首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influences of the shock thickness and Alfven waves on the particle acceleration by diffusive shock waves are numerically studied through solving one-dimensional diffusive equation including the second-order Fermi effect. It is shown that the spectral index of the energetic particles strongly depends on the shock thickness. For example, the spectral index increases from 2.1 to 3.7 in the low energy range of 3—10 MeV and from 2.5 to 5.0 in the high energy range of 20—60 MeV as the thickness increases. The spectral index decreases from 4.3 to 3.1 as the particle injection energy increases. The spectral index decreases from 4.0 to 1.8 at the quasi-steady stage with the enhancement of the compression ratio from 2 to 4. The results indicate that under the influence of Alfven waves, the energetic particle spectrum at lower energy becomes flat and the spectral index decreases from 2.5 to 0.6 in the low energy range of 3—10 MeV and from 11.6 to 5.0 in the high energy range of 20—60 MeV. At the same time, the turning point energy reaches 19.6 MeV. The spectral index decreases from 5.8 to 2.9 as the energy density of Alfven waves increases. All these results are basically consistent with the theoretical models, as well as the observations of typical energetic particle events.  相似文献   

2.
In the present paper we discuss the modifications introduced into the first-order Fermi shock acceleration process due to a finite extent of diffusive regions near the shock or due to boundary conditions leading to an increased particle escape upstream and/or downstream of the shock. In the simple example of the planar shock wave considered we idealize the escape phenomenon by imposing a particle escape boundary at some distance from the shock. The presence of such a boundary (or boundaries) leads to coupled steepening of the accelerated particle spectrum and decreasing of the acceleration time scale. It allows for a semi-quantitative evaluation and, in some specific cases, also for modelling of the observed steep particle spectra as a result of the first-order Fermi shock acceleration. We also note that the particles close to the upper energy cut-off are younger than the estimate based on the respective acceleration time scale. In Appendix A we present a new time-dependent solution for infinite diffusive regions near the shock allowing for different constant diffusion coefficients upstream and downstream of the shock.  相似文献   

3.
On the escape of particles from cosmic ray modified shocks   总被引:1,自引:0,他引:1  
Stationary solutions to the problem of particle acceleration at shock waves in the non-linear regime, when the dynamical reaction of the accelerated particles on the shock cannot be neglected, are known to show a prominent energy flux escaping from the shock towards upstream infinity. On physical grounds, the escape of particles from the upstream region of a shock has to be expected in all those situations in which the maximum momentum of accelerated particles,   p max  , decreases with time, as is the case for the Sedov–Taylor phase of expansion of a shell supernova remnant, when both the shock velocity and the cosmic ray induced magnetization decrease. In this situation, at each time t , particles with momenta larger than   p max( t )  leave the system from upstream, carrying away a large fraction of the energy if the shock is strongly modified by the presence of cosmic rays. This phenomenon is of crucial importance for explaining the cosmic ray spectrum detected at the Earth. In this paper, we discuss how this escape flux appears in the different approaches to non-linear diffusive shock acceleration, and especially in the quasi-stationary semi-analytical kinetic ones. We apply our calculations to the Sedov–Taylor phase of a typical supernova remnant, including in a self-consistent way particle acceleration, magnetic field amplification and the dynamical reaction on the shock structure of both particles and fields. Within this framework, we calculate the temporal evolution of the maximum energy reached by the accelerated particles and of the escape flux towards upstream infinity. The latter quantity is directly related to the cosmic ray spectrum detected at the Earth.  相似文献   

4.
The solar cosmic ray (SCR) acceleration by the shocks driven by coronal mass ejections is studied by taking into account the generation of Alfvén waves by accelerated particles. Detailed numerical calculations of the SCR spectra produced during the shock propagation through the solar corona have been performed within a quasi-linear approach with a realistic set of coronal parameters. The resultant SCR energy spectrum is shown to include a power-law part N ∝ ? with an index γ = 1.7–3.5 that ends with an exponential tail. The maximum SCR energy lies within the range ? max = 0.01–10 GeV, depending on the shock velocity V S = 750–2500 km s?1. The decrease of the shock Alfvénic Mach number due to the increase Alfvén velocity with heliocentric distance r leads to the end of the efficient SCR acceleration when the shock size reaches R S ≈ 4R . In this case, the diffusive SCR propagation begins to exceed the shock velocity; as a result, SCRs escape intensively from the shock vicinity. The self-consistent generation of Alfvén waves by accelerated particles is accompanied by a steepening of the particle spectrum and an increase of their maximum energy. Comparison of the calculated SCR fluxes expected near the Earth’s orbit with the available experimental data shows that the theory explains the main observed features.  相似文献   

5.
We investigated the acceleration of solar cosmic rays (SCRs) by the shock waves produced by coronal mass ejections. We performed detailed numerical calculations of the SCR spectra produced during the shock propagation in the solar corona in terms of a model based on the diffusive transport equation using a realistic set of physical parameters for the corona. The resulting SCR energy spectrum N(ε) ∝ ε exp [? (ε/εmax)α] is shown to include a power-law portion with an index γ?2 that ends with an exponential tail with α ? 2.5 ? β, where β is the spectral index of the background Alfvén turbulence. The maximum SCR energy lies within the range εmax = 1–300 MeV, depending on the shock velocity. Because of the steep spectrum of the SCRs, their backreaction on the shock structure is negligible. The decrease in the Alfvén Mach number of the shock due to the increase in the Alfvén velocity with heliocentric distance r causes the efficient SCR acceleration to terminate when the shock reaches a distance of r = 2–3R. Since the diffusive SCR propagation in this case is faster than the shock expansion, SCR particles intensively escape from the shock vicinity. A comparison of the calculated SCR fluxes expected near the Earth’s orbit with available experimental data indicates that the theory satisfactorily explains all of the main observed features.  相似文献   

6.
We investigate cosmic ray scattering in the direction perpendicular to a mean magnetic field. Unlike in previous articles we employ a general form of the turbulence wave spectrum with arbitrary behavior in the energy range. By employing an improved version of the nonlinear guiding center theory we compute analytically the perpendicular mean free path. As shown, the energy range spectral index, has a strong influence on the perpendicular diffusion coefficient. If this parameter is larger than one we find for some cases a perpendicular diffusion coefficient that is independent of the parallel mean free path and particle energy. Two applications are considered, namely transport of Galactic protons in the solar system and diffusive particle acceleration at highly perpendicular interplanetary shock waves.  相似文献   

7.
宇宙线的起源是高能天体物理的核心问题之一.一直以来,超新星爆发被认为是能谱膝区以下宇宙线的主要来源.多波段观测表明,超新星遗迹有能力加速带电粒子至亚PeV (10~(15)eV)能量.扩散激波加速被认为是最有效的天体高能粒子加速机制之一,而超新星遗迹的大尺度激波正好为这一机制提供平台.近年来,一系列较高精度的地面和空间实验极大地推动了对宇宙线以及超新星遗迹的研究.新的观测事实挑战着传统的扩散激波加速模型以及其在银河系宇宙线超新星遗迹起源学说上的应用,深化了人们对宇宙高能现象的认识.结合超新星遗迹辐射能谱的时间演化特性,构建的时间依赖的超新星遗迹粒子加速模型,不仅能够解释200 GV附近宇宙线的能谱反常,还自然地形成能谱膝区,甚至可以将超新星遗迹粒子加速对宇宙线能谱的贡献延伸至踝区.该模型预期超新星遗迹中粒子的输运行为表现为湍流扩散,这需要未来的观测以及与粒子输运相关的等离子体数值模拟工作来进一步验证.  相似文献   

8.
Shock surfing acceleration   总被引:1,自引:0,他引:1  
Analytical and numerical analysis identify shock surfing acceleration as an ideal pre-energization mechanism for the slow pick-up ions at quasiperpendicular shocks. After gaining sufficient energy by shock surfing, pick-up ions undergo diffusive acceleration to reach their observed energies. Energetic ions upstream of the cometary bow shock, acceleration of solar energetic particles by magnetosonic waves in corona, ion enhancement in interplanetary shocks, generation of anomalous cosmic rays from interstellar pick-up ions at the termination shock are some of the cases where shock surfing acceleration apply. Inclusion of the lower-hybrid wave turbulence into the laminar model of shock surfing can explain the preferential acceleration of heavier particles as observed by Voyager at the termination shock. At relativistic energies, unlimited acceleration of ions is theoretically possible; because for sufficiently strong shocks main limitation of the mechanism, caused by the escape of accelerated particles downstream of the shock during acceleration no longer exists.  相似文献   

9.
We consider the synchrotron emission from relativistic shocks assuming that the radiating electrons cool rapidly (either through synchrotron or any other radiation mechanism). It is shown that the theory of synchrotron emission in the fast cooling regime can account for a wide range of spectral shapes. In particular, the magnetic field, which decays behind the shock front, brings enough flexibility to the theory to explain the majority of gamma-ray burst spectra even in the parameter-free fast cooling regime. Also, we discuss whether location of the peak in observed spectral energy distributions of gamma-ray bursts and active galactic nuclei can be made consistent with predictions of diffusive shock acceleration theory, and find that the answer is negative. This result is a strong indication that a particle injection mechanism, other than the standard shock acceleration, works in relativistic shocks.  相似文献   

10.
The acceleration mechanism in ultrarelativistic shocks is investigated using Monte Carlo simulations. We apply a method of discrete small-amplitude particle momentum scattering to reproduce highly anisotropic conditions at the shock and describe the acceleration mechanism carefully. The obtained acceleration time equals 1.0 r g c if the spectral index reaches the value of 2.2, independent of physical conditions in the shock. Some other parameters of the acceleration process are also provided.  相似文献   

11.
We investigate the role of nonlinear Alfvén-wave interaction in the diffusive shock acceleration of solar-wind ions at the Earth’s bow shock. Allowance for the nonlinear wave interaction through induced scattering and two-quanta absorption at plasma parameters β≲0.1 is shown to limit the Alfvén-wave amplitude δB to δBB, whereas the quasi-linear approach predicts the generation of waves with amplitudes much larger than the diffusive shock magnetic field strength B. The nonlinear interaction results in spectral wave energy transfer to lower frequencies, which yields a significant increase in the particle acceleration rate.  相似文献   

12.
Based on an analytical model, we determined the temporal dynamics of the spectral shape and spatial distribution of the particles that were impulsively (in time) injected with a specified spectrum in the vicinity of a moving plane shock front. We obtained a condition to determine the influence of the shock front on the particle propagation, where the spatial diffusion coefficient of the particles plays a major role. Diffusive shock acceleration is shown to strongly affect low-energy particles (the intensity maximum coincides spatially with the shock front; hard and soft spectral regions are formed in the spectrum) and weakly affect high-energy particles (the time at which the intensity reaches its maximum is well ahead of the shock arrival time; the spectral shape does not change). In events accompanied by a significant increase in the turbulence level, the influence of the shock front on high-energy particles can change from weak to strong. This change shows up in the spatial distribution and spectral shape of the particles. The dynamics of the particle intensity, calculated with the diffusion coefficients that were determined in accordance with the quasi-linear theory for measured turbulence levels, qualitatively corresponds to the observed solar energetic-particle intensity.  相似文献   

13.
向梁  吴德金  陈玲 《天文学报》2023,64(3):27-77
动力学阿尔文波是垂直波长接近离子回旋半径或者电子惯性长度的色散阿尔文波.由于波的尺度接近粒子的动力学尺度,动力学阿尔文波在太阳和空间等离子体加热、加速等能化现象中起重要作用.因此,动力学阿尔文波通常被认为是日冕加热的候选者.本研究工作深入、系统地调研了太阳大气中动力学阿尔文波的激发和耗散机制.基于日冕等离子体环境,介绍了几种常见的动力学阿尔文波激发机制:温度各向异性不稳定性、场向电流不稳定性、电子束流不稳定性、密度非均匀不稳定性以及共振模式转换.还介绍了太阳大气中动力学阿尔文波的耗散机制,并讨论了这些耗散机制对黑子加热、冕环加热以及冕羽加热的影响.不仅为认识太阳大气中动力学阿尔文波的驱动机制、动力学演化特征以及波粒相互作用提供合理的理论依据,而且有助于揭示日冕等离子体中能量储存和释放、粒子加热等能化现象的微观物理机制.  相似文献   

14.
We study cosmic-ray acceleration in young Type Ia Supernova Remnants (SNRs) by means of test-particle diffusive shock acceleration theory and 1-D hydrodynamical simulations of their evolution. In addition to acceleration at the forward shock, we explore the particle acceleration at the reverse shock in the presence of a possible substantial magnetic field, and consequently the impact of this acceleration on the particle spectra in the remnant. We investigate the time evolution of the spectra for various time-dependent profiles of the magnetic field in the shocked region of the remnant. We test a possible influence on particle spectra of the Alfvénic drift of scattering centers in the precursor regions of the shocks. In addition, we study the radiation spectra and morphology in a broad band from radio to gamma-rays. It is demonstrated that the reverse shock contribution to the cosmic-ray particle population of young Type Ia SNRs may be significant, modifying the spatial distribution of particles and noticeably affecting the volume-integrated particle spectra in young SNRs. In particular spectral structures may arise in test-particle calculations that are often discussed as signatures of non-linear cosmic-ray modification of shocks. Therefore, the spectrum and morphology of emission, and their time evolution, differ from pure forward-shock solutions.  相似文献   

15.
1 INTRoDUCTIONB1azars are rwho-loud AGNs characterized by emissions of strong and raPidiy wriablenOllthermal radiation over the elltire electromagntic spectrum. Syndritron ehasha followedby inverse ComPton scattering in a re1aivistic jet and beamd inio one directiOn is generallythought to be the IneCha8m powering these Objects (Kollgaard 1994; Urry & Paded 1995).All blazars have a sPectral energy distribution (SED) with tWO peak8 in a uFv rePesentation(von Montigny et al. 1995; S…  相似文献   

16.
To study the macroscopic acceleration process for non-thermal particles at the front of MHD shock waves, two limiting treatments, namely the “adiabatic” and the “kink” treatments have been developed. They correspond to cases of (particle gyroradius)/(width of shock transition region) ? 1 and ? 1, respectively. The effects of the acceleration process on energy and pitch angle distributions of reflected particles are examined by using each of these treatments and results are compared. It is shown that these two treatments give almost the same energy and pitch angle distribution in the case of nearly-perpendicular shock waves. In the case of nearly-parallel shock waves, the pitch angle distributions differ significantly, there being reflected particles in the adiabatic loss cone when the kink treatment is employed, while the ranges of the energy distribution for these two treatments do not differ greatly. Analytic representation for the acceleration in the adiabatic treatment is given for the later usage.  相似文献   

17.
18.
This is a study of abundances of the elements He, C, N, O, Ne, Mg, Si, S, Ar, Ca, and Fe in solar energetic particles (SEPs) in the 2?–?15 MeV?amu?1 region measured on the Wind spacecraft during 54 large SEP events occurring between November 1994 and June 2012. The origin of most of the temporal and spatial variations in abundances of the heavier elements lies in rigidity-dependent scattering during transport of the particles away from the site of acceleration at shock waves driven out from the Sun by coronal mass ejections (CMEs). Variation in the abundance of Fe is correlated with the Fe spectral index, as expected from scattering theory but not previously noted. Clustering of Fe abundances during the “reservoir” period, late in SEP events, is also newly reported. Transport-induced enhancements in one region are balanced by depletions in another, thus, averaging over these variations produces SEP abundances that are energy independent, confirms previous SEP abundances in this energy region, and provides a credible measure of element abundances in the solar corona. These SEP-determined coronal abundances differ from those in the solar photosphere by a well-known function that depends upon the first ionization potential (FIP) or ionization time of the element.  相似文献   

19.
We consider the acceleration of energetic particles by Fermi processes (i.e., diffusive shock acceleration, second order Fermi acceleration, and gradual shear acceleration) in relativistic astrophysical jets, with particular attention given to recent progress in the field of viscous shear acceleration. We analyze the associated acceleration timescales and the resulting particle distributions, and discuss the relevance of these processes for the acceleration of charged particles in the jets of AGN, GRBs and microquasars, showing that multi-component powerlaw-type particle distributions are likely to occur.  相似文献   

20.
徐晓燕  方成  陈鹏飞 《天文学报》2007,48(2):181-189
观测研究表明有利于磁重联的新浮磁流与日冕物质抛射(CME)有密切关系.利用数值模拟的方法,新浮磁流触发CME的物理模型对观测结果进行了物理解释.基于这种模型,不考虑重力和热传导, 2.5维的数值模拟的理论结果显示:是否能够触发暗条爆发及CME,取决于新浮磁流磁通量的大小、浮现的位置以及其磁极走向,并给出了能够触发暗条爆发与不能触发爆发的参数空间.利用2002年和2003年的15个暗条爆发事例以及2002年的44个非爆发事例,对新浮磁流磁通量的大小、浮现的位置以及磁极走向进行了统计研究.结果表明并非所有的新浮磁流都能够使暗条失去平衡,形成CME.统计结果基本上支持了数值模拟的理论结果.这个结果可为空间天气预报研究提供有用的参考信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号