首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zaitsev  V. V.  Shibasaki  K. 《Astronomy Reports》2005,49(12):1009-1017

SOHO and TRACE data have shown that the coronal plasma is heated most actively near sunspots, in magnetic loops that issue from the penumbral region. The source of heating is nonuniform in height, and its power is maximum near the footpoints of the magnetic loops. The heating process is typically accompanied by the injection of dense chromospheric plasma into the coronal parts of the magnetic loops. It is important that the radiative losses cannot be compensated for via electron thermal conduction in the loops, which have temperatures of 1.0–1.5 MK; therefore, some heating source must operate throughout the entire length of the loop, balancing radiative losses and maintaining a quasi-steady state of the loop over at least several hours. As observations show, the plasma density inside the loops exceeds the density of the ambient plasma by more than an order of magnitude. It is supposed that the enhanced plasma density inside the loops results from the development of the ballooning mode of a flute-type instability in the sunspot penumbra, where the plasma of the inner sunspot region, with β i ? 1, comes into contact with the dense chromospheric plasma, which has β e ? β i (β is the gas-to-magnetic pressure ratio). As the chromospheric plasma penetrates into the potential field of the sunspot, the generated diamagnetic currents balance the excess gas pressure. These currents efficiently decay due to the Cowling conductivity. Even if neutrals are few in number in the plasma (accounting for less than 10?5 of the total mass density), this conductivity ensures a heating rate that exceeds the rate of the normal Joule dissipation of diamagnetic currents by 7–8 orders of magnitude. Helium is an important factor in the context of plasma heating in magnetic loops. Its relatively high ionization potential, while not forbidding dielectronic recombination, ensures a sufficiently high number of neutrals in the coronal plasma and maintains a high heating rate due to the Cowling conductivity, even at coronal temperatures. The heating results from the “burning-out” of the nonpotential component of the magnetic field of the coronal magnetic loops. This mechanism provides the necessary heating rate for the plasma inside the loops if the loops are thin enough (with thickness of the order of 105–106 cm). This may imply that the observed (1–5) × 108-cm-thick loops consist of numerous hot, thin threads. For magnetic loops in hydrostatic equilibrium, the calculated heating function exponentially decreases with height on characteristic scales a factor of 1.8 smaller than the total-pressure scale height, since the scale heights for the total pressure and for the 4He partial pressure are different. The heating rate is proportional to the square of the plasma pressure in the loop, in agreement with observational data.

  相似文献   

2.
The new approach to the modeling of quiescent solar prominences is proposed. We solve the inverse magnetohydrostatic problem, when the pressure, density and temperature of plasma in the filament are calculated from the equilibrium equations using the given magnetic structure (magnetic flux function is proposed to be known). The new exact nonlinear solutions for dense (n ≈ (2?3) × 1011 cm?3) and cold (T ≈ (5?10) × 103 K) filaments, embedded in the plan, vertically stratified atmosphere (hot solar corona) free of magnetic field, are derived. The filaments are stretched along the horizontal axisy(the translational symmetry is assumed: ?/?y = 0) and located parallel to and above a photospheric, magnetic polarity reversal line. The magnetic field lines have a structure of magnetic flux rope with helical field lines in three-dimensional space; the strength of magnetic field falls rapidly with distance from a rope axis. No external longitudinal magnetic field is needed to equilibrate the prominence. The net electric current along the filament is equal to zero. The model of magnetic arcade with the deflection (sag) on the top, proposed by Pikelner (1971) as a basic form of normal prominence, is calculated also using the method proposed. It is shown that such magnetic arcade, having the magnetic field strength of few gauss only, can effectively maintain the equilibrium of cool dense filament at the heights about 50–60 Mm.  相似文献   

3.
An analysis of SOHO/LASCO C3 data shows that there are discontinuities in the radial profiles of the plasma density within limited regions in front of each of ten coronal mass ejections, which represent shocks. The shock velocities in various events reach V ≈ 800–2500 km/s. A comparison of the dependence of the AlfvenicMach numberM A on the shock strength ρ 2/ρ 1 detected at distancesR > 10R⊙ from the center of the Sun with calculations carried out using ideal magnetic hydrodynamics shows that the effective ratio of specific heats γ describing processes inside the shock front varies from 2 to 5/3 (ρ 1 and ρ 2 are the densities in front of and behind the shock, and R⊙ is the solar radius). This corresponds to an effective number of degrees of freedom between two and three. A similar dependenceMA(ρ 2 1) was found for near-Earth bow shocks and interplanetary collisionless shocks. These features support the hypothesis that the studied discontinuities preceding coronal mass ejections are collisionless shocks.  相似文献   

4.
We analyze the properties of the electric-current distribution over the cross sections of fairly dense coronal magnetic flux tubes in which the plasma pressure exceeds the magnetic pressure, so that the equilibrium is maintained by the ambient magnetic field. If the plasma is fully ionized, the distributions of the longitudinal and azimuthal currents over the cross section of the loop have the same spatial scale as the pressure distribution. However, even a small number of neutral atoms in the corona (with a mass fraction of the order of 10?5, taking into account the partial ionization of helium) substantially modifies the current distribution over the tube cross section: in this case, a considerable fraction of the full current flowing along the tube is concentrated in a thin region near the axis with a radius of the order of (10?2–10?3)r 0 (where r 0 is the characteristic scale of the plasma-pressure distribution over the tube), thus forming a sort of a jet current. This comes about because the pattern of the conductivity anisotropy is substantially modified in the presence of ion-atom collisions in the magnetoactive plasma of the tube, and the Cowling conductivity dominates over the Hall and Pedersen conductivities. The high current density near the axis of the tube can ensure heating of the plasma to coronal temperatures via Joule dissipation.  相似文献   

5.
New results from electrophotometric scanning of the solar disk in the HeI λ 10830 Å and Hα lines are presented. The intensity at the center of the HeI λ 10830.30 Å line is 1–3% higher in the regions of coronal holes than in quiescent regions; this is accompanied by a decrease in the size and contrast of the chromospheric network compared to the network in quiescent regions. Our observations in the HeI line revealed chains of “dark points” surrounding coronal holes. The Hα±0.5 observations show increased velocities of ascent near the dark points compared to the velocities inside coronal holes and in quiescent regions. It is proposed that the intensification and acceleration of the flows of solar plasma from the dark points are due to reconnection of the magnetic fields of the bipolar chromospheric network and the predominantly unipolar magnetic field inside the coronal holes. Our observations suggest that the same reconnection process takes place near the temperature minimum, in the presence of certain conditions at the boundary between coronal holes and bipolar active regions. The reconnection process produces plasma flows from the chromosphere to the corona, which are sufficient to form prominences.  相似文献   

6.
An efficient method for the detection and estimation of the parameters of the coronas of isolated white dwarfs possessing magnetic fields of about 107 G is tested. This method is based on the detection of thermal radiation of the coronal plasma at harmonics of the electron gyrofrequency, which is manifest as a polarized infrared excess. The Stokes parameters for the thermal cyclotron radiation from the hot corona of a white dwarf with a dipolar magnetic field are calculated. A new upper limit for the electron density, 1010 cm?3, in a corona with a temperature of ?106 K is found for the white dwarf G99-47 (WD 0553+053). This limit is a factor of 40 lower than the value derived earlier from ROSAT X-ray observations. Recommendations for subsequent infrared observations of isolated magnetic white dwarfs aimed at detecting their coronas or deriving better constraints on their parameters are presented.  相似文献   

7.
We analyze large-scale solar activity following the eruption of a very powerful, geoeffective coronal mass ejection in the 23rd solar cycle, observed at 175, 284, and 304 Å on November 4, 2001, using data from the CORONAS-F/SPIRIT telescope. In particular, we have shown that the restructuring of the magnetic field above the eruption center was accompanied by the formation of a multicomponent post-eruptive arcade, which was observed in all three bands over many hours and had an extent of the order of 0.5R. Two kinds of dimmings were observed, i.e., compact dimmings on either side of this arcade and channeled dimmings along some extended features beyond the active region. The intensity in the dimmings decreased by several tens of percent. The enhanced emission observed at the top of the post-eruptive arcade can be due to energy release in the course of magnetic reconnection high in the corona at the relaxation stage of the perturbed magnetic field to a new equilibrium state with a closed configuration. It can also be due to an enhanced emission measure because of the oblique direction of the line of sight crossing both loop tops and footpoint regions. The spatial coincidence of the main dimmings in lines corresponding to different temperatures indicates that a plasma outflow from the transition region and coronal structures with opened field lines are responsible for these dimmings. Variations in the plasma temperature associated with coronal mass ejections probably play an important role for some dimmings, which appear different in different lines.  相似文献   

8.
The drift loss cone instability, propagating nearly transverse to the ambient magnetic field, is studied in the ring current plasma taking into account the relative driftU between electrons and protons due to density gradients. The growth rates attain maxima and then decrease as the wave number parallel to the magnetic fieldk II increases. The peak values of the growth rates, maximised with respect tok II, are enhanced by the increase in number density, electron temperature and loss cone index, and by the decrease in βt, the ratio of the proton thermal pressure to magnetic field pressure. The unstable frequencies fall in the range of 5 to 30Ωp with the growth rate γ ≥Ωp. In the ring current region betweenL=4 and 5, the instability will generate a strong turbulence in the frequency range between 5–500 Hz which can produce fluctuating electric fields 0. 5–5 mV/m and magnetic field 0.8–80mγ. This instability can also occur on the auroral field lines, which connect to the region of intense earthward plasma flow in the distant magnetotail and produce a broad band electrostatic noise.  相似文献   

9.
The relationship between the height of a solar filament observed above the photosphere before the eruption on October 21, 2010, and the critical height of a stable equilibrium of magnetic flux ropes in the coronal magnetic field is analyzed. Data from the SDO, SOHO, and STEREO space observatories observing at different viewing angles makes it possible to deduce these parameters with high accuracy. It is shown that the filament height slowly increased over several days, with the eruption occuring when the height reached the critical value of 80 Mm.  相似文献   

10.
The kinetics of monodomain order-disorder processes in monoclinic (I2/c) BaAl2Ge2O8-feldspar have been investigated by X-ray powder diffraction, Hard Mode IR Spectroscopy, and TEM darkfield imaging on quenched samples. Compared to the behaviour predicted by the TDGL approximation ordering kinetics observed at low temperatures slow down significantly when equilibrium is approached. Such a delay is not observed in disordering experiments starting from essentially ordered cation distributions. The deviation from TDGL behaviour is interpreted in terms of partial order parameter conservation in a non-uniformly ordered phase. Modifications to the uniform TDGL rate equation are tested against the available data. An activation energy of 352 ± 28 kJ/mol is obtained for Al,Ge ordering. The mixing coefficient ξc 22, which describes the degree of order parameter conservation, is obtained as a function of temperature. While this coefficient vanishes in the vicinity of the transformation temperature T tr, it saturates towards a level of ξc 22≈0.4 for T→0. ξ c 22 determines the kinetic stability of ordered clusters quenched from TT tr. Received: 21 April 1999 / Revised, accepted: 19 July 1999  相似文献   

11.
 In Madagascar, hibonite occurs as a rather frequent mineral within thorianite-bearing skarns which are widespread in the Pan African granulitic formations constituting the S-E part of the Island (Tranomaro area). In these skarns, leucocratic segregations made up of CO3-scapolite to meionite (Anequivalent=89–95% which implies T≥850° C), spinel and corundum were formed at stage 1 of metasomatism in a titanite-bearing matrix consisting of scapolite (Aneq=77–88) and aluminous diopside. During stage 2 of metasomatism, scapolite from the lenses were altered to anorthite+calcite while the less calcic scapolite remained stable which indicates T≈800° C. Hibonite crystallized at the expense of corundum and spinel. Expressed as mol% of the CaAl12O19/Ca(Al10TiR2+)O19/REE(Al11R2+)O19 [+Th (Al10R2+ 2)O19] end-members (R 2+=Mg, Fe2+, Zn2+; Al=Al, Fe3+; Ti=Ti, Si), its composition varies from 26/72/2 to 50/23/27. The ideal activity of the CaAl12O19 component is about 0.25. Fluid inclusions in corundum, hibonite and anorthite are composed of nearly pure CO2. In corundum, the isochores for primary inclusions are in agreement with the P-T estimates for regional metamorphism and stage 1 metasomatism (T≈850° C, P≈5 kbar). Inclusions with the highest density in hibonite and anorthite constrain P to about 3–3.5 kbar for T=800° C. Thermodynamic calculations indicate that, in addition to a low activity of CaAl12O19, stability of hibonite in equilibrium with anorthite and calcite implies an extremely low activity of silica (below the zircon-baddeleyite buffer). By contrast the activity of CO2 may be high, in agreement with the observed fluid compositions. These results are corroborated by a short comparison with the other granulite occurrences of hibonite in Tanzania and South India. Received: 18 August 1994 / Accepted: 12 October 1995  相似文献   

12.
Physical differences in the formation of “gradual” and “impulsive” coronal mass ejections (CMEs) at heights of h < 0.2 R just before and during the initial phase of their motion are studied using AIA/SDO ultraviolet data (h is the altitude above the solar surface and R is the solar radius). The basic structure of a gradual CME is a magnetic rope located in the corona. During an hour or more preceding the initial phase, the magnetic rope demonstrates an increase in brightness and transverse size, first of the low, inner elements of the rope and then of elements in its outer envelope most distant from the Sun. The rope remains motionless during this time. The initial phase of a gradual CME begins from the motion of the magnetic rope’s outer envelope, which further becomes the basis for the CME frontal structure. At this stage, the inner low elements of the rope remain almost motionless. The initial phase of an impulsive CME begins with the appearance near the photosphere of a cavity moving away from the Sun; the dynamics of this cavity probably correspond to a magnetic tube filled with cool plasma rising from beneath the photosphere. This magnetic tube collides with and drags arch structures, which initially block the tube’s motion. These arch structures contribute to the CME formation, although the magnetic tube itself forms the basis of the CME.  相似文献   

13.
We have begun an investigation of the possible origins of considerable of powerful solar flares. This effect is manifest, first and foremost, in the existence of high-temperature plasma in flare loops over many hours. Analysis of the soft X-ray emission in two energy bands detected by the GOES satellites for about 20 powerful solar flares reveals long time intervals during the decay phase when the source temperature decreases, in general, exponentially. The characteristic time t i for a decrease in the temperature by a factor of ten is 3–10 hours for most powerful events. In addition, another interval of very slow decrease with a characteristic time t i of tens of hours can be identified in some cases. We found a gradual change in the dependence of the temperature on the square root of the emission measure for the source as a whole, which characterizes the transition from purely coronal processes to powerful flares with a prolonged inflow of plasma from the chromosphere. Modeling the energy balance in a loop can yield the requirements for the source of plasma heating in a long-lived arch system. A necessary condition for the development of prolonged flares seems to be a powerful coronal mass ejection, which initiates the formation of a source of plasma heating at coronal heights. Our analysis shows that a considerable fraction of the energy is often released in the region of the cusp, and that systems of giant coronal arches rising to heights of about 100 000 km above the limb are formed in most prolonged events (called dynamical flares in the terminology of Svestka).  相似文献   

14.
The mutual spatial arrangement of coronal mass ejections and eruptive prominences on the Sun is considered. These phenomena occur on different scales and are observed at different heights above the solar surface. In spite of the presumed causal connection between them, they are often widely separated in position angle at epochs of solar minimum. This means that the motion of a prominence in the corona is not strictly radial and has an appreciable component along the surface. This behavior can be explained in a model of a filament as a magnetic flux rope in equilibrium in the coronal magnetic field. The initial trajectory of the filament is determined by the structure of the global field.  相似文献   

15.
We present the results of numerical simulations of the development of a current sheet in the solar corona over a bipolar region during the emergence of two new sunspots arranged collinearly with older spots. Two fronts of increased plasma density form at the boundary of the rising new magnetic flux. One of these is due to the generation of a current sheet, whose magnetic field accumulates energy for a flare. The other front is a branch of the density perturbation, and separates the old and new magnetic fluxes in a region where the magnetic field lines have the same direction on both sides of the boundary. The development of this perturbation is not associated with the energy accumulation in the corona, and hinders observation of the preflare state and complicates analysis of the results. This second front can be interpreted as the eruption of a filament before the onset of the flare. A scheme conservative with respect to magnetic flux was introduced in the Peresvet code that solves the MHD equations, in order to suppress numerical instabilities in regions of large magnetic-field gradients.  相似文献   

16.
In this paper we consider an anisotropic scaling approach to understanding rock density and surface gravity which naturally accounts for wide range variability and anomalies at all scales. This approach is empirically justified by the growing body of evidence that geophysical fields including topography and density are scaling over wide range ranges. Theoretically it is justified, since scale invariance is a (geo)dynamical symmetry principle which is expected to hold in the absence of symmetry breaking mechanisms. Unfortunately, to date most scaling approaches have been self-similar, i.e., they have assumed not only scale invariant but also isotropic dynamics. In contrast, most nonscaling approaches recognize the anisotropy (e.g., the strata), but implicitly assume that the latter is independent of scale. In this paper, we argue that the dynamics are scaling but highly anisotropic, i.e., with scale dependent differential anisotropy. By using empirical density statistics in the crust and a statistical theory of high Prandtl number convection in the mantle, we argue that is a reasonable model for the 3-D spectrum (K is the horizontal wavevector and K is its modulus, k z is a vertical wavenumber), (s,H z ) are fundamental exponents which we estimate as (5.3,3), (3,3) in the crust and mantle, respectively. We theoretically derive expressions for the corresponding surface gravity spectrum. For scales smaller than ≈100 km, the anisotropic crust model of the density (with flat top and bottom) using empirically determined vertical and horizontal density spectra is sufficient to explain the (Bouguer) g z spectra. However, the crust thickness is highly variable and the crust-mantle density contrast is very large. By considering isostatic equilibrium, and using global gravity and topography data, we show that this thickness variability is the dominant contribution to the surface g z spectrum over the range ≈100–1000 km. Using estimates of mantle properties (viscosity, thermal conductivity, thermal expansion coefficient, etc.), we show that the mantle contribution to the mean spectrum is strongest at ≈1000 km and is comparable to the variable crust thickness contribution. Overall, we produce a model which is compatible with both the observed (horizontal and vertical) density heterogeneity and surface gravity anomaly statistics over a range of meters to several thousand kilometers.  相似文献   

17.
First-order factors controlling the textural and chemical evolution of metamorphic rocks are bulk composition and pressure–temperature–time (PTt) path. Although it is common to assume that major element bulk composition does not change during regional metamorphism, rocks with reaction textures such as corona structures record evidence for major changes in effective bulk composition (EBC) and therefore provide significant insight into the scale, pathways, and mechanisms of element transport during metamorphism. Quantifying changes in EBC is essential for petrologic applications such as calculation of phase diagrams (pseudosections). The progressive growth of complex corona structures on garnet and Al2SiO5 porphyroblasts in orthoamphibole-cordierite gneiss Thor-Odin dome (British Columbia, Canada) reduced the EBC volume of the rock during metamorphism and therefore had a dramatic effect on the evolution of the stable mineral assemblage. These rocks contain a chemical and textural record of metamorphic reactions and preserve 3D networks (reaction pathways) connecting corona structures. These coronal networks record long (>cm) length scales of localized element transport during metamorphism. PT, TX, and PX pseudosections are used to investigate the control of effective bulk composition on phase assemblage evolution. Despite textural complexity and evidence for disequilibrium, mineral assemblages and compositions were successfully modeled and peak metamorphic conditions estimated at 750°C and 9 kbar. These results illustrate how textural and chemical changes during metamorphism can be evaluated using an integrated petrographic and pseudosection approach, highlight the importance of effective bulk composition choice for application of phase equilibria methods in metamorphic rocks, and show how corona structures can be used to understand the scale of compositional change and element transport during metamorphism.  相似文献   

18.
The rays of enhanced brightness making up the structure of the coronal-streamer belt can be traced to the lowest atmospheric layers in the Sun, with the angular size remaining nearly constant, d ≈ 2.5° ± 0.5°. This suggests that the physical mechanism generating the slow solar wind in the rays of the streamer belt differs from the mechanism giving rise to the fast solar wind from coronal holes. At distances of R < (4–5) R , the rays of the streamer belt are not radial in the plane of the sky and show deviations toward the corresponding pole. They then become essentially radial at R > (4–5) R . A transverse cross section of streamers in the corona and its continuation into the heliosphere—a plasma sheet—can be represented as two radially oriented, closely spaced rays (d ≈ 2.0°–2.5°) with enhanced density and an angular size of d. We also show that the ray structure of the streamer belt is involved in the development of coronal mass ejections (CMEs). The motion of a small-scale CME occurs within a magnetic flux tube (ray of enhanced brightness) and leads to an explosive increase in its angular size (rapid expansion of the tube). It seems likely that large-scale CMEs are the result of the simultaneous expansion of several magnetic tubes. We suggest that a small-scale CME corresponds to a “plasmoid” (clump of plasma of limited size with its own magnetic field) ejected into the base of a magnetic tube, which subsequently moves away from the Sun along the tube.  相似文献   

19.
The kinetics of non-convergent cation ordering in MgFe2O4 have been studied by measuring the Curie temperature (T c) of synthetic samples as a function of isothermal annealing time. The starting material was a synthetic sample of near-stoichiometric MgFe2O4, synthesised from the oxides in air and quenched from 900 °C in water. Ordering experiments were performed using small chips of this material and annealing them at temperatures between 450 °C and 600 °C. The chips were periodically removed from the furnace, and their Curie temperatures were determined from measurements of alternating-field magnetic susceptibility (χ) as a function of temperature (T) to 400 °C. The Curie temperature of MgFe2O4 is very sensitive to the intracrystalline distribution of Fe3+ and Mg cations between tetrahedral and octahedral sites of the spinel crystal structure, and hence provides a very sensitive probe of the cation ordering process. The χ-T curve for the starting material displays a single sharp magnetic transition at a temperature of 303 °C. During isothermal annealing, the χ-T curve develops two distinct magnetic transitions; the first at a temperature corresponding to T c for the disordered starting material and the second at a higher temperature corresponding to T c for the equilibrium ordered phase. The size of the magnetic signal from the ordered phase increases smoothly as a function of time, until equilibrium is approached and the shape of the χ-T curve corresponds to a single sharp magnetic transition for the homogeneous ordered phase. These observations demonstrate that cation ordering in MgFe2O4 proceeds via a heterogeneous mechanism, involving the nucleation and growth of fine-scale domains of the ordered phase within a matrix of disordered material. Disordering experiments were performed by taking material equilibrated at 558 °C and annealing it at 695 °C. The mechanism of isothermal disordering is shown to involve nucleation and growth of disordered domains within an ordered matrix, combined with continuous disordering of the ordered matrix. This mixed mechanism of disordering may provide an explanation for the difference between the rates of ordering and disordering observed in MgFe2O4 using X-ray diffraction. The origin of the heterogeneous ordering/disordering mechanism is discussed in terms of the Ginzburg-Landau rate law. It is argued that heterogeneous mechanisms are likely to occur in kinetic experiments performed far from equilibrium, whereas a homogeneous mechanism may operate under slow equilibrium cooling. The implications of these observations for geospeedometry are discussed. Received: 12 May 1998 / Accepted: 25 June 1998  相似文献   

20.
New observational data on long-period oscillations of the line-of-sight velocities detected via the Doppler shifts of spectral lines observed at various heights in and near sunspots are presented. The sunspots and nearby magnetic elements oscillate with periods ranging from 40 to 80 min. The oscillations in the line-of-sight velocities persist over the entire observation session (up to four hours). These results support theoretical models in which this phenomenon represents natural long-period oscillations (vertical-radial displacements) of entire magnetic elements (sunspots, pores, and magnetic knots) about some stable equilibrium positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号