首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-dimensional numerical model calculations, employing a finite difference technique, are used to study the behaviour of the induction arrows, for a range of periods, for a conductive plate of (i) semi-infinite and (ii) finite width in uniform and layered resistive hosts. The results for the conductive plate at the surface of the host have application to a uniform-depth ocean, while the results for the plate buried at some depth in the resistive host have application to a conductive sill in a resistive Earth. The numerical results indicate that for a profile over the plate-host vertical interface the in-phase arrows for all periods and locations point towards the conductive plate, while the quadrature arrows at periods near the characteristic period of the model are oppositely directed on either side of the interface so as to point towards each other and towards the interface for nearby locations, both over the conductive plate and the resistive host. Further, the quadrature arrow undergoes a second reversal over the resistive host at a distance from the interface that is somewhat dependent on the period. Thus, at either side of the location of this second reversal, the quadrature induction arrows are again oppositely directed, but pointing away from each other, with the arrows near the interface pointing towards, and the more distant arrows pointing away from the conductive plate. The period range for the quadrature-arrow reversal is characteristic of conductivities and layer depths. The features of the quadrature-arrow sign reversals at and near the interface are in accordance with the earlier laboratory analogue model results of Hebert et al. for the Newfoundland coastal region and Nienaber et al. for a conductive plate in a resistive host.

It is suggested that in practice the sign reversal of the quadrature arrow may aid in locating a conductor-host interface, and that if the conductivity of the host is known, the maximum in the anomalous vertical magnetic field response may permit an approximate determination of the conductive-layer depth.  相似文献   


2.
Laboratory scale model experiments have been performed to obtain the electromagnetic response of a finitely conducting half plane embedded in resistive/conductive surrounding and excited by an oscillating magnetic dipole. Inphase and quadrature profiles are presented for two horizontal coplanar transmitter-receiver systems (inline and broadside) for normal and skew traverses and for different dips of the conductor. It is observed that the broadside system is more diagnostic in delineating the strike and dip of the conductor and is more sensitive to the conducting host rock. The broadside profile over a vertical or dipping half plane is characterized, when traversing perpendicular to strike, by two positive peaks flanking a zero response when the coils are over the top edge of the conductor. For skew traverses a negative peak replaces the zero response. An increasing asymmetry in the anomalies is caused by changing the dip of the conductor from the vertical in both the systems, but it is more pronounced for the broadside system. The quadrature response in the broadside system changes in a characteristic way when the target is surrounded by a conducting host rock. The comparative results of the two systems may, therefore, be useful in the induction prospecting for ore deposits approximated by a half plane, especially in delineating the strike, dip, and effect of conductive host rock.  相似文献   

3.
This work compares experimental analogue model measurements and finite-difference numerical calculations of the electric and magnetic fields for the cases of induction in a highly conducting plate and wedge embedded in a poorly conducting host earth. The results indicate very good agreement between the experimental and theoretical results and confirm the validity of the analogue and numerical methods for studying complex induction problems.  相似文献   

4.
The Normalized Full Gradient (NFG) method was proposed in the mid–1960s and was generally used for the downward continuation of the potential field data. The method eliminates the side oscillations which appeared on the continuation curves when passing through anomalous body depth. In this study, the NFG method was applied to Slingram electromagnetic anomalies to obtain the depth of the anomalous body. Some experiments were performed on the theoretical Slingram model anomalies in a free space environment using a perfectly conductive thin tabular conductor with an infinite depth extent. The theoretical Slingram responses were obtained for different depths, dip angles and coil separations, and it was observed from NFG fields of the theoretical anomalies that the NFG sections yield the depth information of top of the conductor at low harmonic numbers. The NFG sections consisted of two main local maxima located at both sides of the central negative Slingram anomalies. It is concluded that these two maxima also locate the maximum anomaly gradient points, which indicates the depth of the anomaly target directly. For both theoretical and field data, the depth of the maximum value on the NFG sections corresponds to the depth of the upper edge of the anomalous conductor. The NFG method was applied to the in-phase component and correct depth estimates were obtained even for the horizontal tabular conductor. Depth values could be estimated with a relatively small error percentage when the conductive model was near-vertical and/or the conductor depth was larger.  相似文献   

5.
An interpretation scheme for horizontal-loop EM measurements is presented for a permeable sphere model. The induced multipole moments are found to contribute significantly even at very low frequencies for a permeable conductor. The anomaly profiles are computed considering multipole excitation (up to 20) to study the effect of depth of burial and permeability of conductor. The anomaly half-width along with the inphase and quadrature anomaly amplitudes allow direct interpretation of the parameters of the sphere. The above scheme is suitable for results of Dighem II (coplanar configuration), Slingram and Max Min II measurements.  相似文献   

6.
Earth resistivity estimates from frequency domain airborne electromagnetic data can vary over more than two orders of magnitude depending on the half-space estimation method used. Lookup tables are fast methods for estimating half-space resistivities, and can be based on in-phase and quadrature measurements for a specified frequency, or on quadrature and sensor height. Inverse methods are slower, but allow sensor height to be incorporated more directly. Extreme topographic relief can affect estimates from each of the methods, particularly if the portion of the line over the topographic feature is not at a constant height above ground level. Quadrature–sensor height lookup table estimates are generally too low over narrow valleys. The other methods are also affected, but behave less predictably. Over very good conductors, quadrature–sensor height tables can yield resistivity estimates that are too high. In-phase–quadrature tables and inverse methods yield resistivity estimates that are too high when the earth has high magnetic susceptibility, whereas quadrature–sensor height methods are unaffected. However, it is possible to incorporate magnetic susceptibility into the in-phase–quadrature lookup table. In-phase–quadrature lookup tables can give different results according to whether the tables are ordered according to the in-phase component or the quadrature component. The rules for handling negative in-phase measurements are particularly critical. Although resistivity maps produced from the different methods tend to be similar, details can vary considerably, calling into question the ability to make detailed interpretations based on half-space models.  相似文献   

7.
A 3D frequency-domain EM modelling code has been implemented for helicopter electromagnetic (HEM) simulations. A vector Helmholtz equation for the electric fields is employed to avoid convergence problems associated with the first-order Maxwell's equations when air is present. Additional stability is introduced by formulating the problem in terms of the scattered electric fields. With this formulation the impressed dipole source is replaced with an equivalent source, which for the airborne configuration possesses a smoother spatial dependence and is easier to model. In order to compute this equivalent source, a primary field arising from dipole sources of either a whole space or a layered half-space must be calculated at locations where the conductivity is different from that of the background. The Helmholtz equation is approximated using finite differences on a staggered grid. After finite-differencing, a complex-symmetric matrix system of equations is assembled and preconditioned using Jacobi scaling before it is solved using the quasi-minimum residual (QMR) method. The modelling code has been compared with other 1D and 3D numerical models and is found to produce results in good agreement. We have used the solution to simulate novel HEM responses that are computationally intractable using integral equation (IE) solutions. These simulations include a 2D conductor residing at a fault contact with and without topography. Our simulations show that the quadrature response is a very good indicator of the faulted background, while the in-phase response indicates the presence of the conductor. However when interpreting the in-phase response, it is possible erroneously to infer a dipping conductor due to the contribution of the faulted background.  相似文献   

8.
Responses of a multifrequency, multicoil airborne electromagnetic (AEM) system were modelled numerically for 3D electrical conductors embedded in a resistive bedrock and overlain by an overburden of low to moderate conductivity. The results cover a horizontal coplanar coil configuration and two frequencies, 7837 Hz and 51 250 Hz. The models studied are single or multiple, poor conductors (conductance lower than 0.1 S) embedded in a host rock of high but finite resistivity (5000 Ωm) and overlain by a layer of overburden with finite thickness and low to moderate conductivity (conductance up to 2 S). On the basis of the modelling results, limits of detectability for poor conductors have been studied for the various model structures. The results indicate that the anomaly from a steeply dipping, plate-like conductor will decrease significantly when the conductor is embedded in a weakly conductive host rock and is overlain by a conductive overburden. However, an anomaly is obtained, and its magnitude can even increase with increasing overburden conductivity or frequency. The plate anomaly remains practically constant when only the overburden thickness is varied. Changes in overburden conductivity will cause the plate-anomaly values to change markedly. If the plate conductance is less than that of the overburden, a local anomaly opposite in sign to the normal type of anomaly will be recorded. Another major consequence is that conductors interpreted with free-space models will be heavily overestimated in depth or underestimated in conductance, if in reality induction and current channelling in the host rock and overburden make even a slight contribution to the anomalous EM field. The lateral resolution for the horizontal coplanar coil system was found to be about 1.7 times the sensor altitude. Similarly, the lateral extension of a horizontal conductive ribbon, required to reach the semi-infinite (half-space) behaviour, is more than three times the sensor altitude. Finally, screening of a steeply dipping plate, caused by a small, conductive horizontal ribbon, is much more severe than screening of the same plate by an extensive horizontal layer.  相似文献   

9.
Electromagnetic depth sounding using source orientation as the sounding variable provides advantages in instrumental simplicity and operational flexibility when compared with conventional modes of electromagnetic sounding. The ease with which the technique may be simulated in a scale model permits its application to sounding over localized structures. The theoretical approach to interpretation is at present limited to structures which approximate a perfectly conducting half space. However, scale model tests suggest that the perfect conductor theory may be applicable to many localized structures.  相似文献   

10.
In the quantitative data interpretation for HLEM induction prospecting, a vertical half-plane model in an insulating medium is widely employed. For this assumption to be valid, the steeply dipping massive sulphide dykes must have large strike lengths and depth extents, but small thickness. We report investigations, using the laboratory scale-modelling method, on the response variation of large vertical conductors as the thickness is varied. We conclude that a steeply dipping large dyke can be approximated by a half-plane model only if its thickness is less than half the skin depth. An inductively thick conductor produces larger amplitudes and relatively higher quadrature compared to a thin conductor, even if both have the same induction number.  相似文献   

11.
Summary The paper describes equipment designed to study the effect of a conducting hostrock/overburden on the electromagnetic anomaly of sulphide ore bodies embedded therein. The model was constructed strictly according to the theory of electromagnetic similitude so as to constitute a direct reading reproduction of the field vectors. The experiments were conducted at a fixed, crystal-controlled frequency of 100 kHz using mainly a graphite sheet immersed in a dilute hydrochloric acid solution of predetermined conductivity to simulate vein and manto type of ore deposits surrounded by a partially conducting zone. Both the inphase and quadrature components of the anomaly were measured in terms of the primary field after elimination of the regional anomaly by means of a measuring bridge and a compensator. A comparison of the anomaly profiles obtained over the ore model when it is held in air with those obtained for corresponding situations inside a conducting solution shows a general enhancement of response [1–3].  相似文献   

12.
The behaviour of the magnetic field variations over the North China-Korea coastal region is studied with the aid of a scaled laboratory analogue model. The model source frequencies simulate naturally occurring geomagnetic variations of 3–60 min periods. In-phase and quadrature magnetic Bx, By and Bz field measurements for the modelled region are presented for E- and B-polarizations. Large anomalous in-phase and quadrature model magnetic fields are observed over the Korea-Japan strait for E-polarization and over the Bohai strait for B-polarization due to current channelling through the straits. Large responses of the peninsulas in the shallow coastal areas occur at short periods but decrease abruptly with increasing period. In general, the effects of peninsulas, straits, bays and irregularities in the coastlines play an important role in the magnetic field responses both on-shore and off-shore for this complex North China-Korea coastal region. Model and field site induction arrows are compared for three sites west of Bohai Bay.  相似文献   

13.
The validity of an analogue model method employing a horizontal magnetic dipole source situated within a conducting layer for the cases of a poorly conducting model earth and a highly conducting model ocean is studied by comparing model magnetic field measurements with theoretical calculations. The model is then used to study one example for each case; the response of a conducting cylinder simulating an ore body embedded in the earth, and the response of a conducting wedge simulating a shelving ocean.  相似文献   

14.
This work compares experimental analogue model measurements and finite-difference numerical calculations of the electric and magnetic fields for a highly conducting slab embedded in a poorly conducting host earth for three different source field configurations. Measurements and calculations were carried out for a uniform source, a sheet current source with a y exp(?ay) current intensity distribution, and a horizontal magnetic dipole source. The results indicate reasonable agreement with some exceptions between the analogue and numerical methods. The source field is found to have an important effect on the field anomalies at the interface of the highly conducting slab and the poorly conducting host medium.  相似文献   

15.
The interpretation of VLF-EM surveys in terms of buried conductors can be assisted by the application of a linear filter to the observed in-phase component of the vertical magnetic field. One such scheme is examined critically by using the calculated response from a variety of synthetic models to compute theoretical current density pseudosections. The results confirm that this filter technique provides a useful complementary tool for studying the third (i.e. depth) dimension. For single, steeply dipping plates (> 45°) diagnostic information may be derived concerning the depth, size, lateral location, and direction of dip, since the current density maxima seems always to occur within the conductor or at least within one data interval. However, there are some limitations which do not appear to be widely recognized. For single plates the angle of dip cannot be resolved by the current density transformation. Pattern distortions can occur where targets are in close proximity, where the cross-sectional form of the conductor is complex or where the dip is shallow (< 45°). In these latter cases the current density maxima may not occur within the conductive structure and therefore cannot be used to infer depth of burial and/or conductor shape with the same degree of confidence.  相似文献   

16.
Theoretically exact type curves for a semi-infinite thin conductor are presented for various dip, angles, depth of burial and conductance. The study shows that the common-loop response shape is sensitive to small changes in conductor dip, but is affected more subtly by comparable strike variations. For large sheet conductors a decrease in the strike angle results in a broadening but unlike that for a finite plate there is no reduction in peak amplitude. For dipping conductors, response asymmetry and the direction and magnitude of peak amplitude displacement can be used to assess the disposition and quality of the conductor. A generalized interpretation scheme is proposed, based on dimensionless response characteristics and normalized decay curves, to facilitate the rapid in-field determination of conductor dip, conductance and depth of burial, for any time regime.  相似文献   

17.
This paper presents a computational method for the interpretation of electromagnetic (EM) profile data in the frequency domain using a thin plate model within a two-layer earth. The modelling method is based on an integral equation formulation, where the conductor is represented by a lattice structure composed of two-dimensional surface elements. Several approximations are used to simplify the theoretical basis and to decrease the computation time. The simple parametric model allows efficient use of optimization methods. We employ a linearized inversion scheme based on singular value decomposition and adaptive damping. The new forward computation method and the parameter optimization are combined in the computer program, emplates . The modelling examples demonstrate that the approximate method is capable of describing the characteristic behaviour of the EM response of a thin plate-like conductor in conductive surroundings. The efficacy of the inversion is demonstrated using both synthetic and field data. An optional depth compensation method is used to improve the interpreted values of the depth of burial. The results show that the method is cost effective and suitable for interactive interpretation of EM data.  相似文献   

18.
Summary Using the electromagnetic response of a two-layer spherical model it is shown that the estimate of the depth, radius, conductivity and magnetic contrast of a spherical conductor through the multifrequency or multi-time measurements is dependent upon the electrical and geometrical parameters of the conducting halo surrounding the target. The results identify the corrections or ambiguity in the interpretation depending upon whether some knowledge about the halo is available or not.National Geophysical Research Institute, Hyderabad-7, A.P., India.-NGRI Contribution No. 72–364.  相似文献   

19.
A theoretical solution to the electromagnetic problem of a perfectly conducting half plane below a conducting overburden has been obtained. The VLF anomalies have been computed for different overburden conductivity and thickness and also for different dip angles of the half plane. In the computations the contribution to the secondary magnetic field from the electric Hertz potential has been neglected. The anomaly curves which are displayed as EM 16 readings, show a fairly complicated behaviour. This is mainly due to the phase shift and attenuation of the field caused by the conductivity of the overburden and the host rock. From the anomaly curves it is possible to define the apparent depth to the top of the conductor as the distance between the peak value and the cross-over of the real component. The apparent depth is usually larger than the actual depth, but it is possible to determine the actual depth to the conductor from the relation between the peak-to-peak anomaly and the apparent depth. When the peak-to-peak anomaly is fairly large, it is also possible to make estimates of the dip angle. However, a complete set of master curves will be a necessary tool for interpretation of VLF data when there is need to obtain more accurate estimates of the half plane parameters. In a specific case the theoretical calculations are shown to be in good agreement with measured data.  相似文献   

20.
A three-dimensional finite-element time-domain forward-modelling algorithm is developed to simulate transient electromagnetics excited by grounded-wire sources. The main advantage of this finite-element time-domain algorithm is that full transmitting-current waveforms and complex-shaped sources resulting from topography can be directly dealt with in this algorithm. The models used to test this algorithm include a homogeneous half-space model, a stratified-medium model, the model of a complex conductor at a vertical contact and the Ovoid Zone massive sulfide deposit at Voisey's Bay, Canada. The homogeneous half-space model is used to determine the truncation boundary for a computational domain, and to compare with the electromagnetic responses excited by step-off, step-on and direct current waveforms. For the stratified-medium model, results demonstrate that full transmitting waveforms have strong effects on the observed electromagnetic responses. The model of a complex conductor at a vertical contact is designed for the grounded electrical source airborne transient electromagnetic method and is also used to examine the effectiveness of the broadside and inline configurations for such a vertical, thin plate embedded in the subsurface. The area of the Ovoid Zone massive sulfide deposit possesses non-negligible topography, the effects of which on the shapes of the grounded-wire sources must be taken into account when implementing the finite-element time-domain solver. The results show that both the broadside and inline electromagnetic responses are strongly affected by the massive conductive ore body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号