首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In February, May and August 1994, four stations in the North Sea (viz. at the Broad Fourteens, Frisian Front, German Bight and Skagerrak) were visited to sample near-bottom particulate organic matter. Samples, taken by means of a pump, a sediment trap and a sediment recorder, were analysed on organic carbon, total nitrogen, phytopigments and fatty acids. These molecular markers were used to describe the nature and quality of the organic particles in the near-bottom water. Principal component analysis showed chlorophyll a, phaeopigments and fatty acids to be useful markers for the quality of organic matter and yield complementary information.The quality of the near-bottom particles appeared to be related to the local hydrography and depositional circumstances. The Broad Fourteens station, a non-depositional sandy site along the Dutch coast, showed organic particles to be relatively fresh, little influenced by resuspended sedimentary material. Near-bottom organic particles on this site contained relatively high shares of chlorophyll a and polyunsaturated fatty acids, characteristic of algal matter. On the other hand the particulate organic material on the two depositional locations, the Frisian Front and the German Bight stations, was influenced by resuspension of sedimentary organic particles poor in pigments and fatty acids. Amounts of carbon trapped in the near-bottom environment at the Skagerrak station were lower than expected from the literature.  相似文献   

2.
《Journal of Sea Research》2002,47(2):121-139
The hyperbenthos of the Frisian front, an enriched benthic area of the southern North Sea, and surrounding waters was investigated along two cross-frontal transects in August 1994 and April 1996. A total of 111 species was recorded, mainly peracarid crustaceans and decapods. On average, Calanus spp. (Copepoda), Schistomysis ornata (Mysidacea) and Scopelocheirus hopei (Amphipoda) represented more than 40% of the total density, while S. ornata constituted 30% of the biomass. Community structure differed strongly between the two months, as shown by the species composition and the much lower densities and biomasses in April.In August, the density of the holohyperbenthic fraction reached pronounced peaks in the Frisian front area: densities for chaetognaths, copepods, amphipods and mysids were one order of magnitude higher than in the surrounding waters. Diversity was also highest at the Frisian front. The high abundances may be explained by active migration and/or by passive transport to the food-enriched area. Merohyperbenthic species showed a less distinct increase in density in the front zone, but a clear south-to-north change in community structure was observed. These species are more heavily subjected to the prevailing tidal flow. The Frisian front fauna seems to be transitional between two merohyperbenthic communities established in late summer, one belonging to the environmentally different sandy Southern Bight to the south, the other to the silty Oyster Ground to the north.In spring, no such hyperbenthic enrichment over the Frisian front was observed. This is most probably due to the strong seasonality of the hyperbenthic fauna and the low water temperature, suggesting that production and subsequent recruitment had not started yet. Alternatively, winter storms could have resuspended particulate organic matter, followed by a rapid migration of the motile hyperbenthos to more northern depositional areas and thus leading to a temporal density decline. We conclude that the Frisian front is an enriched area for the hyperbenthos at the end of summer, as has already been reported for the benthic system.  相似文献   

3.
Benthic foraminifera are investigated in sediment core LV28-34-2 (53°51.971′N, 146°47.499′E, sea depth 1431 m, core length 965 cm). The distribution of foraminifera is studied in coarse-grained (>0.125 mm) sediment fractions of 191 samples taken with a step of 5 cm. The core covers the interval from oxygen isotope stage (OIS) 6 up to the Holocene. The foraminiferal assemblages of the penultimate (OIS 6) and last (OIS 5d-2) glaciations are characterized by low abundances and prevalence of Uvigerina auberiana. The specific structure of the OIS 6 assemblages differs from the last glaciation ones by the mass presence of Cassidulina teretis, which characterizes low temperatures and a high influx of organic matter to the sea floor. The major factor responsible for the weak development of benthic foraminifers during the glacial time is the deficiency of food resources. The foraminiferal assemblage of the interglacial optimum (OIS 5e) is composed of both calcareous and agglutinated species (Martinottiella communis).The inflow of Pacific waters was probably more intensive, the bioproductivity was higher, and the critical carbonate compensation depth was shallower at that time than during the glaciations. During the deglaciation, the quantity and structure of the foraminiferal assemblages reflected two pulses of warming (terminations 1B and 1A) with an intervenient cooling event (Younger Dryassic). The assemblages of warm periods were characterized by exclusively high foraminiferal abundances, which sharply decreased during the Younger Dryassic cooling. The specific structure of the foraminiferal assemblage during deglaciation was relatively uniform, being composed of only calcareous taxa typical of highly productive areas of the ocean. The paleoenvironmental conditions were similar to the conditions of the interglacial optimum (OIS 5e), although the preservation of calcareous tests is better. In the Holocene sediments, the concentration of benthic foraminifera is substantially lower than during the deglaciation, which is explainable by their dilution in the sediments by diatoms; the composition of the foraminiferal assemblages is similar to that of their glacial counterparts.  相似文献   

4.
Benthic foraminiferal shell geochemistry has been extensively used to develop paleoceanographic tracers. Many of these proxies are sensitive to the geochemical conditions of the microhabitats selected by particular foraminiferal species. Understanding these microhabitats, then, is essential for proper interpretation of the proxies. A simple, broadly accepted, view is that foraminiferal species’ habitats are vertically stratified in the sediments due to general pore-water chemical gradients, which develop in response to the seabed organic carbon flux. Species are categorized into epifaunal, shallow infaunal and deep infaunal habitats, and are supposed to acquire the geochemical characteristics of these. However, this view is at odds with species’ distributional data and foraminiferal geochemical properties. We present an alternate model in which foraminifera select for habitats within the bio-irrigation system of the sediments created by the activities of macro-/meio-fauna. Our distributional and geochemical data indicate that foraminiferal species seek particular biotic associations and geochemical conditions within the complex bio-architecture of the sediments and are not tied to particular sediment depths, or the general pore-water chemistry of their apparent habitation zone. Instead, foraminifera inhabit micro-environments with steep oxic to anoxic gradients. This might account for disparities among geochemical tracers.  相似文献   

5.
In this paper, we investigate the ecology of live (rose Bengal stained) benthic foraminifera collected at 20 stations ranging from 15 to 100 m depth in the Rhône prodelta (Gulf of Lions, NW Mediterranean). These sites were sampled in September 2006, five months after the Rhône River annual flood. Statistical analyses based on foraminiferal communities (> 150 μm) divide our study area into six main biofacies directly related to environmental conditions. Miliolid species are abundant in the relict prodeltaic lobe which is characterised by sand with low organic matter content. Close to the river mouth, the limited oxygen penetration in the sediment combined with important hydro-sedimentary processes constitute stressful conditions for foraminiferal faunas dominated by opportunistic species (e.g. Leptohalysis scottii). With increasing distance from the river mouth, foraminiferal faunas (e.g. Nonionella turgida, Eggerella scabra) adapted to thrive in sediments enriched in Rhône-derived organic matter under more stable hydro-sedimentary conditions appear. In the distal part of the Rhône River influence, benthic species (e.g. Valvulineria bradyana, Textularia agglutinans) living in fine sediment enriched in both continental and marine organic compounds emerge. At the deepest stations located in the south-eastern part of our study area, benthic foraminiferal faunas (e.g. Bulimina aculeata, Melonis barleeanus, Bigenerina nodosaria) are highly diverse, underlining stable environmental conditions characterised by marine-derived organic matter supplies and relatively deep oxygen penetration depth in the sediment. We also compare foraminiferal faunas sampled in September 2006 with communities sampled in June 2005, one month after the Rhône River annual flood (Mojtahid et al., 2009). This comparison suggests that opportunistic species (e.g. B. aculeata, Cassidulina carinata, V. bradyana) have responded to organic matter inputs related to marine primary production in June 2005.  相似文献   

6.
Rose Bengal stained benthic foraminifera were studied from 11 cores collected along two depth transects off southern Portugal: one in the Lisbon-Setúbal Canyon and the other along the canyon edge. The total standing stocks and distribution of foraminifera were investigated in relation to sediment and pore water geochemistry. Nitrate was used as a redox indicator, sedimentary chlorophyll a and CPE (chloroplastic pigment equivalents) contents as a measure of labile organic matter, and total organic carbon as a measure of bulk organic matter availability.The canyon sediments were enriched in organic carbon and phytopigments at all water depths in comparison with the canyon edge. Water depth seemed to control sedimentary phytopigment content, but not total organic carbon. No significant correlation was seen between pigment and total organic carbon content.The abundance of calcareous foraminifera correlated with the phytodetritus content, whereas a weaker correlation was observed for the agglutinated taxa. Therefore, calcareous foraminifera appear to require a fresher food input than agglutinated taxa. The foraminiferal species composition also varied with pigment content and nitrate penetration depth in the sediment, in line with the TROX concept. Phytopigment-rich (surficial CPE content >20 μg/cm3) sediments with a shallow nitrate penetration depth (∼1 cm depth) were inhabited by generally infaunal species such as Chilostomella oolina, Melonis barleeanus and Globobulimina spp. As the nitrate penetration increased to ∼2 cm depth in sediment and the pigment content remained relatively high (>15 μg/cm3), Uvigerina mediterranea and Uvigerina elongatastriata became dominant species. With declining CPE content and increasing nitrate penetration depth, the foraminiferal assemblages changed from the mesotrophic Cibicides kullenbergi-Uvigerina peregrina assemblage to the oligotrophic abyssal assemblage, mainly consisting of agglutinated taxa.  相似文献   

7.
Live (Rose-Vengal stained) benthic foraminifera were studied along a transect across the main area of organic matter deposition in the Cape Blanc upwelling region. The faunal analyses suggest that at the shallowest station (1200 m) the benthic ecosystem is permanently influenced by the upwelling, whereas at the deepest stations (3010 and 2530 m depth) the ocean bottom is subject to significant organic influxes only in summer. The vertical zonation of foraminiferal species in the sediment shows a close correspondence with the depth distribution of oxic respiration, nitrate and sulphate reduction. It is suggested that this linkage is caused by the presence of various stocks of anaerobic and sulphate- and nitrate-reducing bacteria. Deep infaunal foraminiferal species are thought to feed selectively, either on the bacterial stocks or on nutritious particles produced by bacterial degradation of more refractory organic matter. As such, foraminiferal microhabitats are only indirectly controlled by pore water oxygen concentrations.  相似文献   

8.
Environmental changes such as ocean warming or sea‐level rise have a profound impact on shallow‐water coastal environments. Benthic foraminifera have long been successfully used as indicators for ecologic responses. The propagule method is a useful tool to evaluate the reactions of entire assemblages of foraminifera when exposed to different environmental conditions. Here we present results from growth experiments of foraminiferal assemblages from three sites in coastal Georgia and Florida (USA) under different temperatures (18, 24 and 30 °C) and salinities (15 and 35). Results show that assemblages grown at the higher temperatures had greater abundances of foraminifera, whereas salinity was the primary factor in shaping the composition of the experimentally grown assemblages from the three sites. We also show that experimentally grown assemblages contain high numbers of ‘exotic’ species that result from successful propagule recruitment from outside of the original environments (e.g. the open shelf). Overall, opportunistic and previously termed ‘pioneer species’ proved to be the most successful constituents of the experimental assemblages, showing that reactions of foraminiferal assemblages to environmental changes can appear remarkably quickly (e.g. in the course of several weeks). Our observations on the faunal reactions to different temperatures and salinities indicate that ongoing environmental alterations of coastal areas will likely result in significant changes in the shallow‐water foraminiferal assemblages of the coasts of Georgia and Florida. As such, our study provides general insights into the ecologic effects of current climate change.  相似文献   

9.
10.
Shell-weight measurements were carried out on planktonic foraminifera G. sacculifer and G. ruber specimens from coretop depth transects in the Atlantic, Indian and Pacific Ocean to investigate calcite dissolution above the lysocline. The results suggest that foraminifera deposited in sediments overlain by supersaturated bottom water undergo considerable dissolution at the sediment–water interface and that the calcite saturation state at the interface is considerably offset from that of bottom water. Also, the extent of exposure to undersaturated conditions at the interface is not constant. Rather, it increases towards the surface ocean, i.e. towards shallow marine sediments where the organic matter flux is expected to be higher. It is proposed that the benthic fluff layer at the sediment–water interface represents a zone of undersaturation through which the foraminifera pass prior to deeper burial, and that the residence time of foraminifera within this zone of intense organic matter respiration is long enough to result in significant decreases in shell weight.  相似文献   

11.
Fronts and eddies are widely hypothesized to be critical spawning habitat for large pelagic fishes, due to increased larval and/or adult feeding opportunities at these features. We examined sailfish (Istiophorus platypterus) spawning around a cyclonic, submesoscale (∼13 × 7 km) Florida Current frontal eddy. The temporal progression of eddy dynamics over a 65 h period was determined using ocean color satellite imagery, continuous surface measurements along the cruise track, and non-linear least-squares fitting of the positions of three drifters deployed within the eddy. A peak in larval sailfish densities (n = 2435, stations = 49), composed primarily of yolk-sac and first-feeding larvae, occurred at the eddy frontal zone. A majority of these larvae were estimated to have been spawned during the formation of the eddy. A comparison between the distribution of similar-age sailfish and scombrid larvae indicated that the peak in larval sailfish density likely resulted from spawning directly at the front, rather than transport by convergent flow. The first-feeding prey items of larval sailfish (Farranula and Corycaeus copepods) were most abundant at the frontal zone and to a lesser extent inside the eddy. Egg distributions were used to indirectly assess the distribution of adult sailfish prey items. Euthynnus alleteratus and Auxis spp. eggs were in highest abundance outside the eddy, while the eggs of small carangids were in highest abundance at the eddy frontal zone. Overall, this study indicates that sailfish spawn at small-scale oceanographic features that provide a favorable feeding environment for their larvae and potentially also for the adults.  相似文献   

12.
海洋锋面存在于特征明显不同的2种或多种水系或水团交界处,锋面区域形成的次生环流和辐聚作用可显著影响到海洋中的物质输运与生物生产,故受到海洋学家的广泛关注。研究发现,我国近海陆架存在14个永久性的准静止锋面(渤海海峡锋面、山东半岛沿岸锋面、苏北沿岸锋面、西韩湾锋面、京畿湾锋面、济州岛西锋面、长江环形浅滩锋面、闽浙沿岸锋面、黑潮锋面、台湾沿岸锋面、闽粤沿岸锋面、珠江口沿岸锋面、琼东锋面和北部湾锋面),且部分海域观测到双锋面、穿刺锋面和锋面波等现象。它们与陆架环流及其他动力过程(如:涡旋、内波等)共同控制着我国边缘海的物质能量输运与交换以及生物生产力格局。近岸物质沿锋面、跨锋面输运与锋区的垂向输送过程对我国边缘海生物地球化学循环和生态过程存在显著季节性影响。冬季到春季,沿岸锋面松弛能够加强物质从近岸向陆架的输运,进而在空间上调制春季藻华暴发的时间与量级;夏季到秋季,我国边缘海存在显著的潮汐锋面系统,锋面的辐聚效应以及次级环流可显著提高锋面区域的营养盐浓度和改善光照水平,对浮游植物的生长聚集起到促进作用,故在富营养化的河口与沿岸海域,锋面区域容易成为赤潮或缺氧高发区。此外,锋面的物理屏障作用使得两侧水团保持相对独立的物理与化学特征,因而在我国边缘海生境区划和生物多样性梯度变化等方面扮演重要角色,这些研究对认识我国边缘海物质循环与生物生产的控制机制具有重要作用。未来仍需充分结合观测与卫星资料,运用多过程耦合的高分辨率模型,深入认识锋面的精细结构与动态变化,加强亚中尺度和小尺度过程及其生态效应的研究。  相似文献   

13.
Rose-Bengal-stained benthic foraminifera in six pilot-core samples and one multicore sample collected from the Hess Rise and Suiko Seamount in August 1994 were studied in order to understand foraminiferal distributions between two areas divided by an oceanic front in the central North Pacific. Samples from the Hess Rise were collected in depths of 2167–3354 m under the warm, saline Kuroshio Extension, while samples from Suiko Seamount came from depths of 1811–1955 m under the cold, less-saline subarctic current. Sediment-trap results for the year prior to our sediment sampling show that organic matter fluxes were about 2.5 times greater at Suiko Seamount than at the Hess Rise. However, the hydrographic structure between 1800 and 3400 m, based on CTD observations, is almost the same at both sites. Temperature decreases from 2.2 to 1.7°C over the depth range of 1800–3400 m, salinity increases from 34.5 to 34.7, and the dissolved oxygen content gradually increases from 1.5 to 3.0 ml l−1. The faunal populations at the Hess Rise are quite different from those at Suiko Seamount. The abundant species at the Hess Rise are Epistominella exigua, Brizalina pacifica, Fursenkoina cedrosensis and Alabaminella weddellensis. These species characteristically inhabit phytodetrital aggregates deposited on an oligotrophic seafloor. The populations at Suiko Seamount are dominated by Triloculina frigida, Lagenammina cf. arenulata, Reophax subfusiformis, and Reophax scorpiurus. The reason for differences between these populations is unclear. However, the typical phytodetritus-dwelling species E. exigua is dominant at the Hess Rise, which is located in a subtropical area that has a pulsed supply of settling organic matter in the spring. On the other hand, E. exigua is rare at Suiko Seamount, a subarctic site where there are more stable and greater fluxes of organic matter in summer and autumn. Occurrences of this species may be related to the seasonally short supply of organic matter that reaches the seafloor in the oceanic North Pacific.  相似文献   

14.
The studies were carried out on September 27–30, 2007, in the area of the Ob estuarine frontal zone and over the adjacent inner Kara Sea shelf. Based upon the latitudinal changes in the salinity, the 100 nautical mile wide estuarine frontal zone was marked out. The frontal zone was inhabited by a specific zooplankton community dominated by species that occurred outside the frontal zone in only minor amounts. The biomass of the mesozooplankton averaging 984 mg/m3 in the frontal zone exceeded by 1.5 and 6 times the corresponding values in the inner desalinated area of the estuary and the adjacent areas of the Kara Sea shelf. At the inner southern periphery of the frontal zone, at maximal latitudinal salinity gradients (>2 psu per mile), the maximal development of the mesoplankton with the mean biomass for the water column of 3.1 g/m3 (37 g/m2) and up to 5.8 g/m3 in the subpycnocline layer was observed. The latitudinal extension of the biomass in the maximum zone did not exceed 10 miles. More than 90% of the maximum was composed of herbivorous zooplankton with the strong domination of the copepod Limnocalanus macrurus. The daily consumption within the zooplankton maximum area was estimated at 820 mgC/m2 per day. This value exceeds by two orders of magnitude the local primary production. At that level of consumption, the available phytoplankton biomass was consumed by grazers in less than 8 hours (!). A zooplankton aggregation at the southern periphery of the estuarine front exists due to the advection of phytoplankton from the adjacent river zone. The aggregation forms a natural pelagic biofilter where new allochthonous organic matter delivered by the river flow is accumulated and high secondary production is formed on its basis. An anomalously high concentration of planktic predatory Parasagitta elegans with biomass of over 1 g/m3 (46% of the total zooplankton biomass) was associated with the outer northern periphery of the estuarine frontal zone.  相似文献   

15.
The Southern Ocean south of Australia is oceanographically complex, being characterized by double branches of the Sub-Antarctic Front (SAF), Polar Front (PF) and Southern Antarctic Circumpolar Current (SACCF), in addition to the Southern Boundary (SB) of the ACC. From 25 February to 3 March 2002 a 2150-km Continuous Plankton Recorder (CPR) transect was conducted along 140 °E, between 47.02 °S and 66.36 °S, crossing each of these frontal zones. Surface temperature, salinity, and fluorescence were measured at 1-min intervals in conjunction with CPR samples. Additional physical data for the region south of 61oS was provided by nine CTD stations. Multivariate and Indicator Species analysis of the high resolution (∼9.2 km) zooplankton samples identified six distinct assemblages which were strongly correlated with frontal/oceanographic zones. These assemblages appeared to be structured by a combination of zonal differences in water mass structure, phytoplankton regimes, and small scale intra-zonal features (e.g. eddies). The northern branch of the SAF was the strongest biogeographic boundary, separating a high proportion of sub-tropical and temperate species from the waters to its south. The study area differed from other sectors of the Southern Ocean in that the northern PF, equivalent to the PF in other sectors, was not a zone of distinct ecological transition. Two of the identified assemblages were located with the seasonal ice zone, south of the northern SACCF. Although Euphausia superba larvae were a component of both of these assemblages, this species, together with appendicularia, was most abundant south of the SB. The seasonal ice zone north of the SB was dominated by small copepods (Oithona similis and Ctenocalanus citer), appendicularia and foraminifera. Although the physical characteristics of the frontal zones can be subtle, the demarcation between zooplankton assemblages was clear. Cross-frontal changes in zooplankton assemblages highlight their role in long-term monitoring programs as indicators of environmental change.  相似文献   

16.
The Gulf of Cambay is a macro-tidal estuarine embayment lying in an active monsoon zone characterized by a high annual sediment load. The present study examines the distribution of foraminifera in the Narmada and Tapti estuaries of the Gulf in order to use these as analogues for the study of palaeo-macro-tidal estuarine environments and as a means of recording the extent of sea-level change in estuarine settings. Foraminifera are widely distributed in sand flats, mud flats and marshes at the mouths of the estuaries. The overall foraminiferal assemblage is low diversity, comprising epifaunal and infaunal taxa dominated by Ammonia, Murrayinella, Haynesina, Quinqueloculina, Nonion, Cibicides, Cibicidoides, Elphidium, Trochammina and Miliammina. The triserial planktonic foraminifer Gallitellia vivans, an indicator of stressed and up-welling areas, is also recorded in the intertidal sediments of the estuaries. These foraminifera are carried into estuaries up to 50 km up the river mouths by the strong tidal currents in the bay. Three biofacies are recognized: Trochammina–Miliammina biofacies (high marsh); Murrayinella-Haynesina biofacies (low marsh and mud flats) and Ammonia-Elphidium-Quinqueloculina biofacies (shallow marine).  相似文献   

17.
Uptake and regeneration of nitrogen in the Almeria-Oran frontal zone (SW Mediterranean) and adjacent (Atlantic and Mediterranean) systems were studied during the Almofront I cruise (JGOFS-France). The frontal zone was characterized by an upsloping of nitracline from about 50 m in the adjacent systems to 25–30 m within. Along with nitrate, ammonium, chlorophyll a and particulate organic nitrogen also were at higher concentrations in the frontal zone than in the adjacent waters.The nitrate uptake rates were significantly higher in the frontal zone (up to 6.4 nmol l−1 h−1) than in the Atlantic and Mediterranean waters (generally <1 nmol l−1 h−1) indicating a significant increase of new production at the front. This increase was related to the upsloping of the nitracline as shown by the significant correlation (p<0.05) between new production and depth of the nitracline. The new production in the Almeria-Oran was much lower than those recorded in other oceanic and coastal fronts. This could be related to the fact that the nitracline did not rise up to the surface and the high concentrations of nitrate were confined to deeper layers where the ambient light intensity was less. Nitrate uptake in the frontal zone was significantly higher, by 1.7–5.8 times (average 4.2), than the calculated diffusive flux of nitrate, suggesting that vertical advection may be an important source of nitrate. New production rates at the front were also significantly higher (3–9 times, average 5.8) than the PON flux to 100 m depth estimated by sediments traps (Journal of Marine Systems 5, 377–389), suggesting a strong decoupling between surface production and downward flux of POM in the frontal zone.The north–south gradient observed with different parameters indicates the presence of a transfrontal secondary circulation. This distribution also suggests that the primary production in the front is initially nitrate-based, with a diatom-herbivore food chain, whereas regenerated production, associated with an intense recycling of organic matter, later becomes progressively important in time and space.  相似文献   

18.
Studies on diatoms showed that locations of Mauritanian coastal upwellings during the last glacial and deglaciation epochs were More westerly than present-day sites, i.e., off the continental shelf, rather than nearshore. Benthic foraminifera revealed a stratigraphic coverage from the present to the last glacial maximum (0 to 18000 yrs BP). Factor analysis produced four factor assemblages that account for 95.4 percent of the variance. Two factors are dominated by eitherBulimina exilis orMelonis barleeanum. The quantitative stratigraphic distribution of these two deep-sea species is related to the quality of marine organic matter derived from surface upwellings.B. exilis develops only when organic matter reaching the bottom is relatively unchanged;M. barleeanum prefers organic matter in a more altered form.  相似文献   

19.
We conducted an in situ feeding experiment using 13C-labeled unicellular algae in Sagami Bay, Japan (water depth, 1450 m), in order to understand the fate of lipid compounds in phytodetritus at the deep-sea floor. We examined the incorporation of excess 13C into lipid compounds extracted from bulk sediments and benthic foraminiferal cells. 13C-enriched fatty acids derived from 13C-labeled algae were exponentially degraded during 6 days of incubation in the sediment. Subsequent enrichments in 13C in sedimentary n-C15, anteiso-C17, and C17 fatty acids indicated the microbial degradation of algal material and production of bacterial biomass in the sediment. We observed the incorporation of 13C-labeled algal phytol and fatty acids into foraminiferal cells. The compositions of 13C-labeled algal lipids in foraminiferal cells were different from those in the bulk sediments, indicating that foraminiferal feeding and digestion influenced the lipid distribution in the sediments. Furthermore, some sterols in Globobulimina affinis (e.g., 24-ethylcholesta-5,22-dien-3β-ol, 24-ethylcholest-5-en-3β-ol, and 23,24-dimethylcholesta-5,22E-dien-3β-ol) were newly produced via the modification of dietary algal sterols within 4–6 days. In addition to the effects of bacteria, feeding by benthic foraminifera can result in a significant reorganization of the composition of organic matter and influence benthic food webs and carbon cycling at the deep-sea floor.  相似文献   

20.
The distribution of dissolved organic carbon (DOC) and nitrogen (DON) and particulate organic carbon (POC) and nitrogen (PON) was studied on a transect perpendicular to the Catalan coast in the NW Mediterranean in June 1995. The transect covered a hydrographically diverse zone, including coastal waters and two frontal structures (the Catalan and the Balear fronts). The cruise was conducted during the stratified period, characterized by inorganic nutrient depletion in the photic zone and a well established deep chlorophyll a maximum. DOC concentrations were measured using a high-temperature catalytic oxidation method, and DON was determined directly, with an update of the Kjeldahl method, after removal of inorganic nitrogen.The ranges of DOC and DON concentrations were 44–95 μM-C and 2.8–6.2 μM-N. The particulate organic matter ranged between 0.9 and 14.9 μM-C and from 0.1 to 1.7 μM-N. The DOC : DON molar ratio averaged 15.5±0.4, and the mean POC : PON ratio was 8.6±0.6. The distribution of dissolved organic matter (DOM) was inverse to that of the salinity. The highest concentrations of DOM were found in coastal waters and in the stations affected by the Catalan front, located at the continental shelf break.It was estimated that recalcitrant DOM constituted 67% of the DOM pool in the upper 50 m. The data suggest that accumulation of DOC due to the decoupling of production and consumption may occur in the NW Mediterranean during stratification and that the organic matter exported from the photic layer is dominated by C-rich material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号