首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The consequences of gas-liquid phase transitions in the core of hot white dwarf stars are discussed. Expressions for the latent heat and the liquefaction curveT l =T l (Q) are obtained. Then amodel for a hot white dwarf is introduced and the corresponding liquefaction sequences are built on the H-R diagram; relations luminosity-central temperature and effective temperature-central temperature are also given for liquefying white dwarfs.Finally the cooling curves are obtained for such stars taking into account the effect of latent heat emission.Our results seem to suggest a possible identification of the central stars of planetary nebulae as hot liquefying white dwarfs.  相似文献   

2.
Following on our initial absorption-line analysis of fifteen novae spectra we present additional evidence for the existence of two distinct components of novae ejecta having different origins. As argued in Paper I one component is the rapidly expanding gas ejected from the outer layers of the white dwarf by the outburst. The second component is pre-existing outer, more slowly expanding circumbinary gas that represents ejecta from the secondary star or accretion disk. We present measurements of the emission-line widths that show them to be significantly narrower than the broad P Cygni profiles that immediately precede them. The emission profiles of novae in the nebular phase are distinctly rectangular, i.e., strongly suggestive of emission from a relatively thin, roughly spherical shell. We thus interpret novae spectral evolution in terms of the collision between the two components of ejecta, which converts the early absorption spectrum to an emission-line spectrum within weeks of the outburst. The narrow emission widths require the outer circumbinary gas to be much more massive than the white dwarf ejecta, thereby slowing the latter’s expansion upon collision. The presence of a large reservoir of circumbinary gas at the time of outburst is suggestive that novae outbursts may sometime be triggered by collapse of gas onto the white dwarf, as occurs for dwarf novae, rather than steady mass transfer through the inner Lagrangian point.  相似文献   

3.
An analysis of the UV oscillations in WZ Sge is presented, in which we obtain the oscillation amplitude spectra. We find a strong 27.9-s oscillation in our Hubble Space Telescope ( HST ) UV and zeroth-order light curves as well as weaker oscillations at 28.4 s in the UV and 29.1 s in the zeroth order. We find that the main oscillation amplitude spectrum can be fitted with static white dwarf spectra of about 17 000 K, an accretion hotspot of only a few 100 K hotter than the underlying white dwarf temperature or a variety of cool (<14 500 K) white dwarf pulsation amplitude spectra. A pulsating white dwarf can also explain the very blue colour of oscillations of different periods previously found in the optical. Comparing our results with those of Welsh et al., we see that the amplitude spectra of the main oscillations in WZ Sge measured with different periods in data sets from different epochs are similar to each other. Our results raise questions about using the magnetically accreting rotating white dwarf model to explain the oscillations. We suggest that the pulsating white dwarf model is still a viable explanation for the oscillations in WZ Sge.  相似文献   

4.
With the recent detection of direct white dwarf photospheric radiation from certain cataclysmic variables in quiescent (low accretion) states, important implications and clues about the nature and long-term evolution of cataclysmic variables can emerge from an analysis of their physical properties. Detection of the underlying white dwarfs has led to a preliminary empirical CV white dwarf temperature distribution function and, in a few cases, the first detailed look at a freshly accreted white dwarf photosphere. The effective temperatures of CV white dwarfs plotted versus orbital period for each type of CV appears to reveal a tendency for the cooler white dwarf primaries to resisde in the shorter period systems. Possible implications are briefly discussed.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986  相似文献   

5.
Using a parametrized function for the mass loss at the base of the post-shock region, we have constructed a formulation for magnetically confined accretion flows which avoids singularities, such as the infinity in density, at the base associated with all previous formulations. With the further inclusion of a term allowing for the heat input into the base from the accreting white dwarf, we are also able to obtain the hydrodynamic variables to match the conditions in the stellar atmosphere. (We do not, however, carry out a mutually consistent analysis for the match.) Changes to the emitted X-ray spectra are negligible unless the thickness of mass leakage region at the base approaches or exceeds one per cent of the height of the post-shock region. In this case the predicted spectra from higher-mass white dwarfs will be harder, and fits to X-ray data will predict lower white dwarf masses than previous formulations.  相似文献   

6.
《New Astronomy Reviews》2000,44(1-2):119-124
I review detached binaries consisting of white dwarfs with either other white dwarfs or low mass main-sequence stars in tight orbits around them. Orbital periods have been measured for 15 white dwarf/white dwarf systems and 22 white dwarf/M dwarf systems. While small compared to the number of periods known for CVs (>300), I argue that each variety of detached system has a space density an order of magnitude higher that of CVs. While theory matches the observed distribution of orbital periods of the white dwarf/white dwarf binaries, it predicts white dwarfs of much lower mass than observed. Amongst both types of binary are clear examples of helium core white dwarfs, as opposed to the usual CO composition; similar systems must exist amongst the CVs. White dwarf/M dwarf binaries suffer from selection effects which diminish the numbers seen at long and short periods. They are useful for the study of irradiation; I discuss evidence to suggest that Balmer emission is broadened by optical depth effects to an extent which limits its usefulness for imaging the secondary stars in CVs.  相似文献   

7.
The density of the white dwarf stars is reconsidered from the point of view of the theory of the poly tropic gas spheres, and gives for themean density of a white dwarf (under ideal conditions) the formula ρ=2.162 × 106 × (M/⊙)2. The above formula is derived on considerations which are a much nearer approximation to the conditionsactually existent in a white dwarf than the previous calculations of Stoner based on uniform density distribution in the star and which gave for the limiting density the formula ρ=3.977 × 106 × (M/⊙)2.  相似文献   

8.
We show that the spin period of the white dwarf in the magnetic cataclysmic variable (CV) EX Hydrae represents an equilibrium state in which the corotation radius is comparable with the distance from the white dwarf to the inner Lagrange point. We also show that a continuum of spin equilibria exists at which P spin is significantly longer than ∼0.1 P orb. Most systems occupying these equilibrium states should have orbital periods below the CV period gap, as observed.  相似文献   

9.
We present spectroscopy and photometry of GD 448, a detached white dwarf – M dwarf binary with a period of 2.47 h. We find that the Na  I  8200-Å feature is composed of narrow emission lines, owing to irradiation of the M dwarf by the white dwarf, within broad absorption lines that are essentially unaffected by heating. Combined with an improved spectroscopic orbit and gravitational redshift measurement from spectra of the Hα line, we are able to derive masses for the white dwarf and M dwarf directly (0.41 ± 0.01 and 0.096 ± 0.004 M, respectively). We use a simple model of the Ca II emission lines to establish the radius of the M dwarf assuming the emission from its surface to be proportional to the incident flux per unit area from the white dwarf. The radius derived is 0.125 ± 0.020 R. The M dwarf appears to be a normal main-sequence star in terms of its mass and radius, and is less than half the size of its Roche lobe. The thermal time-scale of the M dwarf is much longer than the cooling age of the white dwarf, so we conclude that the M dwarf was unaffected by the common-envelope phase. The anomalous width of the Hα emission from the M dwarf remains to be explained, but the strength of the line may be due to X-ray heating of the M dwarf owing to accretion on to the white dwarf from the M dwarf wind.  相似文献   

10.
We present the spectra of accretion discs around white dwarfs calculated with an improved and updated version of Shaviv and Wehrse [Shaviv, G., Wehrse, R., 1991. A&A 251, 117] model. The new version includes line opacities and convective energy transport and can be used to calculate the spectra of hot discs in bright systems (nova-like variables or dwarf novae in outburst) as well as the spectra of cold accretion discs in quiescent dwarf novae.  相似文献   

11.
In this paper we analyse the consequences in the white dwarf population of a hypothetical merger episode in our Galactic disc. We have studied several different merging scenarios with our Monte Carlo simulator. For each one of these scenarios we have derived the main characteristics of the resulting white dwarf population and we have compared them with the available observational data, namely the white dwarf luminosity function and the kinematic properties of the white dwarf population. Our results indicate that very recent (less than ∼6 Gyr ago) and massive (∼16 per cent of the mass of our Galaxy) merger episodes are quite unlikely in view of the available kinematical properties of the disc white dwarf population. Smaller merger episodes (of the order of ∼4 per cent of the mass of our Galaxy) are, however, compatible with our current knowledge of those kinematical properties. Finally, we prove that the white dwarf luminosity function is quite insensitive to such a merger episode.  相似文献   

12.
In the present paper we have studied the eigenfrequencies of small adiabatic barotropic pseudo-radial and nonradial modes of oscillations of the white dwarf models of rotating stars in binary systems. In this work the methodology of Mohan and Saxena (in Astrophys. Space Sci. 113:155, 1985) has been used that utilizes the averaging technique of Kippenhahn and Thomas (in Proc. IAU Colloq., vol. 4, p. 20, 1970) and certain results on Roche equipotential as that given by Kopal (in Advances in Astronomy and Astrophysics, Academic Press, 1972). The objective of this study is to investigate the effects of rotation and/or tidal distortion on the periods of oscillations of rotationally and/or tidally distorted white dwarf models of stars assuming it to be the primary component of the binary system and rotating uniformly. The results of present study show that the eigenfrequencies (both radial and nonradial modes) of the rotationally distorted and rotationally and tidally distorted white dwarf model of stars in binary systems tend to decrease under the influence of rotational distortions and rotational and tidal distortions, respectively. However, results are contrary for tidally distorted white dwarf model of stars.  相似文献   

13.
The interacting binary white dwarf (AM CVn) systems HM Cnc and V407 have orbital periods of 5.4 and 9.5 min, respectively. The two systems are characterized by an 'on/off' behaviour in the X-ray light curve, and optical light curves that are nearly sinusoidal and which lead the X-ray light curves in phase by about 0.2 in both systems. Of the models that have been proposed to explain the observations, the one that seems to require the least fine-tuning is the direct impact model of Marsh & Steeghs. In this model, the white dwarf primary is large enough relative to the semimajor axis that the accretion stream impacts the surface of the primary white dwarf directly without forming an accretion disc. Marsh & Steeghs proposed that in this situation there could be a flow setup around the equator with a decreasing surface temperature, the further one measured from the impact point. In this study, we estimate the light curves that might result from such a temperature distribution, and find them to be reasonable approximations to the observations. One unexpected result is that two distinct X-ray spots must exist to match the shape of the X-ray light curves.  相似文献   

14.
We study the full evolution of low-mass white dwarfs with helium and oxygen cores. We revisit the age dichotomy observed in many white dwarf companions to millisecond pulsar on the basis of white dwarf configurations derived from binary evolution computations. We evolve 11 dwarf sequences for helium cores with final masses of 0.1604, 0.1869, 0.2026, 0.2495, 0.3056, 0.3333, 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . In addition, we compute the evolution of five sequences for oxygen cores with final masses of 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . A metallicity of   Z = 0.02  is assumed. Gravitational settling, chemical and thermal diffusion are accounted for during the white dwarf regime. Our study reinforces the result that diffusion processes are a key ingredient in explaining the observed age and envelope dichotomy in low-mass helium-core white dwarfs, a conclusion we arrived at earlier on the basis of a simplified treatment for the binary evolution of progenitor stars. We determine the mass threshold where the age dichotomy occurs. For the oxygen white dwarf sequences, we report the occurrence of diffusion-induced, hydrogen-shell flashes, which, as in the case of their helium counterparts, strongly influence the late stages of white dwarf cooling. Finally, we present our results as a set of white dwarf mass–radius relations for helium and oxygen cores.  相似文献   

15.
The effect of rotating white dwarf envelopes in determining the structure of nova shells is examined. This is achieved by numerical hydrodynamic simulations of the flows around a binary star system. In previous studies of remnant formation, this rotation has not been included.
It is found that the structures formed in the flow are more consistent with observations of nova shells than the previous theoretical studies. The shells produced by the nova become more prolate with increasing white dwarf envelope rotation. Hence the rotation of white dwarf envelopes must be included in any future discussion of remnant formation.
A possible method of identifying the dominant process by which mixing of accreted and white dwarf matter takes place is suggested.  相似文献   

16.
An analysis of X-ray and optical light curves of the magnetic cataclysmic variable (MCV) BY Cam is presented. This system is one of three MCVs in which the spin period of the white dwarf and the binary orbital period differ by ∼1 per cent. As such these 'BY Cam' stars are important objects with which to probe the field structure of the magnetic white dwarf and ultimately the nature of synchronization of AM Her binaries. We confirm asynchronous rotation of the magnetic white dwarf with respect to the binary. We find evidence that the accretion stream accretes directly on to the white dwarf as in AM Her systems, but further, the stream impacts on to different magnetic poles over the course of the beat period. We present evidence that the optical and hard X-ray light curves modulate in phase, but together they are out of phase with the soft X-ray light curve. We confirm the spin down of the white dwarf which is expected to lead to the synchronization of the spin and orbital periods of BY Cam.  相似文献   

17.
It is well-known that the optical pulsations in DQ Her are due to emission from the magnetic poles of the white dwarf. As the white dwarf spins on its axis, the magnetic poles sweep into and out of the line of sight due to the fact that the magnetic axis and the spin axis are not aligned, that is, the DQ Her white dwarf is an `oblique rotator'. So, a central question is if an initially axisymmetric model simulating the DQ Her white dwarf before its `turn-over' (where the term `turn-over' describes the process by which the magnetic axis gets inclining relative to the spin axis at a progressively increasing angle, the so-called `turn-over angle') is indeed susceptible to turn-over. For the puprose of resolving this problem, we compute several axisymmetric models of the DQ Her white dwarf. Our results show that, for both the rotation periods proposed on the basis of the observational evidence regarding the optical pulsations of DQ Her (i.e.,71 s or 142 s), the moment of inertia along the rotation axis is less than the corresponding moment of inertia along the remaining two principal axes of the axisymmetric configuration, I 33 > I 11(=I 22). This is because toroidal magnetic field (tending to derive prolate equidensity surfaces) dominates over rotation (tending, in turn, to derive oblate equidensity surfaces), mainly in the interior of the star. The situation I 11 < I 33 is known as `dynamical asymmetry', and can cause a turn-over of the magnetic symmetry axis with respect to the rotation axis, eventually deriving a nonaxisymmetric configuration corresponding to the so-called `perpendicular rotator' with turn-over angle almost equal to 90°. In this view, our results explain why the DQ Her white dwarf is now an oblique rotator. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
应晓  束成钢 《天文学进展》1997,15(4):337-351
综合叙述了白矮星诞生率研究的近况,详细介绍了DA,非DA型白矮星质量,质量分布以及确定质量的方法,对白矮星光度函数作了较为全面的回顾,指出了一些目前白矮星研究工作中仍存在的问题。  相似文献   

19.
We report the discovery, in an Extreme Ultraviolet Explorer ( EUVE ) short-wavelength spectrum, of an unresolved hot white dwarf companion to the 5th magnitude B5Vp star HR 2875. This is the first time that a non-interacting white dwarf+B star binary has been discovered: previously, the earliest type of star known with a white dwarf companion was Sirius (A1V). As the white dwarf must have evolved from a main-sequence progenitor with a mass greater than that of a B5V star (≯6.0 M⊙), this places a lower limit on the maximum mass for white dwarf progenitors, with important implications for our knowledge of the initial–final mass relation. Assuming a pure-hydrogen atmospheric composition, we constrain the temperature of the white dwarf to be between 39 000 and 49 000 K. We also argue that this degenerate star is likely to have a mass significantly greater than the mean mass for white dwarf stars (≈0.55 M⊙). Finally, we suggest that other bright B stars (e.g. θ Hya) detected in the extreme ultraviolet surveys of the ROSAT Wide Field Camera and EUVE may also be hiding hot white dwarf companions.  相似文献   

20.
The aim of this work is to investigate the effect of element diffusion on the evolution of helium white dwarfs. To this end, we couple the multicomponent flow equations that describe gravitational settling, chemical and thermal diffusion to an evolutionary code. We compute the evolution of a set of helium white dwarf models with masses ranging from 0.169 to 0.406 M. In particular, several low-mass white dwarfs have been found in binary systems as companion to millisecond pulsars. In these systems, pulsar emission is activated by mass transfer episodes so that, if we place the zero-age point at the end of such mass transfer, then the pulsar and the white dwarf ages should be equal. Interestingly enough, available models of helium white dwarfs neglect element diffusion. Using such models, good agreement has been found between the ages of the components of the PSR J1012+5307 system. However, recent observations of the PSR B1855+09 system cast doubts on the correctness of such models, which predict a white dwarf age twice as long as the spin-down age of the pulsar. In this work, we find that element diffusion induces thermonuclear hydrogen shell flashes for models in the mass interval 0.18≲ M /M ≲ 0.41 . We show, in particular, that the occurrence of these diffusion-induced flashes eventually leads to white dwarf models with hydrogen envelope masses too small to support any further nuclear burning, thus implying much shorter cooling ages than in the case when diffusion is neglected. In particular, excellent agreement is found between the ages of PSR B1855+09 system components, solving the age discrepancy from first principles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号