitic to alkalic basalt occurs in the upper part ofthe caldera-filling sequence in the volcanoes that producedhawaiite, and in the upper part of the shield below the unconformityat the base of the mugearitic cap in the volcanoes that producedmugearite and trachyte. Within the tholeiitic and alkalic suites, respectively, differentiationis largely controlled by fractional crystallization. The felsicend member of the alkalic suite is soda trachyte; that of thetholeiitic suite is rhyodacite.  相似文献   

10.
Feldspars and normative feldspar constituents of bulk magmashow trends supportive of fractional crystallization in thethree main types of hy-normative intraplate suites that containqz-oversaturated rocks: ocean island and continental alkalicsuites, ocean island tholeiitic suites and continental tholeiiticsuites. These suites are characterized by the presence of asingle feldspar in each suite member, a shift of this feldsparfrom plagioclase to alkali feldspar, and K enrichment of alkalifeldspar with decreasing temperature in the trachytic members.The modal feldspars provide evidence for a reaction relationshipbetween feldspars and indicate a build-up of magmatic volatilecontent towards saturation with progressive fractionation ofa parental magma having low initial volatile content. The feldsparand normative feldspar evolutionary paths are unique for eachof the three suite types but similar for different suites withinthe same type. This characteristic extends to the felsic members,making it easy to distinguish between rhyolitic or graniticrocks from the different suite types. The feldspars in naturalvolcanic suites commonly show evidence for a polybaric history,particularly in the least-evolved suite members. Late-stagefeldspars of the intermediate members and feldspars of the mostevolved members show paths indicative of significantly lowertemperature and pressure regimes. KEY WORDS: alkalic; intra-plate; feldspars; fractionation; suites  相似文献   

11.
Phenocryst and groundmass pyroxenes in 24 rocks of the tholeiitic, alkalic, and nephelinic suites from Haleakala and West Maui volcanoes, Maui, Hawaii, were analyzed quantitatively by electron microprobe. Results and conclusions: i) Tholeiites contain augite, pigeonite, and bronzite; alkalic rocks contain salite, augite, and ferroaugite; and nephelinic rocks have salite, sometimes of Wo>50 mole %. ii) The three suites can be distinguished by Ca contents of pyroxenes: High-Ca pyroxenes of tholeiitic rocks have Wo30–40; those of alkalic rocks have Wo38–48; and those of the nephelinic rocks have Wo47–51; i.e. Wo in clinopyroxene increases from tholeiitic, to alkalic, to nephelinic suites, iii). In the alkalic suite, rock types can be distinguished on the basis of clinopyroxene composition: Alkalic olivine and alkalic basalts have Wo38–45, hawaiites and mugearites have Wo45–48. Trachytes can be distinguished from both groups by higher Fe (Fs22–30) and Ca contents (Wo43–47). iv) Pyroxenes in tholeiitic rocks show higher intrarock variability (e.g. Fs12Wo40-Fs37Wo30) than those of the alkalic and nephelinic suites, v) Na2O bulk-rock content affects Na2O content of the precipitating high-Ca pyroxene; e.g. Na2O in groundmass pyroxene increases from tholeiitic, to alkalic (mafic members only), to nephelinic suites; a similar relationship is present within the differentiated alkalic suite, vi) In tholeiites, changes in groundmass high-Ca pyroxene compositions are related to changes in bulk rock compositions, e.g. FeO/FeO+MgO+CaO in clinopyroxene increases as this ratio increases in the bulk rock; this is not true for alkalic and nephelinic rocks, vii) In groundmass high-Ca pyroxene, Al2O3, Na20, and TiO2 contents increase and MnO content decreases with increasing Wo content from tholeiitic, to alkalic (mafic members only), to nephelinic suites, viii) Groundmass high-Ca pyroxenes are richer in MnO and Na2O and poorer in Cr2O3 compared to coexisting phenocrysts. High-Ca pyroxene phenocrysts in nephelinic rocks and in one mugearite are depleted in SiO2 and enriched in Al2O3 relative to coexisting groundmass clinopyroxene, indicating increased SiO2 activity during crystallization. Some tholeiites show the reverse; this Si—Al relationship is not clear in other samples.  相似文献   

12.
Following the amalgamation of the Siberian and North China Cratons, NE China, as part of the Central Asian Orogenic Belt (CAOB), underwent Late Mesozoic lithospheric extension that was associated with volcanic activity. The Songliao Basin is the most important rift structure formed during these processes and contains voluminous volcanic rocks interlayered with sedimentary infill. Mafic-to-intermediate lavas are associated with felsic ones. This study focusses on the geochemical compositions of the less-widespread Early Cretaceous mafic-to-intermediate lavas in the Songliao Basin and compares them with the more abundant felsic rocks. Two mafic-to-intermediate magma series, one with alkaline and the other with sub-alkaline affinity, were identified. High MgO and Cr contents, low Th/Nb and La/Nb ratios, and variable but depleted Nd isotope compositions indicate that both magma suites were most likely formed by the melting of enriched upper mantle sources. Sub-alkaline mafic-to-intermediate rocks and I-type rhyolites define a co-genetic magma series. This rock suite was produced by the melting of subduction-modified lithospheric mantle and subsequent magma evolution as well as crustal melting during lithospheric extension. Alkaline mafic-to-intermediate rocks and A-type rhyolites form another co-genetic magma suite that was produced under within-plate conditions from an OIB-type mantle source, supposed to be the heterogeneous shallow asthenosphere and/or the lower lithosphere. Decompression partial melting of this mantle source requires a relatively thin lithosphere. The development of alkaline mafic rocks and A-type rhyolites as typical bimodal volcanic assemblage reflects that lithospheric thinning below the Songliao Basin reached its maximum, whereas basin rifting terminated afterwards.  相似文献   

13.
A 500 m sequence of horizontal lava flows forms the Gregory rift escarpment of the western rift shoulder between Lake Natron and Oldoinyo Lengai. A detailed volcanic stratigraphy of this >1.2 Ma evolution of the EAR in Northern Tanzania is presented. The sequence is formed by several distinct rock suites, with increasing alkalinity from base to top. Alkali olivine basalts of the Waterfall Sequence at the base are followed by a basanite series, and by a range of evolved nephelinites forming the upper part of the escarpment. Numerous dykes and Strombolian scoria deposits indicate local fissure eruptions as opposed to or in addition to more distant sources. Primitive compositions within each of the series indicate variable candidates for primary magmas. The composition of the basanite suite ranges from primitive mantle melts (high Mg#, Cr, Ni) to more evolved rocks, in particular hawaiites, generated by fractionation of olivine, pyroxene and magnetite. Inter-bedded within the basanite suite, one single olivine melilitite flow with high Mg# and abundant olivine and pyroxene megacrysts is the only primitive candidate for the nephelinite suite. However, in view of the large compositional gap and marked differences in incompatible element ratios, a relation between this flow and the nephelinites remains hypothetical. The variation within the evolved nephelinite series can be partly explained by fractionation of pyroxene, apatite, perovskite (and some nepheline), while magma mixing is indicated by zonation patterns of pyroxene. The most evolved nephelinite, however, differs significantly from all other nephelinites in major and trace elements. Thus the entire sequence is petrologically not a coherent evolution, rather the result of different mantle melts fractionating under variable conditions.Carved into the rift scarp of the study area west of Engare Sero is a young explosion crater, the Sekenge Crater. Sekenge Tuffs are olivine melilitites, similar to other craters and maars of the “Younger Extrusives” on the rift valley floor surrounding Oldoinyo Lengai. Further, still younger alkaline tuffs are found on the top of the rift shoulder.  相似文献   

14.
The ankaramitic scoria and carbonatite tuffs of the Lashainevolcano, northern Tanzania, contain a suite of alkalic pyroxenitexenoliths, in addition to the previously investigated magnesianlherzolite types. The rocks of the pyroxenite suite, which includemica-dunite and iron-rich lherzolite, consist of varying combinationsof olivine (Fo86–72), sodic diopside, Ti-pargasite, Ti-phlogopite,ilmenite, chromite, and magnetite. The over-all assemblagesare poorer in alumina than those from other alkalic pyroxenitelocalities. Comparison with the products of experimentally investigatedsystems is difficult because of low alumina, and emphasizesthe need for experimental syntheses on rocks of this type.  相似文献   

15.
The Longwoods Complex of Southland, New Zealand is part of an extensive terrane consisting of intrusives, volcanics, and sediments, which outcrops in the southern and north-western portions of the South Island. This terrane represents a volcanic arc which was active from Permian to Jurassic times (Grindley, 1958; Challis, 1968, 1969; Coombs et al., 1976). Between Pahia Point and Oraka Point on the southern coast of the South Island a section across the Longwoods Complex is well exposed and intrusives ranging in composition from ultrabasic cumulate rock, high-Al gabbro and gabbroic diorite to quartz diorite and granite outcrop. Two models have been considered for the origin of the rocks of the Pahia Point-Oraka Point section: (a) the rocks constitute one suite, the members of which are related by a crystal fractionation process; (b) the rocks constitute two suites which are not directly related. The ultrabasic rocks, and quartz diorites are complementary and are derived from a high-Al gabbro parent by crystal fractionation involving pyroxene, olivine, plagioclase and hornblende, but considerations of viscosity and the geochemistry of the granite preclude derivation of the high-Si rocks by continuation of the crystal fractionation model. Furthermore, the quartz-diorites are of two types: xenolith bearing foliated quartz-diorites and xenolith deficient unfoliated types. The latter rock type appears to group with the gabbros on variation diagrams and partitioning of Ti between mica and amphibole supports the view that two distinct suites of rocks are involved: (a) a suite derived by fractional crystallization from a high-Al gabbro parent and consisting of cumulate ultramafic rocks, high-Al gabbro, gabbroic diorite and quartz-diorite; (b) a suite of foliated quartz diorites, formed by partial melting of lower crustal igneous rocks. The xenoliths in the foliated quartz-diorites represent modified residue left after partial melting. Melt and residue have unmixed to varying degrees during diapiric rise and a range of compositions has resulted. The association of the two suites is tectonic. Gabbroic melts are generated in the lithosphere during plate subduction beneath a continental margin and rise of these melts into the lower continental crust results in partial melting and generation of quartz-diorite magmas.  相似文献   

16.
Dolerite dykes intruding Variscan plutonites were studied in terms of mineralogy, petrology, geochemistry and geochronology. The main mineral constituents were studied and the sequence of crystallization has been derived. The geochemical characteristic indicate mantle origin of the dolerites and magma sources different from the hosting granitoids. From SHRIMP analyses of five spots on four different zircon crystals, resulted a 292.0±4.1 Ma age that is interpreted as the time of crystallization of the dolerite. The hosting granitoids are probably the result of mixing between two possible end-members: enriched mantle and acid metaigneous or lower crustal metasediments.

The Variscan age of the dolerites, in combination with the geochemical characteristics, indicated that the enriched mantle basaltic material should be the source of the dolerite veins. These mantle-derived basaltic melts may represent the underplated material, which probably provided the necessary thermal input to the dehydration melting in the lower crust. The dolerites should have intruded the newly formed batholiths before or at the first stages of their uplift, recording the last events of the Variscan subduction.  相似文献   


17.
At least four volcanic complexes of different age and petrologic character occur in southeastern New England. Each complex contains a variety of fine-grained felsitic rocks, and three of these are known to have been quarried by prehistoric people for material used in the production of stone tools. These volcanics include a Late Proterozoic calcalkaline suite (Lynn-Mattapan) and several alkaline suites of Ordovician to Carboniferous age (Blue Hill, Spencer Hill, and Wamsutta suites). Each suite exhibits unique petrographic and geochemical features that help to constrain sources of felsitic archaeological materials. Distinctive petrographic features are: (1) Lynn/Mattapan: mostly pyroclastic rocks that typically contain broken crystals, volcanic clasts, and relict pumice and glass shards; phenocrysts of plagioclase, quartz, and perthite, commonly in glomeroporphyritic clusters; accessory sphene and prominent late-stage epidote; some varieties exhibit distinct flow-banding. (2) Blue Hill and Spencer Hill rocks: mainly lava flows; abundant perthite and quartz phenocrysts, with minor or no plagioclase; accessory minerals may include fluorite, aegerine, riebeckite, zircon, and allanite. (3) Wamsutta rhyolite: phenocrysts solely of anorthoclase; quartz restricted to late-stage filling of vesicles, and to planar, subparallel fractures in-filled as lithophysae; lava flows with devitrified glass matrix. Major element geochemistry is of limited use in distinguishing the volcanic groups, but trace element signatures are distinct and provide excellent criteria to discriminate rocks from each suite. Compared to the Lynn/Mattapan suite, the Blue Hill and Spencer Hill rocks exhibit higher concentrations of Rb, Y, Zr, Nb, La, Ce and Zn, and lower concentrations of Sr and Ba. Wamsutta rhyolite is intermediate in composition, but distinct. Examination of material from six prehistoric quarries, and debitage collected at seven archaeological sites, demonstrates that most samples can be assigned to one of the above volcanic suites based on combined petrographic and geochemical attributes. These geologic attributes add a significant element of quantification to archaeological sourcing problems that lead to improved identification of materials compared to hand sample characterization alone. The volcanics from source areas proximal to the Boston basin were important to Early and Middle Archaic period populations across most of southeastern Massachusetts. During the Late/Terminal Archaic period, these materials were being transported extensively throughout eastern and southeastern Massachusetts, the Narragansett Bay area, and parts of Rhode Island. Thus, routinely applied geological methods can provide useful approaches to constrain the sources of felsites from southeastern New England found in archaeological contexts. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
The Baer ophiolitic massif is located in the northern sub-belt of the western segment of the Yarlung Zangbo Suture Zone (YZSZ) and mainly consists of a lherzolite-dominant mantle suite, dolerite intrusions and limited crustal outcrops. The dolerites show sub-ophitic texture and light rare earth element-depleted chondrite-normalized rare earth element patterns similar to normal-mid-ocean ridge basalts (N-MORB); though, they display enrichments in fluid-mobile elements (Rb, Ba, and Sr) and marked depletions in Th and Nb. The U–Pb ages of several magmatic zircon grains recovered from two dolerite samples indicate that the intrusion of the dikes into the Baer lherzolitic mantle occurred at 125.6–126.3 Ma, consistent with the widespread mafic magmatism between 120 and 130 Ma in the Yarlung Zangbo ophiolites. The dolerites have slightly more radiogenic 87Sr/86Sr ratios (0.7043–0.7054) in comparison to N-MORB, whereas they show 143Nd/144Nd values (0.513067–0.513114) similar to N-MORB and high zircon Hf-isotope compositions. They have a limited range of Nd-isotope (εNd(t) values: +8.2 to +9.1) and juvenile Hf-isotope compositions (εHf(t) values: +8.4 to +14.2 and +10.0 to +15.1) indicating derivation from mantle melts. The moderate spread in the εHf (t) values of zircons indicates derivation of the dolerites parental magma from a weakly contaminated spinel-bearing mantle source. This is also corroborated by the geochemical signatures of the Baer dolerites (enrichment in LILE and depletion in HFSE) suggesting minor slab input to the mantle source of the dike-filling melt. We suggest that the genesis of the dolerite dike-forming melt happened at a stage of subduction initiation in a sub-oceanic mantle domain mildly affected by fluids emanating from the downgoing slab. Our data combined with literature data allow us to presume that the intrusion of the dolerites into the Baer mantle corresponds to an early phase of subduction initiation beneath a developing forearc basin.  相似文献   

19.
Volcanoplutonic complexes in NE Vietnam have recently been interpreted as intraplate products of the Emeishan plume. Alternatively, mafic–ultramafic rocks have been considered as dismembered Palaeotethyan ophiolites juxtaposed along a tectonic mélange zone. New U–Pb zircon geochronological and geochemical datasets presented here suggest a complex geological history that records collision between the Indochina–South China blocks. Mafic–ultramafic rocks exposed within a tectonic mélange (Song Hien Tectonic Zone) include sub-alkaline pillow basalts that define two geochemically distinct ophiolitic suites (SH-1: N-MORB-like, SH-2: transitional E-MORB-like). Both suites have geochemical signatures suggestive of crustal contamination, compatible with a volcanic passive margin/rift setting. We suggest that SH-1 basalts may correlate with the Devonian–Carboniferous Jinshajiang–Ailaoshan–Song Ma branch of the Palaeotethys and form part of the associated Dian–Qiong belt, whereas SH-2 basalts are co-magmatic with Middle–Late Permian mafic–ultramafic intrusive rocks (dolerites, gabbros, peridotites) that developed in a rift basin, most likely on the margin of the down-going South China plate during west-vergent subduction beneath Indochina. During continental orogenesis and thrust stacking, these ophiolitic rocks were juxtaposed with other lithotectonic blocks within the Song Hien Tectonic Zone. Post-collisional relaxation led to the development of a rift basin (Song Hien rift) comprising Late Permian–Triassic volcano-sedimentary strata including < 270–265 Ma terrigenous sandstones, < 252 Ma mudstones, and c. 254–248 Ma felsic effusives. Granites and granodiorites were emplaced across NE Vietnam between c. 252 and 245 Ma in a syn- to post-collisional setting. The Late Permian–Early Triassic felsic magmatic rocks best correlate with coeval rocks in SW Guangxi and the Central and Western Ailaoshan fold belts (China) and the Truong Son fold belt (Vietnam); together they signal the final to post-collisional stages of Indochina–South China collision. We demonstrate that the analysed magmatic rocks in the Lo-Gam–Song Hien domains of NE Vietnam are not genetically linked to the Emeishan Large Igneous Province in the Yangtze block of South China, as has been previously widely proposed.  相似文献   

20.
碧口群不同岩片火山岩微量元素组成差异与古构造意义   总被引:6,自引:2,他引:4  
对碧口群内部大茅坪和筏子坝2个岩片变火山岩微量元素的研究表明,二者在岩石组合、源区组成及产出的构造环境等方面均存在系统差异。大茅坪岩片主要由偏碱性与非碱性的玄武质岩石组成,二者分别具有类似OIB和MORB的微量元素组成,起源于相对富集和相对亏损的地幔,并受到陆源物质不同程度的混染。偏碱性与非碱性的玄武质岩石分别显示板内火山岩(WPB)与洋脊玄武岩(MORB)的属性,表明大茅坪岩片火山岩主要形成于裂谷-有限洋盆环境。筏子坝岩片由玄武质与中酸性火山岩组成,岩石化学显示明显的“双峰式”组成特征,二者分别具有类似MORB和壳源岩石的微量元素组成,为亏损地幔与壳源岩石部分熔融的产物,形成于大陆裂谷环境。根据不同火山岩构造属性及组合特征,推断碧口群主要形成于陆内裂谷-有限洋盆构造环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号