首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Spatial heterogeneity in the subsurface of karst environments is high, as evidenced by the multiphase porosity of carbonate rocks and complex landform features that result in marked variability of hydrological processes in space and time. This includes complex exchange of various flows (e.g., fast conduit flows and slow fracture flows) in different locations. Here, we integrate various “state‐of‐the‐art” methods to understand the structure and function of this poorly constrained critical zone environment. Geophysical, hydrometric, and tracer tools are used to characterize the hydrological functions of the cockpit karst critical zone in the small catchment of Chenqi, Guizhou Province, China. Geophysical surveys, using electrical resistivity tomography (ERT), inferred the spatial heterogeneity of permeability in the epikarst and underlying aquifer. Water tables in depression wells in valley bottom areas, as well as discharge from springs on steeper hillslopes and at the catchment outlet, showed different hydrodynamic responses to storm event rainwater recharge and hillslope flows. Tracer studies using water temperatures and stable water isotopes (δD and δ18O) could be used alongside insights into aquifer permeability from ERT surveys to explain site‐ and depth‐dependent variability in the groundwater response in terms of the degree to which “new” water from storm rainfall recharges and mixes with “old” pre‐event water in karst aquifers. This integrated approach reveals spatial structure in the karst critical zone and provides a conceptual framework of hydrological functions across spatial and temporal scales.  相似文献   

2.
We propose a fast method for imaging potential field sources. The new method is a variant of the “Depth from Extreme Points,” which yields an image of a quantity proportional to the source distribution (magnetization or density). Such transformed field is here transformed into source‐density units by determining a constant with adequate physical dimension by a linear regression of the observed field versus the field computed from the “Depth from Extreme Points” image. Such source images are often smooth and too extended, reflecting the loss of spatial resolution for increasing altitudes. Consequently, they also present too low values of the source density. We here show that this initial image can be improved and made more compact to achieve a more realistic model, which reproduces a field consistent with the observed one. The new algorithm, which is called “Compact Depth from Extreme Points” iteratively produces different source distributions models, with an increasing degree of compactness and, correspondingly, increasing source‐density values. This is done through weighting the model with a compacting function. The compacting function may be conveniently expressed as a matrix that is modified at any iteration, based on the model obtained in the previous step. At any iteration step the process may be stopped when the density reaches values higher than prefixed bounds based on known or assumed geological information. As no matrix inversion is needed, the method is fast and allows analysing massive datasets. Due to the high stability of the “Depth from Extreme Points” transformation, the algorithm may be also applied to any derivatives of the measured field, thus yielding an improved resolution. The method is investigated by application to 2D and 3D synthetic gravity source distributions, and the imaged sources are a good reconstruction of the geometry and density distributions of the causative bodies. Finally, the method is applied to microgravity data to model underground crypts in St. Venceslas Church, Tovacov, Czech Republic.  相似文献   

3.
Abstract

An attempt is made to incorporate the physical mechanism in a distribution function of low flow in terms of baseflow recession. The derived distribution function contains four parameters of which two are determined from a traditional recession analysis of low flow periods. The other two are derived from a statistical analysis of the maximum length of “dry weather” periods when precipitation is less than an assumed threshold value. The distribution function with the same parameters can be applied to calculate mean low flow for different durations. It is applied and tested for summer low flow in southern and western Norway.  相似文献   

4.
— The Altiplano-Puna Volcanic Complex (APVC) in the central Andes is the product of an ignimbrite “flare-up” of world class proportions (de Silva, 1989). The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple-eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Seven PASSCAL broadband seismic stations were operated in the Bolivian portion of the APVC from October 1996 to September 1997 and recorded teleseismic earthquakes and local intermediate-depth events in the subducting Nazca plate. Both teleseismic and local receiver functions were used to delineate the lateral extent of a regionally pervasive ~20-km-deep, very low-velocity layer (VLVL) associated with the APVC. Data from several stations that sample different parts of the northern APVC show large amplitude Ps phases from a low-velocity layer with Vs ≤ 1.0 km/s and a thickness of ~1 km. We believe the crustal VLVL is a regional sill-like magma body, named the Altiplano–Puna magma body (APMB), and is associated with the source region of the Altiplano–Puna Volcanic Complex ignimbrites (Chmielowski et al., 1999).¶Large-amplitude P–SH conversions in both the teleseismic and local data appear to originate from the top of the APMB. Using the programs of Levin and Park (1998), we computed synthetic receiver functions for several models of simple layered anisotropic media. Upper-crustal, tilted-axis anisotropy involving both Vp and Vs can generate a “split Ps” phase that, in addition to the Ps phase from the bottom of a thin isotropic VLVL, produces an interference waveform that varies with backazimuth. We have forward modeled such an interference pattern at one station with an anisotropy of 15%–20% that dips 45° within a 20-km-thick upper crust. We develop a hypothesis that the crust above the “magma body” is characterized by a strong, tilted-axis, hexagonally symmetric anisotropy. We speculate that the anisotropy is due to aligned, fluid-filled cracks induced by a “normal-faulting” extensional strain field associated with the high elevations of the Andean Puna.  相似文献   

5.
In order to discuss the relationship between the lower and higher frequency components of earthquake source spectra, we deal with impulse train model as source time function of earthquake, because spectral characteristics of source time function depend on occurrence times of impulse function which corresponds to small extent on the fault. Then, the spectral characteristics of source time function are obtained analytically and numerically from the stochastic viewpoints: namely, on one hand, the trend of impulse train dominates the frequency characteristics in low frequency range, and on the other hand, the fluctuation from the trend settles high frequency range. Furthermore, it is shown that the spectral properties of source time function can be determined using only two parameters which are number of impulses n and the probability density function of occurrence time of impulses fT(t).  相似文献   

6.
— This paper examines the spatial and temporal distributions of the mixing height, ventilation coefficient (defined as the product of mixing height and surface wind speed), and cloud cover over the eastern United States during the summer of 1995, using the high-resolution meteorological data generated by MM5 (Version 1), a mesoscale model widely used in air quality studies. The ability of MM5 to simulate the key temporal and spatial features embedded in the time series of observations of temperature, wind speed, and moisture is assessed using spectral decomposition methods. Also, mixing heights estimated from the MM5 outputs are compared with those derived from observations at a few locations where data with high temporal resolution are available in the Northeast. In addition, the uncertainties associated with the estimation of the evolution of the boundary layer during the morning time are examined. The results indicate that nighttime mixing heights averaged <200?m, rising to 1 km by 10 EST, and to about 2.5?km in the afternoon. Ventilation coefficients followed a similar diurnal pattern, increasing from 500?m2/s at night?to 15,000?m2/s in the afternoon; the increase due to the growing mixing height and increasing surface wind speeds. Spatial variability of these parameters was relatively small (coefficient of variation=0.25) at?night and in the afternoon when conditions were quasi-stationary, but increased (to 0.5) during morning?and evening hours when mixing heights and wind speeds were changing rapidly. Analyses of surface ozone observations from about 400 sites throughout the eastern United States indicate that days with numerous stations reporting surface ozone concentrations in excess of 80 ppb (i.e., “high ozone” days) generally had less daytime cloud cover, lower surface wind speeds, higher mixing heights, and lower ventilation coefficients than did comparable “low ozone” days. Such meteorological features are consistent with a synoptic anticyclone centered over the mid-south region (Kentucky, Tennessee). Low ozone days were characterized by more disturbed weather conditions (low pressure systems, fronts, greater cloud cover, and precipitation events). Ozone observations at two elevated platforms (~400?m agl) in Garner, NC, and Chicago, IL, indicated that ozone concentrations aloft were about 40% larger on “high ozone” days than on “low ozone” days. On average, high levels of ozone persist aloft for about 2 to 3 days. Strong vertical mixing in the daytime can bring this pool of upper-level ozone downward to augment surface ozone production. Since ozone can be transported downwind several hundred kilometers from its source region over this time scale, depending on upper-level winds, effective ozone control strategies must take into consideration spatial scales ranging from local to regional, and time scales of the order of several days.  相似文献   

7.
The water quality of Mamas?n Dam, the drinking water source for Aksaray in Turkey, is investigated for assessment of ecological and health risks according to data between December 2015 and November 2016. Water quality index, ecological risk, and health risk assessments are determined to depend on the intensity of occurrence of parameters and seasonal and spatial distributions at different depth ranges. As a result, some ions such as Al, As, B, Ba, Co, F, Mn, Ni, Pb, Se, and Zn were found to be exceeding the limit values of the national regulatory standards. Besides, Pb is listed in Priority Substances and Certain Other Pollutants according to Annex II. Because the WQI values of the water quality are low (below 60), the source is suitable for industrial and agricultural usage; however, it cannot be used for drinking water supply without treatment. The trace element levels, especially Ag, Ba, Cu, Cr, and Zn, are potential pollutants for organisms. The non‐carcinogenic health risks of As threaten both adults and children at “medium” and “high” levels through oral ingestion. The B, F, and Pb elements have Hazard Index values above 0.1 and may cause a “low” level risk chronic disease for children by oral ingestion.  相似文献   

8.
Regional source tsunamis pose a potentially devastating hazard to communities and infrastructure on the New Zealand coast. But major events are very uncommon. This dichotomy of infrequent but potentially devastating hazards makes realistic assessment of the risk challenging. Here, we describe a method to determine a probabilistic assessment of the tsunami hazard by regional source tsunamis with an “Average Recurrence Interval” of 2,500-years. The method is applied to the east Auckland region of New Zealand. From an assessment of potential regional tsunamigenic events over 100,000 years, the inundation of the Auckland region from the worst 100 events is modelled using a hydrodynamic model and probabilistic inundation depths on a 2,500-year time scale were determined. Tidal effects on the potential inundation were included by coupling the predicted wave heights with the probability density function of tidal heights at the inundation site. Results show that the more exposed northern section of the east coast and outer islands in the Hauraki Gulf face the greatest hazard from regional tsunamis in the Auckland region. Incorporating tidal effects into predictions of inundation reduced the predicted hazard compared to modelling all the tsunamis arriving at high tide giving a more accurate hazard assessment on the specified time scale. This study presents the first probabilistic analysis of dynamic modelling of tsunami inundation for the New Zealand coast and as such provides the most comprehensive assessment of tsunami inundation of the Auckland region from regional source tsunamis available to date.  相似文献   

9.
During the period 1974 to 1977, a long range seismic refraction project was conducted in Central Australia, along a profile extending south from Darwin. Earthquakes from the Banda Sea region were used as seismic sources for this experiment. An analysis by Hales and co-workers of the resulting data based on travel times, and using geometric raytracing techniques, has resulted in the construction of an upper mantle velocity model. Using synthetic seismograms to model amplitudes, it is shown that additional constraints can be placed on the derived velocity profile. The low velocity zone beneath the “200 km” discontinuity is found to have a more abrupt onset than was previously suggested. A smaller discontinuity at 325 km depth is now implied. The analysis suggests that the “400 km” discontinuity is a first order velocity increase, whereas all other observed upper mantle discontinuities are more satisfactorily modelled as second order type structures.  相似文献   

10.
“极低频探地(WEM)工程”是国家发展和改革委员会批准的“十一五”国家重大科学技术基础设施建设项目之一,用于资源探测和地震预测及其他前沿科学研究。文章对工程数据分析中所使用的窗函数进行研究,深入分析不同窗型对频谱泄露的影响,给出相应的 Matlab 仿真结果,提出适用于极低频探地工程项目数据分析的窗型选择。  相似文献   

11.
M. Lockwood 《Annales Geophysicae》1997,15(12):1501-1514
Numerical simulations are presented of the ion distribution functions seen by middle-altitude spacecraft in the low-latitude boundary layer (LLBL) and cusp regions when reconnection is, or has recently been, taking place at the equatorial magnetopause. From the evolution of the distribution function with time elapsed since the field line was opened, both the observed energy/observation-time and pitch-angle/energy dispersions are well reproduced. Distribution functions showing a mixture of magnetosheath and magnetospheric ions, often thought to be a signature of the LLBL, are found on newly opened field lines as a natural consequence of the magnetopause effects on the ions and their flight times. In addition, it is shown that the extent of the source region of the magnetosheath ions that are detected by a satellite is a function of the sensitivity of the ion instrument . If the instrument one-count level is high (and/or solar-wind densities are low), the cusp ion precipitation detected comes from a localised region of the mid-latitude magnetopause (around the magnetic cusp), even though the reconnection takes place at the equatorial magnetopause. However, if the instrument sensitivity is high enough, then ions injected from a large segment of the dayside magnetosphere (in the relevant hemisphere) will be detected in the cusp. Ion precipitation classed as LLBL is shown to arise from the low-latitude magnetopause, irrespective of the instrument sensitivity. Adoption of threshold flux definitions has the same effect as instrument sensitivity in artificially restricting the apparent source region.  相似文献   

12.
The geomagnetic skin-effect is specified by setting three length scales in relation to each other: L1 for the overhead source. L2 for the lateral non-uniformity of the subsurface conductor, L3 for the depth of penetration of a quasi-uniform transient field into this conductor. Relations for the skin-effect of a quasi-uniform source in layered conductors are generalized to include sources of any given geometry by introducing response kernels as functions of frequency and distance. They show that only those non-uniformities of the source which occur within a distance comparable to L3 from the point of observation are significant. The skin-effect of a quasi-uniform source in a laterally non-uniform earth is expressed by linear transfer functions for the surface impedance and the surface ratio of vertical/horizontal magnetic variations. In the case of elongated structures and E-polarisation of the source, a modified apparent resistivity is defined which as a function of depth and distance gives a first orientation about the internal distribution of conductivity. The skin-effect of a non-uniform source in a non-uniform earth is considered for stationary and “running” sources. Recent observations on the sea floor and on islands indicate a deep-seated change of conductivity at the continent—ocean transition, bringing high conductivity close to the surface, a feature which may not prevail, however, over the full width of the ocean. There is increasingly reliable evidence for high conductivities (0.02 to 0.1 micro ?1 m?1) at subcrustal or even at crustal depth beneath certain parts of the continents, in some cases without obvious correlation to geological structure.  相似文献   

13.
稳定的频率域提取接收函数方法研究   总被引:2,自引:1,他引:1       下载免费PDF全文
频率域提取接收函数时引入“水准量”来代替垂向分量频谱中比较小的成分以保证反褶积结果的稳定性,却降低了精度,尤其对反映深部壳幔结构的低频信息影响较大;实际的等效震源时间函数长度是有限的,由于地震记录上后续干扰震相能量的影响,垂直分量波形往往比较复杂,若将其直接作为等效震源时间函数必然影响所提取接收函数的精度.针对以上问题,本文改进“水准量”的使用方法,并采取折中方案选取“水准量”和等效震源时间函数的长度,以便在频率域反褶积中得到稳定的接收函数,同时提高反褶积的精度.对观测数据的试验效果显示,本文方法提取的接收函数稳定性好、精度高,是一种有效的提取台站高质量接收函数的方法.  相似文献   

14.
Summary A method of determining simultaneously the moment tensor and source time function in the point source approximation is presented. For trial values of the moment tensor components and of the source time function, parametrized by the sum of overlapping triangles delayed in time, theoretical seismograms can be synthetized and compared with the recorded ones. The iterative procedure determines the adjustment of source parameters until a good correlation of both synthetic and observed records is reached. The Green functions in a horizontally stratified medium are constructed with the use of a modal summation method.The limits of applicability of the algorithm are illustrated by the inversion of four synthetic seismograms constructed for two horizontally stratified models of the structure in Friuli area, Italy. The records constructed for the same structural model as for which the Green functions were computed can be inverted even in the high-frequency range. In the opposite case, when the records and Green functions used corresponded to different structural models, a good correlation of the input records with the final synthetics was obtained for low - pass filtered data only.Additional tests performed with input seismograms contaminated with random noise yielded good resolution of the moment tensor and the duration of the source time function even for a high noise to signal ratio.  相似文献   

15.
Observations acquired from three-wavelength (427.8, 557.7 and 630.0 nm) all-sky imagers (ASIs) at Yellow River Station (YRS) in Ny-Ålesund, Svalbard, are used to examine the synoptic distribution of dayside aurora. The results demonstrate that the maximum emission regions (MERs) at each wavelength are all located in the postnoon sector, but have rather different magnetic local time (MLT) distributions from each other. The so-called 15 MLT “hot spot” is the overlapping region of the MERs at three wavelengths, and the prenoon “warm spot” is characterized uniquely by an increase of emissions at the 557.7 nm wavelength. The detailed dayside auroral spectra and morphology as a function of MLT are discussed.  相似文献   

16.
In the semi‐arid region of the Loess Plateau in China, a portable photosynthesis system (Li‐6400) and a portable steady porometer (Li‐1600) were used to study the quantitative relation between the soil water content (SWC) and trees' physiological parameters including net photosynthesis rate (Pn), carboxylation efficiency (CE), transpiration rate (Tr), water use efficiency of leaf (WUEL), stomatic conductivity (Gs), stomatal resistance (Rs), intercellular CO2 (Ci), and stomatal limitation (Ls). These are criteria for grading and evaluating soil water productivity and availability in forests of Black Locust (Robinia pseudoacacia) and Oriental Arborvitae (Platycladus orientalis). The results indicated: To the photosynthesis of Locust and Arborvitae, the SWC of less than 4.5 and 4.0% (relative water content (RWC) 21.5 and 19.0%) belong to “non‐productivity and non‐efficiency water”; the SWC of 4.5–10.0% (RWC 21.5–47.5%) and 4.0–8.5% (RWC 19.0–40.5%) belong to “low productivity and low efficiency water”; the SWC of 10.0–13.5% (RWC 47.5–64.0%) and 8.5–11.0% (RWC 40.5–52.0%) belong to “middle productivity and high efficiency water”; the SWC of 13.5–17.0% (RWC 64.0–81.0%) and 11.0–16.0% (RWC 52.0–76.0%) belong to “high productivity and middle efficiency water”; the SWC of 17.0–19.0% (RWC 81.0–90.5%) and 16.0–19.0% (RWC 76.0–90.5%) belong to “middle productivity and low efficiency water”; the SWC of more than 19.0% (RWC 90.5%) belongs to “low productivity and low efficiency water”. The SWC of about 13.5 and 11.0% (RWC 64.0 and 52.0%) are called “high productivity and high efficiency water”, which provides the further evidence for Locust and Arborvitae to get both higher productivity (Pn and CE) and the highest WUEL and adaptation to the local environment, respectively.  相似文献   

17.
Sixty-seven new heat flow measurements on the Nazca Plate are reported, and the thermal regimes of three specific areas on the plate are examined. The Nazca Ridge is an aseismic ridge which may have been generated as an “island trail” from the Easter Island “hot spot” and/or may be a fossil transform fault. The Nazca Ridge has lower heat flow than the surrounding sea floor implying that the ridge might have low “effective” thermal conductivity causing heat to preferentially flow or refract to surrounding ocean crust which has higher conductivity, or, the low heat flow values may be caused by hydrothermal circulation on the ridge. The Carnegie Plateau is an elevated region south of the Carnegie Ridge on the northeastern Nazca Plate with high heat flow and shallow topography consistent with an age of less than 20 m.y. B.P. The central Nazca Plate is an area of highly variable heat flow which is possibly related to thin sediment and to rough regional topography.  相似文献   

18.
One of the severe problems in the semi-empirical method for the prediction of strong ground motions is that there is no objective criterion for choosing empirical Green's functions. It is undesirable that synthesized strong ground motions are affected by the source process of an earthquake whose record is adopted as an empirical Green's function. Through the analysis of strong motion accelerograms of two aftershocks of the 1983 Japan Sea earthquakes, it is found that characteristics of the accelerograms are dependent on the moment rate function derived from teleseismic observations. A procedure is presented for removing the effect of the source process from observed strong motion accelerograms. The thus obtained empirical Green's function expresses approximately the impulse response of the medium between the earthquake source and the observation site.  相似文献   

19.
This study aims to develop a new earthquake strong motion-intensity catalog as well as intensity prediction equations for Iran based on the available data. For this purpose, all the sites which had both recorded strong motion and intensity values throughout the region were first searched. Then, the data belonging to the 306 identified sites were processed, and the results were compiled as a new strong motion-intensity catalog. Based on this new catalog, two empirical equations between the values of intensity and the ground motion parameters (GMPs) for the Iranian earthquakes were calculated. At the first step, earthquake “intensity” was considered as a function of five independent GMPs including “Log (PHA),” “moment magnitude (MW),” “distance to epicenter,” “site type,” and “duration,” and a multiple stepwise regression was calculated. Regarding the correlations between the parameters and the effectiveness coefficients of the predictors, the Log (PHA) was recognized as the most effective parameter on the earthquake “intensity,” while the parameter “site type” was removed from the equations since it was determines as the least significant variable. Then, at the second step, a simple ordinary least squares (OLS) regression was fitted only between the parameters intensity and the Log (PHA) which resulted in more over/underestimated intensity values comparing to the results of the multiple intensity-GMPs regression. However, for rapid response purposes, the simple OLS regression may be more useful comparing to the multiple regression due to its data availability and simplicity. In addition, according to 50 selected earthquakes, an empirical relation between the macroseismic intensity (I0) and MW was developed.  相似文献   

20.
We present a new method of transforming borehole gravity meter data into vertical density logs. This new method is based on the regularized spectral domain deconvolution of density functions. It is a novel alternative to the “classical” approach, which is very sensitive to noise, especially for high‐definition surveys with relatively small sampling steps. The proposed approach responds well to vertical changes of density described by linear and polynomial functions. The model used is a vertical cylinder with large outer radius (flat circular plate) crossed by a synthetic vertical borehole profile. The task is formulated as a minimization problem, and the result is a low‐pass filter (controlled by a regularization parameter) in the spectral domain. This regularized approach is tested on synthetic datasets with noise and gives much more stable solutions than the classical approach based on the infinite Bouguer slab approximation. Next, the tests on real‐world datasets are presented. The properties and presented results make our proposed approach a viable alternative to the other processing methods of borehole gravity meter data based on horizontally layered formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号