首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary By means of the increased gravity measurements it is possible to compute gravimetrically the undulationsN of the geoid with regard to the used reference ellipsoid as well as the «absolute» deflection of the vertical components g and g . The quantities g and g enable us to transfer the astronomically observed coordinates of any points from the geoid to the reference ellipsoid and in this way compute without any triangulations the distances along the reference ellipsoid. And still more. With the aid ofN, g and g we can obtain a general Geodetic World System and convert the existing many systems to it.—The geoid study is no more any academical pastime, it can solve the most important problems of the practical geodesy.  相似文献   

2.
We consider a general stochastic branching process,which is relevant to earthquakes as well as to many other systems, and we study the distributions of the total number of offsprings (direct and indirect aftershocks in seismicity) and of the total number of generations before extinction. We apply our results to a branching model of triggered seismicity, the ETAS (epidemic-type aftershock sequence) model. The ETAS model assumes that each earthquake can trigger other earthquakes (aftershocks). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. Due to the large fluctuations of the number of aftershocks triggered directly by any earthquake (fertility), there is a large variability of the total number of aftershocks from one sequence to another, for the same mainshock magnitude. We study the regime in which the distribution of fertilities is characterized by a power law ~1/1+. For earthquakes we expect such a power-distribution of fertilities with =b/ based on the Gutenberg-Richter magnitude distribution ~ 10bm and on the increase ~ 10m of the number of aftershocks with the mainshock magnitude m. We derive the asymptotic distributions pr(r) and pg(g) of the total number r of offsprings and of the total number g of generations until extinction following a mainshock. In the regime < 2 for which the distribution of fertilities has an infinite variance, we find This should be compared with the distributions obtained for standard branching processes with finite variance. These predictions are checked by numerical simulations. Our results apply directly to the ETAS model whose preferred values =0.8–1 and b=1 puts it in the regime where the distribution of fertilities has an infinite variance. More generally, our results apply to any stochastic branching process with a power-law distribution of offsprings per mother  相似文献   

3.
In the past the global, fully coupled, time-dependent mathematical model of the Earths thermo-sphere/ionosphere/plasmasphere (CTIP) has been unable to reproduce accurately observed values of the maximum plasma frequency, foF2, at extreme geophysical locations such as the Argentine Islands during the summer solstice where the ionosphere remains in sunlight throughout the day. This is probably because the seasonal dependence of thermospheric cooling by 5.3 m nitric oxide has been neglected and the photodissociation of O2 and heating rate calculations have been over-simplified. Now we have included an up-to-date calculation of the solar EUV and UV thermospheric heating rate, coupled with a new calculation of a diurnally varying O2 photodissociation rate, in the model. Seasonally dependent 5.3 m nitric oxide cooling is also included. With these important improvements, it is found that model values of foF2 are in substantially better agreement with observation. The height of the F2-peak is reduced throughout the day, but remains within acceptable limits of values derived from observation, except at around 0600 h LT. We also carry out two studies of the sensitivity of the upper atmosphere to changes in the magnitude of nitric oxide cooling and photodissociation rates. We find that hmF2 increases with increased heating, whilst foF2 falls. The converse is true for an increase in the cooling rate. Similarly increasing the photodissociation rate increases both hmF2 and foF2. These changes are explained in terms of changes in the neutral temperature, composition and neutral wind.  相似文献   

4.
Summary In this work the previous author's results concerning the geomagnetic effect of the interplanetary parameters in dependence on geomagnetic latitude are verified, complemented and presented with better accuracy. Data of 7 intensive storms recorded in 1973–79 at 5 observatories with slight differences in local time and with the appropriate latitude distribution limited by real possibilities have been analysed. Even in these cases the derived values of the constants determining the dependence of storm-time variations of the geomagnetic field upon both the dynamic pressure of the solar wind(P) and the interplanetary electric field(Ey) vary relatively regularly with geomagnetic latitude. The anomaly of Dst and DR-variations from the Almeria Observatory (AE) evident in some intensive storms is pointed out here. Unlike the previous work the time characteristics () of the ring current decay have been studied from the standpoint of the main (m) and recovery (r) phases of the storm. This yields higher values of r as compared to from the above mentioned work. On the other hand, a large decrease in the values of r was observed in some cases at a latitude of about 40°, as in the earlier study. Actually this phenomenon does not occur in all intensive storms as could be expected. As to the investigated storms, m seems to be independent of geomagnetic latitude and much lower in its magnitude than r.  相似文献   

5.
The horizontal and vertical derivative profiles of magnetic anomalies of dykes show some interesting properties. The points of zero derivatives and the points where the derivatives are equal are conjugate point pairs. A method of interpretation of dyke anomalies is suggested, which utilizes the distances between these points.Notation F Magnetic anomaly in total intensity - Z Depth to top of the dyke - 2T Width of the dyke - Geological dip of the dyke - I Effective intensity of magnetisation in the plane of profile - Dip of effective magnetisation vector in the plane of profile - Strike angle of the dyke - i Magnetic dip - Q – - Q f –+arctan (sin coti) - I f   相似文献   

6.
TeleseismicP-waves of some large earthquakes that occurred in the eastern Mediterranean region have been analysed by using an iterative maximum entropy technique in order to obtain the independent spectral parameters, the long-period spectral level 0 and the corner frequencyf 0 of the far-field displacement spectra.Based on these parameters, the seismic source parameters seismic momentM 0, source dimensionr, fault lengthl, average displacement u, shear stress drop , radiated energyE s and apparent stressn are calculated for the considered earthquakes by using Brune's and Madariaga's models.The striking feature of the source parameters obtained in this study is the low stress drop value which varies between 5 and 15 bars. If Madariaga's model had been used, higher stress drop values would have been obtained.The low stress drop earthquakes in the eastern Mediterranean region might be interpreted either by the possible presence of low strength material near the source or by the partial stress drop model.  相似文献   

7.
Summary One of the important atmospheric levels, the mean energetic level (MEL), which in a sense reflects the energetics of the whole atmosphere, is defined. Its fundamental properties are shown. In order to describe the MEL correctly a new vertical coordinate is introduced and discussed. The new coordinate, , is defined as the ratio of height and temperature. The MEL is shown to be a level with constant value of . Some incorrect conclusions concerning the MEL, derived in the past, have been corrected.List of symbols used c p specific heat of air at constant pressure - c v specific heat of air at constant volume - e base of natural logarithms - E total potential energy - f Coriolis parameter - g acceleration of gravity - i specific internal energy - I internal energy - J enthalpy - k unit vector pointing upwards - p pressure - Q diabatic heating rate - R gas constant of the air - t time - T temperature - v horizontal velocity - v (3) three-dimensional velocity - w vertical velocity in thez-system - z height - temperature growth rate (T/z) - Pechala's vertical coordinate (z/T) - generalized vertical velocity in the -system (d/dt) - specific potential energy - potential energy - density of the air - Ruppert function - T(1–)–1 - ( ) S quantity at the sea level - ( )* quantity at the MEL  相似文献   

8.
The World Ocean Atlas 1998 is used to determine the global field of the meridional density ratio R hy =T/S, where temperature and salinity changes T and S are evaluated along meridians, in and below the mixed layer. The focus of the analysis is the identification of regions where the R hy field matches the values R =2 sometimes suggested as the commonly perceived state of the ocean and R =1, the condition of density compensation. Results are presented through fields of the meridional Turner angle Tu hy =arctan(R hy ) and through histograms of Tu hy for the Pacific, Atlantic and Indian Oceans at the ocean surface and at 300 m depth. At the 300-m depth level, which in the subtropics is representative of conditions in the permanent thermocline, the most frequently encountered values of the meridional density ratio are R hy =3.2 in the North and South Pacific, R hy =2.0 in the South Atlantic and Indian and R hy =1.6 in the North Atlantic Ocean. Conditions in the mixed layer are more variable and show seasonal differences, but R hy =2.0 occurs prominently in all ocean regions during winter and in all regions but the Atlantic during summer. Summer values for the Atlantic Ocean are R hy =3.2 in the Northern Hemisphere and R hy =2.4 in the Southern Hemisphere. Detailed analysis of R hy across the Subtropical Front (STF) confirms the most frequently observed values but shows zonal variation along the front in some oceans. Nearly complete density compensation (R hy =1) in the mixed layer is encountered in the STF of the eastern North Pacific, the eastern South Pacific and the eastern Indian Ocean. The eastern Indian Ocean south of Australia is also the only region where complete density compensation in the STF occurs below the mixed layer.Responsible Editor: Neville Smith AcknowledgementWe thank Dan Rudnick for helpful comments and discussion during the preparation of this paper.  相似文献   

9.
Summary This paper studies the propagation of Surface Waves on a spherically aeolotropic shell surrounded by vacuum. The elastic constantsc ij and density of the material of the shell are assumed to be of the form ij r l and o r m respectively, where ij o are constants andl, m are any integers.  相似文献   

10.
Fundamental-mode Rayleigh wave attenuation data for stable and tectonically active regions of North America, South America, and India are inverted to obtain several frequency-independent and frequency-dependentQ models. Because of trade-offs between the effect of depth distribution and frequency-dependence ofQ on surface wave attenuation there are many diverse models which will satisfy the fundamental-mode data. Higher-mode data, such as 1-Hz Lg can, however, constrain the range of possible models, at least in the upper crust. By using synthetic Lg seismograms to compute expected Lg attenuation coefficients for various models we obtained frequency-dependentQ models for three stable and three tectonically active regions, after making assumptions concerning the nature of the variation ofQ with frequency.In stable regions, ifQ varies as , where is a constant, models in which =0.5, 0.5, and 0.75 satisfy fundamental-mode Rayleigh and 1-Hz Lg data for eastern North America, eastern South America, and the Indian Shield, respectively. IfQ is assumed to be independent of frequency (=0.0) for periods of 3 s and greater, and is allowed to increase from 0.0 at 3 s to a maximum value at 1 s, then that maximum value for is about 0.7, 0.6, and 0.9, respectively, for eastern North America, eastern South America, and the Indian Shield. TheQ models obtained under each of the above-mentioned two assumptions differ substantially from one another for each region, a result which indicates the importance of obtaining high-quality higher-mode attenuation data over a broad range of periods.Tectonically active regions require a much lower degree of frequency dependence to explain both observed fundamental-mode and observed Lg data. Optimum values of for western North America and western South America are 0.0 if is constant (Q is independent of frequency), but uncertainty in the Lg attenuation data allows to be as high as about 0.3 for western North America and 0.2 for western South America. In the Himalaya, the optimum value of is about 0.2, but it could range between 0.0 and 0.5. Frequency-independent models (=0.0) for these regions yield minimumQ values in the upper mantle of about 40, 70, and 40 for western North America, western South America, and the Himalaya, respectively.In order to be compatible with the frequency dependence ofQ observed in body-wave studies,Q in stable regions must be frequency-dependent to much greater depths than those which can be studied using the surface wave data available for this study, andQ in tectonically active regions must become frequency-dependent at upper mantle or lower crustal depths.On leave from the Department of Geophysics, Yunnan University, Kunming Yunnan, People's Republic of China  相似文献   

11.
Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the signal is the site response of the nearsurface. Several examples of waveform data recorded at hard rock sites, which are generally assumed to have a flat transfer function, are presented to demonstrate the severe signal distortions, includingf max, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinctf max site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms off max and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra.  相似文献   

12.
Summary The geopotential scale factor R 0 =GM/W 0 has been determined on the basis of satellite altimetry as R 0=(6 363 672·5±0·3) m and/or the geopotential value on the geoid W 0 =(62 636 256·5±3) m 2 s –2 . It has been stated that R 0 and/or W 0 is independent of the tidal distortion of surface W=W 0 due to the zero frequency tide.
¶rt;a nmu amumuu u ama amnmuaa R 0 =GM/W 0 =(6 363 672,5±0,3) m u/uu aunmuaa a nmuu¶rt;a W 0 =(62 636 256,5±3) m2 s–2. m, m R 0 u/uu W 0 auum m nm amu a a nuu ¶rt;au nmu W=W 0 .
  相似文献   

13.
To obtain the temperatureT and volumeV (or pressureP) dependence of the Anderson-Grüneisen parameter T , measurements with high sensitivity are required. We show two examples:P, V, T measurements of NaCl done with the piston cylinder and elasticity measurements of MgO using a resonance method. In both cases, the sensitivity of the measurements leads to results that provide information about T (,T), where V/V 0 andV 0 is the volume at zero pressure. We demonstrate that determination of T leads to understanding of the volume and temperature dependence ofq=( ln / lnV) T over a broadV, T range, where is the Grüneisen ratio.  相似文献   

14.
— The first empirical duration magnitude (MD) formula is developed and tested for the Northern Morocco Seismic Network (NMSNET). This relationship is obtained by relating the IGN (Instituto Geografico National, Madrid) body-waves mbLgIGN to the duration (), and the epicentral distance (), at 25 analogue stations of the NMSNET for 479 earthquakes with 2.5 mb 5.4, from March 1992 to February 2001. MD estimates are significantly more precise while introducing a correction term for each of these stations, cStaj. The magnitude for the ith event (MD)i is the mean value of individual MDij=–0.14+1.63log10(ij)+0.031(ij)+cStaj. The cStaj corrections reduce considerably the local site effects which influence the recorded durations and cause stations to either overestimate, or underestimate MD up to 0.5 magnitude units. Average station MD residuals (–cStaj) are found to be independent of the distance from the epicenter to at least 10 degrees. It seems evident that regional geological features in the immediate behavior of stations have a systematic effect on the corresponding obtained residuals: older well-consolidated Precambrian crystalline rocks produce high negative residuals (shorter durations), younger unconsolidated sediments produce high positive residuals (longer durations), whereas, intermediate MD site residuals appear to be the result of the effect of various factors, principally age and state of consolidation of the bedrock, combined with the local tectonic.  相似文献   

15.
This work is part of an attempt to quantify the relationship between the permeability tensor (K) and the micro-structure of natural porous media. A brief account is first provided of popular theories used to relate the micro-structure toK. Reasons for the lack of predictive power and restricted generality of current models are discussed. An alternative is an empirically based implicit model whereinK is expressed as a consequence of a few pore-types arising from the dynamics of depositional processes. The analytical form of that implicit model arises from evidence of universal association between pore-type and throat size in sandstones and carbonates. An explicit model, relying on the local change of scale technique is then addressed. That explicit model allows, from knowledge of the three-dimensional micro-geometry to calculateK explicitly without having recourse to any constitutive assumptions. The predictive and general character of the explicit model is underlined. The relevance of the change of scale technique is recalled to be contingent on the availability of rock-like three-dimensional synthetic media. A random stationary ergodic process is developed, that allows us to generate three-dimensional synthetic media from a two-dimensional autocorrelation functionr( x , y ) and associated probability density function measured on a single binary image. The focus of this work is to ensure the rock-like character of those synthetic media. This is done first through a direct approach:n two-dimensional synthetic media, derived from single set ( ,r( x , y )) yieldn permeability tensorsK i-1,n i (calculated by the local change of scale) of the same order. This is a necessary condition to ensure thatr( x , y ) and carry all structural information relevant toK. The limits of this direct approach, in terms of required Central Process Unit time and Memory is underlined, raising the need for an alternative. This is done by comparing the pore-type content of a sandstone sample andn synthetic media derived fromr( x , y ) and measured on that sandstone-sample. Achievement of a good match ensures that the synthetic media comprise the fundamental structural level of all natural sandstones, that is a domainal structure of well-packed clusters of grains bounded by loose-packed pores.  相似文献   

16.
This paper provides a complete generalization of the classic result that the radius of curvature () of a charged-particle trajectory confined to the equatorial plane of a magnetic dipole is directly proportional to the cube of the particles equatorial distance () from the dipole (i.e. 3). Comparable results are derived for the radii of curvature of all possible planar chargedparticle trajectories in an individual static magnetic multipole of arbitrary order m and degree n. Such trajectories arise wherever there exists a plane (or planes) such that the multipole magnetic field is locally perpendicular to this plane (or planes), everywhere apart from possibly at a set of magnetic neutral lines. Therefore planar trajectories exist in the equatorial plane of an axisymmetric (m = 0), or zonal, magnetic multipole, provided n is odd: the radius of curvature varies directly as n=2. This result reduces to the classic one in the case of a zonal magnetic dipole (n = 1). Planar trajectories exist in 2m meridional planes in the case of the general tesseral (0 < m < n) magnetic multipole. These meridional planes are defined by the 2m roots of the equation cos[m()–nm)] = 0, where nm = (1/m) arctan (hnm/gnm); gnm and hnm denote the spherical harmonic coefficients. Equatorial planar trajectories also exist if (nm) is odd. The polar axis ( = O,) of a tesseral magnetic multipole is a magnetic neutral line if m > I. A further 2m(nm) neutral lines exist at the intersections of the 2m meridional planes with the (nm) cones defined by the (nm) roots of the equation Pnm(cos ) = 0 in the range 0 < 9 < , where Pnm(cos ) denotes the associated Legendre function. If (nm) is odd, one of these cones coincides with the equator and the magnetic field is then perpendicular to the equator everywhere apart from the 2m equatorial neutral lines. The radius of curvature of an equatorial trajectory is directly proportional to n=2 and inversely proportional to cos[m(–)]. Since this last expression vanishes at the 2m equatorial neutral ines, the radius of curvature becomes infinitely large as the particle approaches any one of these neutral lines. The radius of curvature of a meridional trajectory is directly proportional to rn+2, where r denotes radial distance from the multiple, and inversely proportional to Pnm(cos )/sin . Hence the radius of curvature becomes infinitely large if the particle approaches the polar magnetic neutral ine (m > 1) or any one of the 2m(nm) neutral ines located at the intersections of the 2m meridional planes with the (nm) cones. Illustrative particle trajectories, derived by stepwise numerical integration of the exact equations of particle motion, are pressented for low-degree (n 3) magnetic multipoles. These computed particle trajectories clearly demonstrate the non-adiabatic scattering of charged particles at magnetic neutral lines. Brief comments are made on the different regions of phase space defined by regular and irregular trajectories.Also Visiting Reader in Physics, University of Sussex, Falmer, Brighton, BN1 9QH, UK  相似文献   

17.
18.
Summary Dispersion in Rayleigh waves is discussed for semi-infinite media with = 1(1 ± cos s z) and = 1(1 ± cosh s z), being the rigidity of the medium. A few workers tried with the above Fourier type of model but failed to find the dispersive nature. Because they neglected s due to the complexity of the calculation they arrived at a non dispersive frequency equation. This difficulty is removed in this paper and a dispersive frequency equation is obtained which shows both direct and inverse dispersion. The second model leads to non-convergent solution forz but shows many interesting results which are also discussed.  相似文献   

19.
We analyzed the broadband body waves of the 1992 Nicaragua earthquake to determine the nature of rupture. The rupture propagation was represented by the distribution of point sources with moment-rate functions at 9 grid points with uniform spacing of 20 km along the fault strike. The moment-rate functions were then parameterized, and the parameters were determined with the least squares method with some constraints. The centroid times of the individual moment-rate functions indicate slow and smooth rupture propagation at a velocity of 1.5 km/s toward NW and 1.0 km/s toward SE. Including a small initial break which precedes the main rupture by about 10 s, we obtained a total source duration of 110 s. The total seismic moment isM o =3.4×1020 Nm, which is consistent with the value determined from long-period surface waves,M o =3.7×1020 Nm. The average rise time of dislocation is determined to be 10 s. The major moment release occurred along a fault length of 160 km. With the assumption of a fault widthW=50 km, we obtained the dislocationD=1.3 m. From andD the dislocation velocity isD=D/0.1 m/s, significantly smaller than the typical value for ordinary earthquakes. The stress drop =1.1 MPa is also less than the typical value for subduction zone earthquakes by a factor of 2–3. On the other hand, the apparent stress defined by 2E s /M o , where andE s are respectively the rigidity and the seismic wave energy, is 0.037 MPa, more than an order of magnitude smaller than . The Nicaragua tsunami earthquake is characterized by the following three properties: 1) slow rupture propagation; 2) smooth rupture; 3) slow dislocation motion.  相似文献   

20.
Summary On the basis of investigating 10 storms (1965–1967) good correlation was found between the density of the solar wind energy (2=1/2mNv2) and the intensity of the main phase of the geomagnetic storms, expressed in terms of the maximum decrease of the horizontal intensity (B=H/cos). The relation between 2, or Nv2, and B could then be used to determine the quantities and 0 ( is the factor expressing the increase in energy density in the magnetosphere, 0 is the energy density of the particles in a quiet magnetosphere). A comparison with the directly observed distribution of the energy density of the particles in the magnetosphere indicates that the computed value of 0 seems to be realistic. The magnitude of the factor will have to be checked again.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号