首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray clusters are conventionally divided into two classes: 'cool core' (CC) clusters and 'non-cool core' (NCC) clusters. Yet relatively little attention has been given to the origins of this apparent dichotomy and, in particular, to the energetics and thermal histories of the two classes. We develop a model for the entropy profiles of clusters starting from the configuration established by gravitational shock heating and radiative cooling. At large radii, gravitational heating accounts for the observed profiles and their scalings well. However, at small and intermediate radii, radiative cooling and gravitational heating cannot be combined to explain the observed profiles of either CC or NCC clusters. The inferred entropy profiles of NCC clusters require that material is 'pre-heated' prior to cluster collapse in order to explain the absence of low-entropy (cool) material in these systems. We show that a similar modification is also required in CC clusters in order to match their entropy profiles at intermediate radii. In CC clusters, this modification is unstable, and an additional process is required to prevent cooling below a temperature of a few keV. We show that this can be achieved by adding a self-consistent active galactic nuclei (AGN) feedback loop in which the lowest entropy, most rapidly cooling material is heated and rises buoyantly to mix with material at larger radii. The resulting model does not require fine-tuning and is in excellent agreement with a wide variety of observational data from Chandra and XMM–Newton , including entropy and gas density profiles, the luminosity–temperature relation and high-resolution spectra. The spread in cluster core morphologies is seen to arise because of the steep dependence of the central cooling time on the initial level of pre-heating. Some of the other implications of this model are briefly discussed.  相似文献   

2.
We present results from an observation of the luminous cluster of galaxies Abell 2204 using the Chandra X-ray Observatory. We show the core of the cluster has a complex morphological structure, made up of a high-density core  ( n e∼ 0.2 cm−3)  with flat surface brightness, a surrounding central plateau, a tail-like feature, wrapping around to the east, and an unusual radio source. A temperature map and deprojected profile shows that the temperature rises steeply outside these regions, until around ∼100 kpc where it drops, then rises again. Abundance maps and profiles show that there is a corresponding increase in abundance at the same radius as where the temperature drops. In addition, there are two cold fronts at radii of ∼28 and 54.5 kpc. The disturbed morphology indicates that the cluster core may have undergone a merger. However, despite this disruption, the mean radiative cooling time in the centre is short (∼230 Myr) and the morphology is regular on large scales.  相似文献   

3.
We use a three-dimensional hydrodynamical code to simulate the effect of energy injection on cooling flows in the intracluster medium. Specifically, we compare a simulation of a 1015-M cluster with radiative cooling only with a second simulation in which thermal energy is injected 31 kpc off-centre, over 64 kpc3 at a rate of     for 50 Myr. The heat injection forms a hot, low-density bubble which quickly rises, dragging behind it material from the cluster core. The rising bubble pushes with it a shell of gas which expands and cools. We find the appearance of the bubble in X-ray temperature and luminosity to be in good qualitative agreement with recent Chandra observations of cluster cores. Toward the end of the simulation, at 600 Myr, the displaced gas begins to fall back toward the core, and the subsequent turbulence is very efficient at mixing the low- and high-entropy gas. The result is that the cooling flow is disrupted for up to ∼ 50 Myr after the injection of energy ceases. Thus this mechanism provides a very efficient method for regulating cooling flows, if the injection events occur with a 1:1 duty cycle.  相似文献   

4.
We examine the properties of the X-ray gas in the central regions of the distant ( z =0.46) , X-ray luminous cluster of galaxies surrounding the powerful radio source 3C 295, using observations made with the Chandra Observatory . Between radii of 50 and 500 kpc, the cluster gas is approximately isothermal with an emission-weighted temperature, kT ∼5 keV . Within the central 50-kpc radius this value drops to kT ∼3.7 keV . The spectral and imaging Chandra data indicate the presence of a cooling flow within the central 50-kpc radius of the cluster, with a mass deposition rate of approximately 280 M yr−1. We estimate an age for the cooling flow of 1–2 Gyr , which is approximately 1000 times older than the central radio source. We find no evidence in the X-ray spectra or images for significant heating of the X-ray gas by the radio source. We report the detection of an edge-like absorption feature in the spectrum for the central 50-kpc region, which may be caused by oxygen-enriched dust grains. The implied mass in metals seen in absorption could have been accumulated by the cooling flow over its lifetime. Combining the results on the X-ray gas density profile with radio measurements of the Faraday rotation measure in 3C 295, we estimate the magnetic field strength in the region of the cluster core to be B ∼12 μG .  相似文献   

5.
We show that repeated sound waves in the intracluster medium (ICM) can be excited by a single inflation episode of an opposite bubble pair. To reproduce this behaviour in numerical simulations, the bubbles should be inflated by jets, rather than being injected artificially as already full-blown bubbles. The multiple sound waves are excited by the motion of the bubble–ICM boundary that is caused by vortices inside the inflated bubbles and the backflow ('cocoon') of the ICM around the bubble. These sound waves form a structure that can account for the ripples observed in the Perseus cooling flow cluster. We inflate the bubbles using slow massive jets either with a very wide opening angle or that are narrow and precessing. The wide jets (or collimated fast winds) are slow in the sense that they are highly subrelativistic,   v j∼ 0.01 c – 0.1 c   , and they are massive in the sense that the pair of bubbles carries back to the ICM a large fraction of the cooling mass, i.e.  ∼1–50 M yr−1  . We use a two-dimensional axisymmetric (referred to as 2.5D) hydrodynamical numerical code ( vh-1 ).  相似文献   

6.
The gas temperature in the cores of many clusters of galaxies drops inward by about a factor of 3 or more within the central 100-kpc radius. The radiative cooling time drops over the same region from 5 or more Gyr down to below a few 108 yr. Although this indicates that cooling flows are taking place, XMM-Newton spectra show no evidence for strong mass cooling rates of gas below  1–2 keV  . The soft X-ray luminosity expected from steady cooling flows is missing. Here we outline and test the energetics of a cold mixing model in which gas below  1–2 keV  falls from the flow and is rapidly cooled by mixing with cold gas. The missing X-ray luminosity can emerge in the ultraviolet, optical and infrared bands, where strong emission nebulosities are commonly seen. We explore further the requirements for any heat sources that balance the radiative cooling in cluster cores.  相似文献   

7.
The dissipation of energy from sound waves and weak shocks is one of the most promising mechanisms for coupling active galactic nucleus (AGN) activity to the surrounding intracluster medium, and so offsetting cooling in cluster cores. We present a detailed analysis of the weak shock found in deep Chandra observations of the Perseus cluster core. A comparison of the spectra either side of the shock front shows that they are very similar. By performing a deprojection analysis of a sector containing the shock, we produce temperature and density profiles across the shock front. These show no evidence for a temperature jump coincident with the density jump. To understand this result, we model the shock formation using 1D hydrodynamic simulations including models with thermal conduction and  γ < 5/3  gas. These models do not agree well with the data, suggesting that further physics is needed to explain the shock structure. We suggest that an interaction between the shock and the Hα filaments could have a significant effect on cooling the post-shock gas.
We also calculate the thermal energy liberated by the weak shock. The total energy in the shocked region is about 3.5 times the work needed to inflate the bubbles adiabatically, and the power of the shock is around  6 × 1044 erg s−1  per bubble, just over  1045 erg s−1  in total.  相似文献   

8.
We report the discovery of a 40 arcsec long X-ray filament in the core of the cluster of galaxies Abell 1795. The feature coincides with an H α +N  ii filament found by Cowie et al. in the early 1980s and resolved into at least two U -band filaments by McNamara et al. in the mid-1990s. The (emission-weighted) temperature of the X-ray emitting gas along the filament is 2.5–3 keV, as revealed by X-ray colour ratios. The deprojected temperature will be less. A detailed temperature map of the core of the cluster presented. The cD galaxy at the head of the filament is probably moving through or oscillating in the cluster core. The radiative cooling time of the X-ray emitting gas in the filament is about     which is similar to the age of the filament obtained from its length and velocity. This suggests that the filament is produced by cooling of the gas from the intracluster medium. The filament, much of which is well separated from the body of the cD galaxy and its radio source, is potentially of great importance in helping to understand the energy and ionization source of the optical nebulosity common in cooling flows.  相似文献   

9.
We present Chandra data from a 31.7-ks observation of the Centaurus cluster, using the ACIS-S detector. Images of the X-ray emission show a plume-like feature at the centre of the cluster, of extent 60 arcsec (20 kpc in projection). The feature has the same metallicity as gas at a similar radius, but is cooler. Using adaptive binning, we generate temperature, abundance and absorption maps of the cluster core. The radial abundance profile shows that the previously known, steep abundance gradient peaks with a metallicity of  1.3–1.8 Z  at a radius of about 45 arcsec (15 kpc), before falling back to 0.4 Z at the centre of the cluster. A radial temperature profile shows that the temperature decreases inwards. We determine the spatial distributions of each of two temperature components, where applicable. The radiative cooling time of the cooler component within the inner 10 arcsec (3 kpc) is less than  2×107 yr  . X-ray holes in the image coincident with the radio lobes are seen, as well as two outer sharp temperature drops, or cold fronts. The origin of the plume is unclear. The existence of the strong abundance gradient is a strong constraint on extensive convection or gas motion driven by a central radio source.  相似文献   

10.
We present a Chandra study of 38 X-ray-luminous clusters of galaxies in the ROSAT Brightest Cluster Sample (BCS) that lie at moderate redshifts  ( z ≈ 0.15–0.4)  . Based primarily on power ratios and temperature maps, we find that the majority of clusters at moderate redshift generally have smooth, relaxed morphologies with some evidence for mild substructure perhaps indicative of recent minor merger activity. Using spatially resolved spectral analyses, we find that cool cores appear still to be common at moderate redshift. At a radius of 50 kpc, we find that at least 55 per cent of the clusters in our sample exhibit signs of mild cooling  ( t cool < 10 Gyr)  , while in the central bin at least 34 per cent demonstrate signs of strong cooling  ( t cool < 2 Gyr)  . These percentages are nearly identical to those found for luminous, low-redshift clusters of galaxies, indicating that there appears to be little evolution in cluster cores since   z ≈ 0.4  and suggesting that heating and cooling mechanisms may already have stabilized by this epoch. Comparing the central cooling times to catalogues of central Hα emission in BCS clusters, we find a strong correspondence between the detection of Hα and central cooling time. We also confirm a strong correlation between the central cooling time and cluster power ratios, indicating that crude morphological measures can be used as a proxy for more rigorous analysis in the face of limited signal-to-noise ratio data. Finally, we find that the central temperatures for our sample typically drop by no more than a factor of ∼3–4 from the peak cluster temperatures, similar to those of many nearby clusters.  相似文献   

11.
We investigate the effect of dust on the scaling properties of galaxy clusters based on hydrodynamic N -body simulations of structure formation. We have simulated five dust models plus radiative cooling and adiabatic models using the same initial conditions for all runs. The numerical implementation of dust was based on the analytical computations of Montier & Giard. We set up dust simulations to cover different combinations of dust parameters that make evident the effects of size and abundance of dust grains. Comparing our radiative plus dust cooling runs with a purely radiative cooling simulation, we find that dust has an impact on cluster scaling relations. It mainly affects the normalization of the scalings (and their evolution), whereas it introduces no significant differences in their slopes. The strength of the effect critically depends on the dust abundance and grain size parameters as well as on the cluster scaling. Indeed, cooling due to dust is effective in the cluster regime and has a stronger effect on the 'baryon driven' statistical properties of clusters such as   L X– M , Y – M , S – M   scaling relations. Major differences, relative to the radiative cooling model, are as high as 25 per cent for the   L X– M   normalization, and about 10 per cent for the Y – M and S – M normalizations at redshift zero. On the other hand, we find that dust has almost no impact on the 'dark matter driven'   T mw– M   scaling relation. The effects are found to be dependent in equal parts on both dust abundances and grain size distributions for the scalings investigated in this paper. Higher dust abundances and smaller grain sizes cause larger departures from the radiative cooling (i.e. with no dust) model.  相似文献   

12.
We discuss the importance of feedback via photoionization and Compton heating on the co-evolution of massive black holes (MBHs) at the centre of spheroidal galaxies, and their stellar and gaseous components. We first assess the energetics of the radiative feedback from a typical quasar on the ambient interstellar medium (ISM). We then demonstrate that the observed   M BH–σ  relation could be established following the conversion of most of the gas of an elliptical progenitor into stars, specifically when the gas-to-stars mass ratio in the central regions has dropped to a low level  ∼0.01  or less, so that gas cooling is no longer able to keep up with the radiative heating by the growing central massive black hole (MBH). A considerable amount of the remaining gas will be expelled and both MBH accretion and star formation will proceed at significantly reduced rates thereafter, in agreement with observations of present-day ellipticals. We find further support for this scenario by evolving over an equivalent Hubble time a simple, physically based toy model that additionally takes into account the mass and energy return for the spheroid evolving stellar population, a physical ingredient often neglected in similar approaches.  相似文献   

13.
In this paper we discuss the effect of Coulomb collisions on the temperature profiles of the intracluster medium in clusters of galaxies, motivated by recent reports of negative temperature gradients in some clusters by Markevitch et al. The time-scale for electrons and protons to reach temperature equilibrium can exceed a few × 109 years beyond radii of a megaparsec, if the intracluster gas is assumed to be at the usual cluster virial temperature. If a cluster merger has occurred within that time causing the protons, but not the electrons, to be rapidly heated then a small negative temperature gradient can result. This gradient is larger in clusters with higher temperatures and steeper density profiles.   Applying these considerations to the cluster of galaxies A2163, we conclude that, more plausibly, the observed gradient is due to a lack of hydrostatic equilibrium following a merger.  相似文献   

14.
We present a Chandra observation of the powerful radio galaxy 3C 294 showing clear evidence for a surrounding intracluster medium. At a redshift of 1.786 this is the most distant cluster of galaxies yet detected in X-rays. The radio core is detected as a point source, which has a spectrum consistent with a heavily absorbed power law, implying an intrinsic 2–10 keV luminosity of ∼1045 erg s−1. A small excess of emission is associated with the southern radio hotspots. The soft, diffuse emission from the intracluster medium is centred on the radio source. It has an hourglass shape in the north–south direction, extending to radii of at least 100 kpc, well beyond the radio source. The X-ray spectrum of this extended component is fitted by a thermal model with temperature ∼5 keV, or by gas cooling from above 7 keV at rates of ∼ 400–700 M yr−1. The rest-frame 0.3–10 keV luminosity of the cluster is ∼ 4.5×1044 erg s−1. The existence of such a cluster is consistent with a low-density universe.  相似文献   

15.
We have constructed an analytical model of active galactic nuclei (AGN) feedback and studied its implications for elliptical galaxies and galaxy clusters. The results show that momentum injection above a critical value will eject material from low-mass elliptical galaxies, and leads to an X-ray luminosity, L X, that is  ∝σ8−10  , depending on the AGN fuelling mechanism, where σ is the velocity dispersion of the hot gas. This result agrees well with both observations and semi-analytic models. In more massive ellipticals and clusters, AGN outflows quickly become buoyancy dominated. This necessarily means that heating by a central cluster AGN redistributes the intracluster medium (ICM) such that the mass of hot gas, within the cooling radius, should be  ∝ L X(< r cool)/[ g ( r cool)σ]  , where   g ( r cool)  is the gravitational acceleration at the cooling radius. This prediction is confirmed using observations of seven clusters. The same mechanism also defines a critical ICM cooling time of  ∼0.5 Gyr  , which is in reasonable agreement with recent observations showing that star formation and AGN activity are triggered below a universal cooling time threshold.  相似文献   

16.
Strong evidence for cooling flows has been found in low-resolution X-ray imaging and spectra of many clusters of galaxies. However, high-resolution X-ray spectra of several clusters from the Reflection Grating Spectrometer on XMM-Newton now show a soft X-ray spectrum inconsistent with a simple cooling flow. The main problem is a lack of the emission lines expected from gas cooling below 1–2 keV. Lines from gas at about 2–3 keV are observed, even in a high-temperature cluster such as A1835, indicating that gas is cooling down to about 2–3 keV, but is not found at lower temperatures. Here we discuss several solutions to the problem: heating, mixing, differential absorption and inhomogeneous metallicity. Continuous or sporadic heating creates further problems, including the targeting of the heat at the cooler gas and also the high total energy required. So far there is no clear observational evidence for widespread heating, or shocks, in cluster cores, except in radio lobes which occupy only part of the volume. Alternatively, if the metals in the intracluster medium are not uniformly spread but are clumped, then little line emission is expected from the gas cooling below 1 keV. The low-metallicity part cools without line emission, whereas the strengths of the soft X-ray lines from the metal-rich gas depend on the mass fraction of that gas and not on the abundance, since soft X-ray line emission dominates the cooling function below 2 keV.  相似文献   

17.
The assumption that radiative cooling of gas in the centres of galaxy clusters is approximately balanced by energy input from a central supermassive black hole implies that the observed X-ray luminosity of the cooling flow region sets a lower limit on active galactic nucleus (AGN) mechanical power. The conversion efficiency of the mechanical power of the AGN into gas heating is uncertain, but we argue that it can be high even in the absence of strong shocks. These arguments inevitably lead to the conclusion that the time-averaged mechanical power of AGNs in cooling flows is much higher than the bolometric luminosity of these objects observed currently.
The energy balance between cooling losses and AGN mechanical power requires some feedback mechanism. We consider a toy model in which the accretion rate on to a black hole is set by the classic Bondi formula. Application of this model to the best studied case of M87 suggests that accretion proceeds at approximately the Bondi rate down to a few gravitational radii with most of the power (at the level of a few per cent of the rest mass) being carried away by an outflow.  相似文献   

18.
Deep inside the core of Abell 1795: the Chandra view   总被引:1,自引:0,他引:1  
We present X-ray spatial and spectral analysis of the Chandra data from the central     of the cluster of galaxies Abell 1795. The plasma temperature rises outwards by a factor of 3, whereas the iron abundance decreases by a factor of 4. The spatial distribution of oxygen, neon, sulphur, silicon and iron shows that supernovae Type Ia dominate the metal enrichment process of the cluster plasma within the inner 150 kpc. Resolving both the gas density and temperature in nine radial bins, we recover the gravitational mass density profile and show that it flattens within 100 kpc as   ρ DM∝ r -0.6  with a power-law index flatter than −1 at >3 σ level. The observed motion of the central galaxy and the presence of excesses and deficits along the north–south direction in the brightness distribution indicate that the central cluster region is not relaxed. In the absence of any non-gravitational heating source, the data from the inner ∼200 kpc indicate the presence of a cooling flow with an integrated mass deposition rate of about 100 M yr−1. Over the same cluster region, the observed rate of 74 M yr−1 is consistent with the recent XMM-Newton Reflection Grating Spectrometer limit of 150 M yr−1.  相似文献   

19.
The universal baryonic mass fraction  (Ωbm)  can be sensitively constrained using X-ray observations of galaxy clusters. In this paper, we compare the baryonic mass fraction inferred from measurements of the cosmic microwave background with the gas mass fractions ( f gas) of a large sample of clusters taken from the recent literature. In systems cooler than 4 keV, f gas declines as the system temperature decreases. However, in higher temperature systems, f gas( r 500) converges to  ≈(0.12 ± 0.02)( h /0.72)−1.5  , where the uncertainty reflects the systematic variations between clusters at r 500. This is significantly lower than the maximum-likelihood value of the baryon fraction from the recently released Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr results. We investigate possible reasons for this discrepancy, including the effects of radiative cooling and non-gravitational heating, and conclude that the most likely solution is that Ωm is higher than the best-fitting WMAP value (we find  Ωm= 0.36+0.11−0.08  ), but consistent at the 2σ level. Degeneracies within the WMAP data require that σ8 must also be greater than the maximum likelihood value for consistency between the data sets.  相似文献   

20.
We present the analysis of 30 ks of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in the inner 30-kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ∼12 keV in the outer regions of the cluster to ∼4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parametrized by a Navarro, Frenk & White model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of
   
. The projected mass within a radius of ∼150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about
   
. Cooling-flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (∼     with an integrated mass deposition rate of     within a radius of 30 kpc. We discuss the implications of our results in the light of recent Reflection Grating Spectrograph (RGS) observations of Abell 1835 with XMM-Newton .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号