首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the results of an I -band time-series photometric survey of NGC 2547 using the MPG/ESO 2.2-m telescope with Wide Field Imager, achieving better than 1 per cent photometric precision per data point over  14 ≲ I ≲ 18  . Candidate cluster members were selected from a V versus V − I colour–magnitude diagram over  12.5 < V < 24  (covering masses from  0.9 M  down to below the brown dwarf limit), finding 800 candidates, of which we expect ∼330 to be real cluster members, taking into account contamination from the field (which is most severe at the extremes of our mass range). Searching for periodic variations in these gave 176 detections over the mass range  0.1 ≲ M /M≲ 0.9  . The rotation period distributions were found to show a clear mass-dependent morphology, qualitatively intermediate between the distributions obtained from similar surveys in NGC 2362 and 2516, as would be expected from the age of this cluster. Models of the rotational evolution were investigated, finding that the evolution from NGC 2362 to 2547 was qualitatively reproduced (given the uncertainty in the age of NGC 2547) by solid body and core-envelope decoupled models from our earlier NGC 2516 study without need for significant modification.  相似文献   

2.
We present high-resolution spectroscopy of a sample of 24 solar-type stars in the young (15–40 Myr), open cluster NGC 2547. We use our spectra to confirm cluster membership in 23 of these stars, to determine projected equatorial velocities and chromospheric activity, and to search for the presence of accretion discs. We find examples of both fast ( v e sin  i >50 km s−1) and slow ( v e sin  i <10 km s−1) rotators, but no evidence for active accretion in any of the sample. The distribution of projected rotation velocities is indistinguishable from the slightly older IC 2391 and IC 2602 clusters, implying similar initial angular momentum distributions and circumstellar disc lifetimes. The presence of very slow rotators indicates either that long (10–40 Myr) disc lifetimes or internal differential rotation are needed, or that NGC 2547 (and IC 2391/2602) were born with more slowly rotating stars than are presently seen in even younger clusters and associations. The solar-type stars in NGC 2547 follow a similar rotation–activity relationship to that seen in older clusters. X-ray activity increases until a saturation level is reached for v e sin  i >15–20 km s−1. We are unable to explain why this saturation level, of log( L x L bol)≃−3.3, is a factor of 2 lower than in other clusters, but rule out anomalously slow rotation rates or uncertainties in X-ray flux calculations.  相似文献   

3.
We report on the results of a time-series photometric survey of M50 (NGC 2323), a  ∼130 Myr  open cluster, carried out using the Cerro Tololo Inter-American Observatory (CTIO) 4-m Blanco telescope and Mosaic-II detector as part of the Monitor project. Rotation periods were derived for 812 candidate cluster members over the mass range  0.2 ≲ M /M≲ 1.1  . The rotation period distributions show a clear mass-dependent morphology, statistically indistinguishable from those in NGC 2516 and M35 taken from the literature. Due to the availability of data from three observing runs separated by ∼10 and 1 month time-scales, we are able to demonstrate clear evidence for evolution of the photometric amplitudes, and hence spot patterns, over the 10 month gap. We are not able to constrain the time-scales for these effects in detail due to limitations imposed by the large gaps in our sampling, which also prevent the use of the phase information.  相似文献   

4.
We present CCD photometry and high-resolution spectroscopy of low-mass stars in the open cluster NGC 2516, which has an age of about 150 Myr and may have a much lower metallicity than the Pleiades. 24 probable F to early K type, single cluster members have been identified from their photometry and radial velocities, along with three possible spectroscopic binaries. The projected equatorial velocities are measured and compared with younger and older clusters. Several fast rotating late G /early K stars are seen, but all hotter stars have v e sin  i  < 20 km s−1. The data are consistent with angular momentum loss models with spin-down time-scales that increase from tens of Myr for G stars to hundreds of Myr for K stars. The observed X-ray activity is consistent with the currently accepted rotation–activity paradigm. Lithium abundances are derived from the Li  i 6708-Å line. The pattern of Li depletion is indistinguishable from that in the Pleiades, including a spread in the K0 stars, where the most rapid rotators suffer the least Li depletion. The observations argue in favour of either a metallicity in the range −0.1 < [Fe/H]< 0.0 for NGC 2516, or a lower metallicity and extra Li depletion through non-standard mixing modes which occurs on time-scales of only ∼ 50 Myr. Neither our low signal-to-noise ratio spectroscopy nor our photometry can constrain [Fe/H] sufficiently to decide between these possibilities. A detailed spectroscopic chemical abundance analysis is urgently required.  相似文献   

5.
We use two-dimensional kinematic maps of simulated binary disc mergers to investigate the  λR  -parameter, which is a luminosity-weighted measure of projected angular momentum per unit mass. This parameter was introduced to subdivide the SAURON sample of early-type galaxies in so-called fast  λR > 0.1  and slow rotators  λR < 0.1  . Tests on merger remnants reveal that  λR  is a robust indicator of the true angular momentum content in elliptical galaxies. We find the same range of  λR  values in our merger remnants as in the SAURON galaxies. The merger mass ratio is decisive in transforming fast rotators into slow rotators in a single binary merger, the latter being created mostly in an equal-mass merger. Slow rotators have a  λR  which does not vary with projection. The confusion rate with face-on fast rotators is very small. Mergers with a gas component form slow rotators with smaller ellipticities than collisionless merger remnants have, and are in much better agreement with the SAURON slow rotators. Remergers of merger remnants are slow rotators, but tend to have too high ellipticities. Fast rotators maintain the angular momentum content from the progenitor disc galaxy if merger mass ratio is high. Some SAURON galaxies have values of  λ R   as high as our progenitor disc galaxies.  相似文献   

6.
We analyse the angular momentum evolution from the red giant branch (RGB) to the horizontal branch (HB) and along the HB. Using rotation velocities for stars in the globular cluster M13, we find that the required angular momentum for the fast rotators is up to 1–3 orders of magnitude (depending on some assumptions) larger than that of the Sun. Planets of masses up to 5 times Jupiter's mass and up to an initial orbital separation of ~2 au are sufficient to spin-up the RGB progenitors of most of these fast rotators. Other stars have been spun-up by brown dwarfs or low-mass main-sequence stars. Our results show that the fast rotating HB stars have been probably spun-up by planets, brown dwarfs or low-mass main-sequence stars while they evolved on the RGB. We argue that the angular momentum considerations presented in this paper further support the 'planet second parameter' model. In this model, the 'second parameter' process, which determines the distribution of stars on the HB, is interaction with low-mass companions, in most cases with gas-giant planets, and in a minority of cases with brown dwarfs or low-mass main-sequence stars. The masses and initial orbital separations of the planets (or brown dwarfs or low-mass main-sequence stars) form a rich spectrum of different physical parameters, which manifests itself in the rich varieties of HB morphologies observed in the different globular clusters.  相似文献   

7.
The secular evolution of the orbital angular momentum (OAM), the systemic mass  ( M = M 1+ M 2)  and the orbital period of 114 chromospherically active binaries (CABs) were investigated after determining the kinematical ages of the subsamples which were set according to OAM bins. OAMs, systemic masses and orbital periods were shown to be decreasing by the kinematical ages. The first-order decreasing rates of OAM, systemic mass and orbital period have been determined as     per systemic OAM,     per systemic mass and     per orbital period, respectively, from the kinematical ages. The ratio of d log  J /d log  M = 2.68, which were derived from the kinematics of the present sample, implies that there must be a mechanism which amplifies the angular momentum loss (AML)     times in comparison to isotropic AML of hypothetical isotropic wind from the components. It has been shown that simple isotropic mass loss from the surface of a component or both components would increase the orbital period.  相似文献   

8.
We construct a new sample of ∼1700 solar neighbourhood halo subdwarfs from the Sloan Digital Sky Survey (SDSS), selected using a reduced proper-motion diagram. Radial velocities come from the SDSS spectra and proper motions from the light-motion curve catalogue of Bramich et al. Using a photometric parallax relation to estimate distances gives us the full phase-space coordinates. Typical velocity errors are in the range  30–50 km s−1  . This halo sample is one of the largest constructed to date and the disc contamination is at a level of ≲1 per cent. This enables us to calculate the halo velocity dispersion to excellent accuracy. We find that the velocity dispersion tensor is aligned in spherical polar coordinates and that  (σ r , σφ, σθ) = (143 ± 2, 82 ± 2, 77 ± 2) km s−1  . The stellar halo exhibits no net rotation, although the distribution of   v φ  shows tentative evidence for asymmetry. The kinematics are consistent with a mildly flattened stellar density falling with distance like   r −3.75  .
Using the full phase-space coordinates, we look for signs of kinematic substructure in the stellar halo. We find evidence for four discrete overdensities localized in angular momentum and suggest that they may be possible accretion remnants. The most prominent is the solar neighbourhood stream previously identified by Helmi et al., but the remaining three are new. One of these overdensities is potentially associated with a group of four globular clusters (NGC 5466, NGC 6934, M2 and M13) and raises the possibility that these could have been accreted as part of a much larger progenitor.  相似文献   

9.
In this paper we present chromospheric emission levels of the solar-type stars in the young open clusters IC 2391 and IC 2602. High-resolution spectroscopic data were obtained for over 50 F, G and K stars from these clusters over several observing campaigns using the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Unlike older clusters, the majority (28/52) of the solar-type stars in the two clusters are rapid rotators  ( v  sin  i > 20 km s−1)  with five of the stars being classified as ultra-rapid rotators  ( v  sin  i > 100 km s−1)  . The emission levels in the calcium infrared triplet lines were then used as a measure of the chromospheric activity of the stars. When plotted against the Rossby number ( N R), the star's chromospheric emission levels show a plateau in the emission for  log( N R) ≲−1.1  indicating chromospheric saturation similar to the coronal saturation seen in previously observed X-ray emission from the same stars. However, unlike the coronal emission, the chromospheric emission of the stars shows little evidence of a reduction in emission (i.e. supersaturation) for the ultra-rapid rotators in the clusters. Thus we believe that coronal supersaturation is not the result of an overall decrease in magnetic dynamo efficiency for ultra-rapid rotators.  相似文献   

10.
The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of  25.5 M  . We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30 Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2 dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.  相似文献   

11.
We present the results of a systematic search for transiting planets in a ∼5 Myr open cluster, NGC 2362. We observed ∼1200 candidate cluster members, of which ∼475 are believed to be genuine cluster members, for a total of ∼100 h. We identify 15 light curves with reductions in flux that pass all our detection criteria, and six of the candidates have occultation depths compatible with a planetary companion. The variability in these six light curves would require very large planets to reproduce the observed transit depth. If we assume that none of our candidates are, in fact, planets then we can place upper limits on the fraction of stars with hot Jupiters (HJs) in NGC 2362. We obtain 99 per cent confidence upper limits of 0.22 and 0.70 on the fraction of stars with HJs ( f p) for 1–3 and 3–10 d orbits, respectively, assuming all HJs have a planetary radius of 1.5 R Jup. These upper limits represent observational constraints on the number of stars with HJs at an age ≲10 Myr, when the vast majority of stars are thought to have lost their protoplanetary discs. Finally, we extend our results to the entire Monitor project, a survey searching young, open clusters for planetary transits, and find that the survey as currently designed should be capable of placing upper limits on f p near the observed values of f p in the solar neighbourhood.  相似文献   

12.
We report the result of our near-infrared observations ( JHK s) for type II Cepheids (including possible RV Tau stars) in galactic globular clusters. We detected variations of 46 variables in 26 clusters (10 new discoveries in seven clusters) and present their light curves. Their periods range from 1.2 d to over 80 d. They show a well-defined period–luminosity relation at each wavelength. Two type II Cepheids in NGC 6441 also obey the relation if we assume the horizontal branch stars in NGC 6441 are as bright as those in metal-poor globular clusters in spite of the high metallicity of the cluster. This result supports the high luminosity which has been suggested for the RR Lyr variables in this cluster. The period–luminosity relation can be reproduced using the pulsation equation     assuming that all the stars have the same mass. Cluster RR Lyr variables were found to lie on an extrapolation of the period–luminosity relation. These results provide important constraints on the parameters of the variable stars.
Using Two Micron All-Sky Survey (2MASS) data, we show that the type II Cepheids in the Large Magellanic Cloud (LMC) fit our period–luminosity relation within the expected scatter at the shorter periods. However, at long periods (   P > 40  d, i.e. in the RV Tau star range) the LMC field variables are brighter by about one magnitude than those of similar periods in galactic globular clusters. The long-period cluster stars also differ from both these LMC stars and galactic field RV Tau stars in a colour–colour diagram. The reasons for these differences are discussed.  相似文献   

13.
We use ideal axisymmetric relativistic magnetohydrodynamic simulations to calculate the spin-down of a newly formed millisecond,   B ∼ 1015 G  , magnetar and its interaction with the surrounding stellar envelope during a core-collapse supernova (SN) explosion. The mass, angular momentum and rotational energy lost by the neutron star are determined self-consistently given the thermal properties of the cooling neutron star's atmosphere and the wind's interaction with the surrounding star. The magnetar drives a relativistic magnetized wind into a cavity created by the outgoing SN shock. For high spin-down powers  (∼1051–1052 erg s−1)  , the magnetar wind is superfast at almost all latitudes, while for lower spin-down powers  (∼1050 erg s−1)  , the wind is subfast but still super-Alfvénic. In all cases, the rates at which the neutron star loses mass, angular momentum and energy are very similar to the corresponding free wind values (≲30 per cent differences), in spite of the causal contact between the neutron star and the stellar envelope. In addition, in all cases that we consider, the magnetar drives a collimated  (∼5–10°)  relativistic jet out along the rotation axis of the star. Nearly all of the spin-down power of the neutron star escapes via this polar jet, rather than being transferred to the more spherical SN explosion. The properties of this relativistic jet and its expected late-time evolution in the magnetar model are broadly consistent with observations of long duration gamma-ray bursts (GRBs) and their associated broad-lined Type Ic SN.  相似文献   

14.
The Monitor project is a photometric monitoring survey of nine young (1–200 Myr) clusters in the solar neighbourhood to search for eclipses by very low mass stars and brown dwarfs and for planetary transits in the light curves of cluster members. It began in the autumn of 2004 and uses several 2- to 4-m telescopes worldwide. We aim to calibrate the relation between age, mass, radius and where possible luminosity, from the K dwarf to the planet regime, in an age range where constraints on evolutionary models are currently very scarce. Any detection of an exoplanet in one of our youngest targets (≲10 Myr) would also provide important constraints on planet formation and migration time-scales and their relation to protoplanetary disc lifetimes. Finally, we will use the light curves of cluster members to study rotation and flaring in low-mass pre-main-sequence stars.
The present paper details the motivation, science goals and observing strategy of the survey. We present a method to estimate the sensitivity and number of detections expected in each cluster, using a simple semi-analytic approach which takes into account the characteristics of the cluster and photometric observations, using (tunable) best-guess assumptions for the incidence and parameter distribution of putative companions, and we incorporate the limits imposed by radial velocity follow-up from medium and large telescopes. We use these calculations to show that the survey as a whole can be expected to detect over 100 young low and very low mass eclipsing binaries, and ∼3 transiting planets with radial velocity signatures detectable with currently available facilities.  相似文献   

15.
I propose a mechanism for axisymmetrical mass loss on the asymptotic giant branch (AGB) that may account for the axially symmetric structure of elliptical planetary nebulae. The proposed model operates for slowly rotating AGB stars, having angular velocities in the range of 10−4ω Kep  ω  10−2 ωKep, where ωKep is the equatorial Keplerian angular velocity. Such angular velocities could be gained from a planet companion of mass  0.1  M Jupiter, which deposits its orbital angular momentum to the envelope at late stages, or even from single stars that are fast rotators on the main sequence. The model assumes that dynamo magnetic activity results in the formation of cool spots, above which dust forms much more easily. The enhanced magnetic activity towards the equator results in a higher dust formation rate there, and hence higher mass-loss rate. As the star ascends the AGB, both the mass-loss rate and magnetic activity increase rapidly, and hence the mass loss becomes more asymmetrical, with higher mass-loss rate closer to the equatorial plane.  相似文献   

16.
We use deep Hubble Space Telescope photometry of the rich, young (∼20- to 45-Myr old) star cluster NGC 1818 in the Large Magellanic Cloud to derive its stellar mass function (MF) down to  ∼0.15 M  . This represents the deepest robust MF thus far obtained for a stellar system in an extragalactic, low-metallicity  ([Fe/H]≃−0.4 dex)  environment. Combining our results with the published MF for masses above  1.0 M  , we obtain a complete present-day MF. This is a good representation of the cluster's initial MF (IMF), particularly at low masses, because our observations are centred on the cluster's uncrowded half-mass radius. Therefore, stellar and dynamical evolution of the cluster will not have affected the low-mass stars significantly. The NGC 1818 IMF is well described by both a lognormal and a broken power-law distribution with slopes of  Γ= 0.46 ± 0.10  and  Γ≃−1.35  (Salpeter-like) for masses in the range from 0.15 to  0.8 M  and greater than  0.8 M  , respectively. Within the uncertainties, the NGC 1818 IMF is fully consistent with both the Kroupa solar neighbourhood and the Chabrier lognormal mass distributions.  相似文献   

17.
We present 1D numerical simulations of the very late thermal pulse (VLTP) scenario for a wide range of remnant masses. We show that by taking into account the different possible remnant masses, the observed evolution of V4334 Sgr (a.k.a. Sakurai's object) can be reproduced within the standard 1D mixing length theory (MLT) stellar evolutionary models without the inclusion of any ad hoc reduced mixing efficiency. Our simulations hint at a consistent picture with present observations of V4334 Sgr. From energetics, and within the standard MLT approach, we show that low-mass remnants  ( M ≲ 0.6 M)  are expected to behave markedly differently from higher mass remnants  ( M ≳ 0.6 M)  in the sense that the latter remnants are not expected to expand significantly as a result of the violent H-burning that takes place during the VLTP. We also assess the discrepancy in the born-again times obtained by different authors by comparing the energy that can be liberated by H-burning during the VLTP event.  相似文献   

18.
NGC 6633 is a young, open cluster with a similar age to the Hyades and Praesepe, but probably a lower metallicity. We present the results of ROSAT High Resolution Imager observations of an optically selected catalogue of likely members of NGC 6633. 8 out of 51 NGC 6633 members have been detected, with main-sequence spectral types A to G, above a threshold X-ray luminosity of ≈6–12×1028 erg s−1. We find that NGC 6633 does not contain cool stars that are as X-ray luminous as the most active objects in the Hyades and that the median X-ray luminosity of F-G stars in NGC 6633 is less than that in the Hyades, but probably greater than in Praesepe. However, when X-ray activity is expressed as the X-ray to bolometric flux ratio we find that NGC 6633 and the Hyades are very similar and display similar peak levels of coronal activity. We attribute this discrepancy to a number of possible wide binary systems with higher X-ray (and bolometric) luminosities in the Hyades sample and either a low metallicity in NGC 6633, which makes its cool stars both X-ray and bolometrically less luminous at the same colour, or a distance to NGC 6633 that has been underestimated, which would decrease stellar X-ray luminosities without changing X-ray to bolometric flux ratios.  相似文献   

19.
Recent spectropolarimetric observations of Ap and Bp stars with improved sensitivity have suggested that most Ap and Bp stars are magnetic with dipolar fields of at least a few hundred gauss. These new estimates suggest that the range of magnetic fluxes found for the majority of magnetic white dwarfs is similar to that of main-sequence Ap–Bp stars, thus strengthening the empirical evidence for an evolutionary link between magnetism on the main sequence and magnetism in white dwarfs. We draw parallels between the magnetic white dwarfs and the magnetic neutron stars and argue that the observed range of magnetic fields in isolated neutron stars  ( Bp ∼ 1011–1015 G)  could also be explained if their mainly O-type progenitors have effective dipolar fields in the range of a few gauss to a few kilogauss, assuming approximate magnetic flux conservation with the upper limit being consistent with the recent measurement of a field of   Bp ∼ 1100 G  for θ Orion C.
In the magnetic field–rotation diagram, the magnetic white dwarfs can be divided into three groups of different origin: a significant group of strongly magnetized slow rotators  ( P rot∼ 50 –100 yr)  that have originated from single-star evolution, a group of strongly magnetized fast rotators  ( P rot∼ 700 s)  , typified by EUVE J0317–853, that have originated from a merger, and a group of modest rotators ( P rot∼ hours–days) of mixed origin (single-star and CV-type binary evolution). We propose that the neutron stars may similarly divide into distinct classes at birth , and suggest that the magnetars may be the counterparts of the slowly rotating high-field magnetic white dwarfs.  相似文献   

20.
Stellar photometry derived from the INT/WFC Photometric Hα Survey (IPHAS) of the Northern Galactic plane can be used to identify large, reliable samples of A0–A5 stars. For every A-type star, so identified, it is also possible to derive individual reddening and distance estimates, under the assumption that most selected objects are on or near the main sequence, at a mean absolute r ' magnitude of 1.5–1.6. This study presents the method for obtaining such samples and shows that the known reddenings and distances to the open clusters NGC 7510 and NGC 7790 are successfully recovered. A sample of over 1000 A-type stars is then obtained from IPHAS data in the magnitude range  13.5 < r ' < 20  from the region of sky including the massive northern OB association Cyg OB2. An analysis of these data reveals a concentration of ∼200 A stars over an area about a degree across, offset mainly to the south of the known 1–3 Myr old OB stars in Cyg OB2: their dereddened r ' magnitudes fall in the range 11.8–12.5. These are consistent with a ∼7 Myr old stellar population at distance modulus DM = 10.8, or with an age of ∼5 Myr at DM = 11.2. The number of A-type stars found in this clustering alone is consistent with a lower limit to the cluster mass of  ∼104 M  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号