首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed   M *  . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are  1.6 × 1013  and  8 × 1011  h −1 M  , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically.  相似文献   

2.
3.
We follow the evolution of the galaxy population in a ΛCDM cosmology by means of high-resolution N -body simulations in which the formation of galaxies and their observable properties are calculated using a semi-analytic model. We display images of the spatial distribution of galaxies in the simulations that illustrate its evolution and provide a qualitative understanding of the processes responsible for the various biases that develop. We consider three specific statistical measures of clustering at     and     : the correlation length (in both real and redshift space) of galaxies of different luminosity, the morphology–density relation and the genus curve of the topology of galaxy isodensity surfaces. For galaxies with luminosity below L ∗, the     correlation length depends very little on the luminosity of the sample, but for brighter galaxies it increases very rapidly, reaching values in excess of 10  h −1 Mpc. The 'accelerated' dynamical evolution experienced by galaxies in rich clusters, which is partly responsible for this effect, also results in a strong morphology–density relation. Remarkably, this relation is already well-established at     . The genus curves of the galaxies are significantly different from the genus curves of the dark matter, however this is not a result of genuine topological differences but rather of the sparse sampling of the density field provided by galaxies. The predictions of our model at     will be tested by forthcoming data from the 2dF and Sloan galaxy surveys, and those at     by the DEEP and VIRMOS surveys.  相似文献   

4.
Weak gravitational lensing is now established as a powerful method to measure mass fluctuations in the universe. It relies on the measurement of small coherent distortions of the images of background galaxies. Even low-level correlations in the intrinsic shapes of galaxies could however produce a significant spurious lensing signal. These correlations are also interesting in their own right, since their detection would constrain models of galaxy formation. Using     haloes found in N -body simulations, we compute the correlation functions of the intrinsic ellipticity of spiral galaxies assuming that the disc is perpendicular to the angular momentum of the dark matter halo. We also consider a simple model for elliptical galaxies, in which the shape of the dark matter halo is assumed to be the same as that of the light. For deep lensing surveys with median redshifts ∼1, we find that intrinsic correlations of ∼10−4 on angular scales     are generally below the expected lensing signal, and contribute only a small fraction of the excess signals reported on these scales. On larger scales we find limits to the intrinsic correlation function at a level ∼10−5, which gives a (model-dependent) range of separations for which the intrinsic signal is about an order of magnitude below the ellipticity correlation function expected from weak lensing. Intrinsic correlations are thus negligible on these scales for dedicated weak lensing surveys. For wider but shallower surveys such as SuperCOSMOS, APM and SDSS, we cannot exclude the possibility that intrinsic correlations could dominate the lensing signal. We discuss how such surveys could be used to calibrate the importance of this effect, as well as study spin–spin correlations of spiral galaxies.  相似文献   

5.
Gravitational lensing magnifies the observed flux of galaxies behind the lens. We use this effect to constrain the total mass in the cluster Abell 1689 by comparing the lensed luminosities of background galaxies with the luminosity function of an undistorted field. Under the assumption that these galaxies are a random sample of luminosity space, this method is not limited by clustering noise. We use photometric redshift information to estimate galaxy distance and intrinsic luminosity. Knowing the redshift distribution of the background population allows us to lift the mass/background degeneracy common to lensing analysis. In this paper we use nine filters observed over 12 h with the Calar Alto 3.5-m telescope to determine the redshifts of 1000 galaxies in the field of Abell 1689. Using a complete sample of 146 background galaxies we measure the cluster mass profile. We find that the total projected mass interior to 0.25  h −1 Mpc is M 2D(<0.25  h −1 Mpc)=(0.48±0.16)×1015  h −1 M, where our error budget includes uncertainties from the photometric redshift determination, the uncertainty in the offset calibration and finite sampling. This result is in good agreement with that found by number-count and shear-based methods and provides a new and independent method to determine cluster masses.  相似文献   

6.
7.
8.
We analyse the two-point correlation function (2PCF) of galaxy groups identified from the 2-degree Field Galaxy Redshift Survey with the halo-based group finder recently developed by Yang et al. With this group catalogue we are able to estimate the 2PCFs for systems ranging from isolated galaxies to rich clusters of galaxies. The real-space correlation length obtained for these systems ranges from ∼4 to ∼15  h −1 Mpc, respectively. The observed correlation amplitude (and the corresponding bias factor) as a function of group abundance is well reproduced by associating galaxy groups with dark matter haloes in the standard Λ-cold dark matter model. Redshift distortions are clearly detected in the redshift-space correlation function, the degree of which is consistent with the assumption of gravitational clustering and halo bias in the cosmic density field. In agreement with previous studies we find a strong increase of the correlation length with the mean intergroup separation. Although well-determined observationally, we show that current theoretical predictions are not yet accurate enough to allow for stringent constraints on cosmological parameters. Finally, we use our results to explore the power-law nature of the 2PCF of galaxies. We split the 2PCF into one- and two-group terms, equivalent to the one- and two-halo terms in halo occupation models, and show that the power-law form of the 2PCF is broken, when only including galaxies in the more massive systems.  相似文献   

9.
We use the Millennium Simulation (MS) to measure the cross-correlation between halo centres and mass (or equivalently the average density profiles of dark haloes) in a Lambda cold dark matter (ΛCDM) cosmology. We present results for radii in the range  10  h −1 kpc < r < 30  h −1 Mpc  and for halo masses in the range  4 × 1010 < M 200 < 4 × 1014  h −1 M  . Both at   z = 0  and at   z = 0.76  these cross-correlations are surprisingly well fitted if the inner region is approximated by a density profile of NFW or Einasto form, the outer region by a biased version of the linear mass autocorrelation function, and the maximum of the two is adopted where they are comparable. We use a simulation of galaxy formation within the MS to explore how these results are reflected in cross-correlations between galaxies and mass. These are directly observable through galaxy–galaxy lensing. Here also we find that simple models can represent the simulation results remarkably well, typically to ≲10 per cent. Such models can be used to extend our results to other redshifts, to cosmologies with other parameters, and to other assumptions about how galaxies populate dark haloes. Our galaxy formation simulation already reproduces current galaxy–galaxy lensing data quite well. The characteristic features predicted in the galaxy–galaxy lensing signal should provide a strong test of the ΛCDM cosmology as well as a route to understanding how galaxies form within it.  相似文献   

10.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

11.
Mass-to-light ratio gradients in early-type galaxy haloes   总被引:1,自引:0,他引:1  
Owing to the fact that the near future should see a rapidly expanding set of probes of the halo masses of individual early-type galaxies, we introduce a convenient parameter for characterizing the halo masses from both observational and theoretical results:  ∇ϒ  , the logarithmic radial gradient of the mass-to-light ratio. Using halo density profiles from Λ-cold dark matter (CDM) simulations, we derive predictions for this gradient for various galaxy luminosities and star formation efficiencies  εSF  . As a pilot study, we assemble the available  ∇ϒ  data from kinematics in early-type galaxies – representing the first unbiased study of halo masses in a wide range of early-type galaxy luminosities – and find a correlation between luminosity and  ∇ϒ  , such that the brightest galaxies appear the most dark-matter dominated. We find that the gradients in most of the brightest galaxies may fit in well with the ΛCDM predictions, but that there is also a population of fainter galaxies whose gradients are so low as to imply an unreasonably high star formation efficiency  εSF > 1  . This difficulty is eased if dark haloes are not assumed to have the standard ΛCDM profiles, but lower central concentrations.  相似文献   

12.
One of the predictions of the standard cold dark matter model is that dark haloes have centrally divergent density profiles. An extensive body of rotation curve observations of dwarf and low surface brightness galaxies shows the dark haloes of those systems to be characterized by soft constant-density central cores. Several physical processes have been proposed to produce soft cores in dark haloes, each one with different scaling properties. With the aim of discriminating among them we have examined the rotation curves of dark-matter-dominated dwarf and low surface brightness galaxies and the inner mass profiles of two clusters of galaxies lacking a central cD galaxy and with evidence of soft cores in the centre. The core radii and central densities of these haloes scale in a well-defined manner with the depth of their potential wells, as measured through the maximum circular velocity. As a result of our analysis we identify self-interacting cold dark matter as a viable solution to the core problem, where a non-singular isothermal core is formed in the halo centre surrounded by a Navarro, Frenk & White profile in the outer parts. We show that this particular physical situation predicts core radii in agreement with observations. Furthermore, using the observed scalings, we derive an expression for the minimum cross-section ( σ ) which has an explicit dependence with the halo dispersion velocity ( v ). If m x is the mass of the dark matter particle: σ m x ≈4×10−25 (100 km s−1  v −1) cm2 GeV−1.  相似文献   

13.
14.
We measure the autocorrelation function, ξ , of galaxies in the IRAS Point Source Catalogue galaxy redshift (PSC z ) survey and investigate its dependence on the far-infrared colour and absolute luminosity of the galaxies. We find that the PSC z survey correlation function can be modelled out to a scale of 10  h −1 Mpc as a power law of slope 1.30±0.04 and correlation length 4.77±0.20 . At a scale of 75  h −1 Mpc we find the value of J 3 to be 1500±400 .
We also find that galaxies with higher 100 μm/60 μm flux ratio, corresponding to cooler dust temperatures, are more strongly clustered than warmer galaxies. Splitting the survey into three colour subsamples, we find that, between 1 and 10  h −1 Mpc, the ratio of ξ is a factor of 1.5 higher for the cooler galaxies compared with the hotter galaxies. This is consistent with the suggestion that hotter galaxies have higher star formation rates, and correspond to later-type galaxies which are less clustered than earlier types.
Using volume-limited subsamples, we find a weak variation of ξ as a function of absolute luminosity, in the sense that more luminous galaxies are less clustered than fainter galaxies. The trend is consistent with the colour dependence of ξ and the observed colour–luminosity correlation, but the large uncertainties mean that it has a low statistical significance.  相似文献   

15.
Several measurements of quasi-stellar object (QSO)–galaxy correlations have reported signals much larger than predictions of magnification by large-scale structure. We find that the expected signal depends strongly on the properties of the foreground galaxy population. On arcmin scales, it can be either larger or smaller by a factor of 2 for different galaxy types in comparison with a linearly biased version of the mass distribution. Thus the resolution of some of the excess measurements may lie in examining the halo occupation properties of the galaxy population sampled by a given survey; this is also the primary information such measurements will provide.
We use the halo model of clustering and simulations to predict the magnification-induced cross-correlations and errors for forthcoming surveys. With the full Sloan Digital Sky Survey, the statistical errors will be below 1 per cent for the galaxy–galaxy correlations and significantly larger for QSO–galaxy correlations. Thus accurate constraints on parameters of the galaxy halo occupation distribution can be obtained from small-scale measurements and on the bias parameter from large scales. Since the lensing-induced cross-correlation measures the first moment of the halo occupation number of galaxies, these measurements can provide the basis for interpreting galaxy clustering measurements that measure the second- and higher-order moments.  相似文献   

16.
We present the Millennium-II Simulation (MS-II), a very large N -body simulation of dark matter evolution in the concordance Λ cold dark matter (ΛCDM) cosmology. The MS-II assumes the same cosmological parameters and uses the same particle number and output data structure as the original Millennium Simulation (MS), but was carried out in a periodic cube one-fifth the size  (100  h −1 Mpc)  with five times better spatial resolution (a Plummer equivalent softening of  1.0  h −1 kpc  ) and with 125 times better mass resolution (a particle mass of  6.9 × 106  h −1 M  ). By comparing results at MS and MS-II resolution, we demonstrate excellent convergence in dark matter statistics such as the halo mass function, the subhalo abundance distribution, the mass dependence of halo formation times, the linear and non-linear autocorrelations and power spectra, and halo assembly bias. Together, the two simulations provide precise results for such statistics over an unprecedented range of scales, from haloes similar to those hosting Local Group dwarf spheroidal galaxies to haloes corresponding to the richest galaxy clusters. The 'Milky Way' haloes of the Aquarius Project were selected from a lower resolution version of the MS-II and were then resimulated at much higher resolution. As a result, they are present in the MS-II along with thousands of other similar mass haloes. A comparison of their assembly histories in the MS-II and in resimulations of 1000 times better resolution shows detailed agreement over a factor of 100 in mass growth. We publicly release halo catalogues and assembly trees for the MS-II in the same format within the same archive as those already released for the MS.  相似文献   

17.
We investigate the role that dry mergers play in the build-up of massive galaxies within the cold dark matter paradigm. Implementing an empirical shut-off mass scale for star formation, we find a nearly constant dry merger rate of  ∼6 × 10−5 Mpc−3 Gyr−1  at   z ≤ 1  and a steep decline at larger z . Less than half of these mergers are between two galaxies that are morphologically classified as early-types, and the other half is mostly between an early- and late-type galaxy. Latter are prime candidates for the origin of tidal features around red elliptical galaxies. The introduction of a transition mass scale for star formation has a strong impact on the evolution of galaxies, allowing them to grow above a characteristic mass scale of   M *, c ∼ 6.3 × 1010 M  by mergers only. As a consequence of this transition, we find that around   M *, c   , the fraction of 1:1 mergers is enhanced with respect to unequal mass major mergers. This suggests that it is possible to detect the existence of a transition mass scale by measuring the relative contribution of equal mass mergers to unequal mass mergers as a function of galaxy mass. The evolution of the high-mass end of the luminosity function is mainly driven by dry mergers at low z . We however find that only 10–20 per cent of galaxies more massive than   M *, c   experience dry major mergers within their last Gyr at any given redshift   z ≤ 1  .  相似文献   

18.
We use galaxy groups selected from the Sloan Digital Sky Survey (SDSS) together with mass models for individual groups to study the galaxy–galaxy lensing signals expected from galaxies of different luminosities and morphological types. We compare our model predictions with the observational results obtained from the SDSS by Mandelbaum et al. for the same samples of galaxies. The observational results are well reproduced in a Λ cold dark matter (ΛCDM) model based on the Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr data, but a ΛCDM model with higher σ8, such as the one based on the WMAP 1-yr data, significantly overpredicts the galaxy–galaxy lensing signal. We model, separately, the contributions to the galaxy–galaxy lensing signals from different galaxies: central versus satellite, early type versus late type and galaxies in haloes of different masses. We also examine how the predicted galaxy–galaxy lensing signal depends on the shape, density profile and the location of the central galaxy with respect to its host halo.  相似文献   

19.
Differences in clustering properties between galaxy subpopulations complicate the cosmological interpretation of the galaxy power spectrum, but can also provide insights about the physics underlying galaxy formation. To study the nature of this relative clustering, we perform a counts-in-cells analysis of galaxies in the Sloan Digital Sky Survey in which we measure the relative bias between pairs of galaxy subsamples of different luminosities and colours. We use a generalized  χ2  test to determine if the relative bias between each pair of subsamples is consistent with the simplest deterministic linear bias model, and we also use a maximum likelihood technique to further understand the nature of the relative bias between each pair. We find that the simple, deterministic model is a good fit for the luminosity-dependent bias on scales above  ∼2  h −1 Mpc  , which is good news for using magnitude-limited surveys for cosmology. However, the colour-dependent bias shows evidence for stochasticity and/or non-linearity which increases in strength towards smaller scales, in agreement with previous studies of stochastic bias. Also, confirming hints seen in earlier work, the luminosity-dependent bias for red galaxies is significantly different from that of blue galaxies: both luminous and dim red galaxies have higher bias than moderately bright red galaxies, whereas the biasing of blue galaxies is not strongly luminosity dependent. These results can be used to constrain galaxy formation models and also to quantify how the colour and luminosity selection of a galaxy survey can impact measurements of the cosmological matter power spectrum.  相似文献   

20.
We calculate the statistical clustering of Lyman-break galaxies predicted in a selection of currently fashionable structure formation scenarios. These models are all based on the cold dark matter model, but vary in the amount of dark matter, the initial perturbation spectrum, the background cosmology and the presence or absence of a cosmological constant term. If Lyman-break galaxies form as a result of hierarchical merging, the amplitude of clustering depends quite sensitively on the minimum halo mass that can host such a galaxy. Interpretation of the recent observations by Giavalisco et al. would therefore be considerably clarified by a direct determination of the relevant halo properties. For a typical halo mass around 1011  h −1 M⊙ the observations do not discriminate strongly between cosmological models, but if the appropriate mass is larger, say 1012  h −1 M⊙ (which seems likely on theoretical grounds), then the data strongly favour models with a low matter density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号