首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time series of profiles of potential temperature, salinity, dissolved oxygen, and planetary potential vorticity at intermediate depths in the Labrador Sea, the Irminger Sea, and the Iceland Basin have been constructed by combining the hydrographic sections crossing the sub-arctic gyre of the North Atlantic Ocean from the coast of Labrador to Europe, occupied nearly annually since 1990, and historic hydrographic data from the preceding years since 1950. The temperature data of the last 60 years mainly reflect a multi-decadal variability, with a characteristic time scale of about 50 years. With the use of a highly simplified heat budget model it was shown that this long-term temperature variability in the Labrador Sea mainly reflects the long-term variation of the net heat flux to the atmosphere. However, the analysis of the data on dissolved oxygen and planetary potential vorticity show that convective ventilation events, during which successive classes of Labrador Sea Water (LSW) are formed, occurring on decadal or shorter time scales. These convective ventilation events have performed the role of vertical mixing in the heat budget model, homogenising the properties of the intermediate layers (e.g. temperature) for significant periods of time. Both the long-term and the near-decadal temperature signals at a pressure of 1500 dbar are connected with successive deep LSW classes, emphasising the leading role of Labrador Sea convection in running the variability of the intermediate depth layers of the North Atlantic. These signals are advected to the neighbouring Irminger Sea and Iceland Basin. Advection time scales, estimated from the 60 year time series, are slightly shorter or of the same order as most earlier estimates, which were mainly based on the feature tracking of the spreading of the LSW94 class formed in the period 1989-1994 in the Labrador Sea.  相似文献   

2.
The ratio of oxygen-18 to oxygen-16 (expressed as per mille deviations from Vienna Standard Mean Ocean Water, δ18O) is reported for seawater samples collected from seven full-depth CTD casts in the northern North Atlantic between 20° and 41°W, 52° and 60°N. Water masses in the study region are distinguished by their δ18O composition, as are the processes involved in their formation. The isotopically heaviest surface waters occur in the eastern region where values of δ18O and salinity (S) lie on an evaporation–precipitation line with slope of 0.6 in δ18O–S space. Surface isotopic values become progressively lighter to the west of the region due to the addition of 18O-depleted precipitation. This appears to be mainly the meteoric water outflow from the Arctic rather than local precipitation. Surface samples near the southwest of the survey area (close to the Charlie Gibbs Fracture Zone) show a deviation in δ18O–S space from the precipitation mixing line due to the influence of sea ice meltwater. We speculate that this is the effect of the sea ice meltwater efflux from the Labrador Sea. Subpolar Mode Water (SPMW) is modified en route to the Labrador Sea where it forms Labrador Sea Water (LSW). LSW lies to the right (saline) side of the precipitation mixing line, indicating that there is a positive net sea ice formation from its source waters. We estimate that a sea ice deficit of ≈250 km3 is incorporated annually into LSW. This ice forms further north from the Labrador Sea, but its effect is transferred to the Labrador Sea via, e.g. the East Greenland Current. East Greenland Current waters are relatively fresh due to dilution with a large amount of meteoric water, but also contain waters that have had a significant amount of sea ice formed from them. The Northeast Atlantic Deep Water (NEADW, δ18O=0.22‰) and Northwest Atlantic Bottom Waters (NWABW, δ18O=0.13‰) are isotopically distinct reflecting different formation and mixing processes. NEADW lies on the North Atlantic precipitation mixing line in δ18O–salinity space, whereas NWABW lies between NEADW and LSW on δ18O–salinity plots. The offset of NWABW relative to the North Atlantic precipitation mixing line is partially due to entrainment of LSW by the Denmark Strait overflow water during its overflow of the Denmark Strait sill. In the eastern basin, lower deep water (LDW, modified Antarctic bottom water) is identified as far north as 55°N. This LDW has δ18O of 0.13‰, making it quite distinct from NEADW. It is also warmer than NWABW, despite having a similar isotopic composition to this latter water mass.  相似文献   

3.
The variability of two modes of Labrador Sea Water (LSW) (upper and deep Labrador Sea Water) and their respective spreading in the interior North Atlantic Ocean are investigated by means of repeated ship surveys carried out along the zonal WOCE line A2/AR19 located at 43–48°N (1993–2007) and along the GOOS line at about 48–51°N (1997–2002). Hydrographic section data are complemented by temperature, salinity, and velocity time series recorded by two moorings. They have been deployed at the western flank of the Mid-Atlantic Ridge (MAR) in the Newfoundland Basin during 1996–2004. The analysis of hydrographic anomalies at various longitudes points to a gradual eastward propagation of LSW-related signals, which happens on time scales of 3–6 years from the formation region towards the MAR. Interactions of the North Atlantic Current (NAC) with the Deep Western Boundary Current (DWBC) close to Flemish Cap point to the NAC being the main distributor of the different types of LSW into the interior of the Newfoundland Basin. Comparisons between the ship data and the mooring records revealed that the mooring sites are located in a region affected by highly variable flow. The mooring time series demonstrate an elevated level of variability with eddy activity and variability associated with the NAC considerably influencing the LSW signals in this region. Hydrographic data taken from Argo profiles from the vicinity of the mooring sites turned out to mimic quite well the temporal evolution captured by the moorings. There is some indication of occasional southward flow in the LSW layer near the MAR. If this can be considered as a hint to an interior LSW-route, it is at least of minor importance in comparison to the DWBC. It acts as an important supplier for the interior North Atlantic, distributing older and recently formed LSW modes southward along the MAR.  相似文献   

4.
Inter-annual to inter-decadal changes of hydrographic structure and circulation in the subpolar North Atlantic are studied using a coarse resolution ocean circulation model. The study covers 1949 through 2001, inclusive. A “time-mean state nudging” method is applied to assimilate the observed hydrographic climatology into the model. The method significantly reduces model biases in the long-term mean distribution of temperature and salinity, which commonly exist in coarse-resolution ocean models. By reducing the time-mean biases we also significantly improve the model’s representation of inter-annual to inter-decadal variations. In the central Labrador Sea, the model broadly reproduces the heat and salt variations of the Labrador Sea Water (LSW) as revealed by hydrographic observations. Model sensitivity experiments confirm that the low-frequency hydrographic changes in the central Labrador Sea are closely related to changes in the intensity and depth of deep convection. Changes in surface heat flux associated with the winter North Atlantic Oscillation (NAO) index play a major role in driving the changes in T–S and sea surface height (SSH). Changes in wind stress play a secondary role in driving these changes but are important in driving the changes in the depth-integrated circulation. The total changes in both SSH and depth-integrated circulation are almost a linear combination of the separate influences of variable buoyancy and momentum fluxes.  相似文献   

5.
The intermediate and deep waters of the Labrador Sea are dominated by recently ventilated water masses (ventilation ages <20 yr). Atmospheric gases such as CO2 and chlorofluorocarbons are incorporated into these water masses at the time of formation and subsequently transported via boundary currents into the North Atlantic interior. Recent measurements of total carbonate were used in tandem with total alkalinity and oxygen to estimate the levels of anthropogenic carbon dioxide in the Labrador Sea region. Upper water column anthropogenic CO2 estimated in this manner showed good agreement with levels calculated from CO2 increase in the atmosphere. In spring 1997, anthropogenic contributions to total carbonate (CTant) were 40±3 μmol/kg in water penetrated by deep convection the previous winter and slightly lower (37±2 μmol/kg) in the deeper convective layer formed in the winters of 1992–1994. Consistent with the concurrent profiles of CFC-11, levels decrease into the older NEADW (North East Atlantic Deep Water) with levels of 30±3 μmol/kg and then increase near bottom within the layer of DSOW (Denmark Strait Overflow Water). The distribution of CTant shows the flow of new LSW southwards with the western boundary current and also eastwards into the Irminger Sea. We estimate that 0.15–0.35 Gt carbon of anthropogenic origin flow through the Labrador Sea within the Western Boundary Undercurrent per year.  相似文献   

6.
Observational evidence indicates that in the northern North Atlantic, especially in the Labrador Sea, almost the whole column of the ocean water is fresher, and colder in late 20th century than in 1950–1960s. Here we analyze a four-member ensemble of the 20th century simulations from a coupled climate model to examine the possible causes for these observed changes. The model simulations resemble the observed changes in the northern North Atlantic. The simulated results show that a decreased meridional freshwater divergence and an increased meridional heat divergence associated with a weaker thermohaline circulation in the North Atlantic are the primary causes for the freshening and cooling in the northern North Atlantic. The increased precipitation less evaporation tends to enforce the freshening, but the reduced sea ice flux into this region tends to weaken it. On the other hand, the surface warming induced by a higher atmospheric CO2 concentration tends to heat up the northern North Atlantic, but is overcome by the cooling from increased meridional heat divergence.  相似文献   

7.
A quantitative estimate of the temperature and salinity variations in the Labrador Sea Water (LSW), the Iceland-Scotland Overflow Water (ISOW), and the Denmark Strait Overflow Water (DSOW) is given on the basis of the analysis of repeated observations over a transatlantic section along 60°N in 1997, 2002, 2004, and 2006. The changes distinguished in the research evidence strong warming and salinification in the layers of the Labrador Sea Water and deep waters at the latitude of the section. The maximum increments of the temperature (+0.35°C) and salinity (+0.05 psu) were found in the Irminger Basin in the core of the deep LSW, whose convective renewal in the Labrador Sea stopped in the mid-1990s. The long-term freshening of the ISOW, which started in the mid-1960s, changed in the mid-1990s to a period of intense stable warming and salinification of this water. By 2005, the salinity in the core of the ISOW in the Iceland Basin increased to the values (~34.99 psu) characteristic of the mid-1970s. In 2002, the warming “signal” of the ISOW reached the Irminger Basin. From 1997 to 2006, the warming and salinification of the columns of the Labrador Sea Water and deep waters became as high as 0.2°C and 0.03 psu, respectively. The character of the long-term variations in the thermohaline properties of the LSW and ISOW from the 1950s evidence that these variations were nearly in-phase and correlated with the low-frequency component of the North Atlantic Oscillation.  相似文献   

8.
Changes in the air–sea freshwater flux (equivalently Precipitation minus Evaporation, P − E) over the interior of the Labrador Sea have been examined using the NCEP/NCAR and ERA40 reanalyses. A major increase in the net precipitation, equivalent to 9 cm yr−1, is observed in the mid-1970s, consistent with a recent study that reported a similar change in the eastern sub-polar gyre. The increase in the Labrador Sea is primarily driven by changes in the P component which occur in spring (and to a lesser extent summer). The seasonality of the change is markedly different to that found for the eastern gyre which had a strong winter increase in precipitation. Potential links between the Labrador Sea P − E increase and the NAO and other leading modes of atmospheric variability have been explored, but it has been found that the increase is not driven by long-term trends in these modes. The magnitudes of the increase in freshwater content for a range of depths (500, 1000, 1500, 2000 m) in the Labrador Sea are then calculated. Finally, it is suggested that the P − E increase must have played some role in causing the observed freshening of the Labrador Sea and the wider North Atlantic sub-polar gyre region in recent decades, although the exact impact can not be quantified.  相似文献   

9.
Previous work had examined an ocean model of the subpolar gyre of the North Atlantic Ocean that used the Gent and McWilliams parameterization with a variable eddy-transfer coefficient, and showed significant improvements to the model’s circulation and hydrography. This note examines an extended (80-year-long) integration of the same model and focuses on the adjustment of the intermediate and deep waters as well as on model stability. It is shown that the model is able to retain a good representation of the water masses, especially in the Labrador Sea, through the full integration. Labrador Sea Water dispersal is well simulated by the model in the western basin, with a good correspondence between the model and observational salinities on the σ2 = 36.95 isopycnal surface. Labrador Sea Water dispersal to the eastern basin is not nearly as well represented, as this water mass has trouble passing over the Mid-Atlantic Ridge in the model. The variable eddy-transfer coefficient significantly improves the model representation of the Cold Intermediate Layer on the Labrador shelf by reducing spurious diapycnal mixing. Finally, the evidence in this note suggests that open boundary conditions do not generate significant model drift, even for integrations approaching a century in length.  相似文献   

10.
11.
The observed recent freshening trend in the deep North Atlantic and the Labrador Sea is investigated in three forced ensembles and a long control simulations using the HadCM3 coupled ocean–atmosphere–sea-ice climate model. The 40 yr freshening trend during the late half of the 20th century is captured in the all forcings ensemble that applies all major external (natural and anthropogenic) forcing factors. Each ensemble has four members with different initial conditions taking from the control run at a 100 yr interval. No similar freshening trend is found in each of the four corresponding periods of the control simulation. However, there are five large freshening events in a 1640 yr period of the control run, each following a sudden salinity increase. A process analysis revealed that the increase in salinity in the Labrador Sea is closely linked to deep convections while the following freshening trend is accompanied by a period of very weak convective activities.The fact that none of the five large freshening events appears in the four corresponding periods following the initial conditions of the four members of the all forcings ensemble suggest that external forcings may have contributed to triggering the events. Further analyses of two other ensemble simulations (natural forcings only and anthropogenic forcings only) have shown that natural rather than anthropogenic factors are responsible. Based on our model results, we can not attribute the simulated freshening to anthropogenic climate change.  相似文献   

12.
A time series of a standard hydrographic section in the northern Rockall Trough spanning 23 yr is examined for changes in water mass properties and transport levels. The Rockall Trough is situated west of the British Isles and separated from the Iceland Basin by the Hatton and Rockall Banks and from the Nordic Seas by the shallow (500 m) Wyville–Thompson ridge. It is one pathway by which warm North Atlantic upper water reaches the Norwegian Sea and is converted into cold dense overflow water as part of the thermohaline overturning in the northern North Atlantic and Nordic Seas. The upper water column is characterised by poleward moving Eastern North Atlantic Water (ENAW), which is warmer and saltier than the subpolar mode waters of the Iceland Basin, which also contribute to the Nordic Sea inflow. Below 1200 m the deep Labrador Sea Water (LSW) is trapped by the shallowing topography to the north, which prevents through flow but allows recirculation within the basin. The Rockall Trough experiences a strong seasonal signal in temperature and salinity with deep convective winter mixing to typically 600 m or more and the formation of a warm fresh summer surface layer. The time series reveals interannual changes in salinity of ±0.05 in the ENAW and ±0.04 in the LSW. The deep water freshening events are of a magnitude greater than that expected from changes in source characteristics of the LSW, and are shown to represent periodic pulses of newer LSW into a recirculating reservior. The mean poleward transport of ENAW is 3.7 Sv above 1200 dbar (of which 3.0 Sv is carried by the shelf edge current) but shows a high-level interannual variability, ranging from 0 to 8 Sv over the 23 yr period. The shelf edge current is shown to have a changing thermohaline structure and a baroclinic transport that varies from 0 to 8 Sv. The interannual signal in the total transport dominates the observations, and no evidence is found of a seasonal signal.  相似文献   

13.
A comparative analysis was conducted on climate variability in four sub-arctic seas: the Sea of Okhotsk, the Bering Sea shelf, the Labrador Sea, and the Barents Sea. Based on data from the NCEP/NCAR reanalysis, the focus was on air–sea interactions, which influence ice cover, ocean currents, mixing, and stratification on sub-seasonal to decadal time scales. The seasonal cycles of the area-weighted averages of sea-level pressure (SLP), surface air temperature (SAT) and heat fluxes show remarkable similarity among the four sub-arctic seas. With respect to variation in climate, all four seas experience changes of comparable magnitude on interannual to interdecadal time scales, but with different timing. Since 2000 warm SAT anomalies were found during most of the year in three of the four sub-arctic seas, with the exception of the Sea of Okhotsk. A seesaw (out of phase) pattern in winter SAT anomalies between the Labrador and the Barents Sea in the Atlantic sector is observed during the past 50 years before 2000; a similar type of co-variability between the Sea of Okhotsk and the Bering Sea shelf in the Pacific is only evident since 1970s. Recent positive anomalies of net heat flux are more prominent in winter and spring in the Pacific sectors, and in summer in the Atlantic sectors. There is a reduced magnitude in wind mixing in the Sea of Okhotsk since 1980, in the Barents Sea since 2000, and in early spring/late winter in the Bering Sea shelf since 1995. Reduced sea-ice areas are seen over three out of four (except the Sea of Okhotsk) sub-arctic seas in recent decades, particularly after 2000 based on combined in situ and satellite observations (HadISST). This analysis provides context for the pan-regional synthesis of the linkages between climate and marine ecosystems.  相似文献   

14.
Winter convection in the Irminger Sea leading to the formation of Labrador Sea Water (LSW) is analyzed using CTD data collected along the 59.5° N transatlantic section in 2004–2014, winter Argo data from 2012–2014, and daily North American regional reanalysis (NARR). The interannual variability of LSW in the Irminger Sea is investigated. The dissolved oxygen saturation rate of 93% is used to indicate maximal local convection depth. It is shown that the deepest convection (up to 1000 m) resulting in the largest LSW volume that formed in the Irminger Sea in 2008 and 2012. These years were characterized by numerous storms with anomalously strong turbulent heat loss from the ocean to the atmosphere and negative air temperature to the east of the southern tip of Greenland in January–March. LSW became warmer by 0.42°C, saltier by more than 0.03 PSU, and more oxygenated by 8 µmol/kg between 2004 and 2014. A strong LSW decay in the Iceland Basin is also noted.  相似文献   

15.
Water masses in the East Sea are newly defined based upon vertical structure and analysis of CTD data collected in 1993–1999 during Circulation Research of the East Asian Marginal Seas (CREAMS). A distinct salinity minimum layer was found at 1500 m for the first time in the East Sea, which divides the East Sea Central Water (ESCW) above the minimum layer and the East Sea Deep Water (ESDW) below the minimum layer. ESCW is characterized by a tight temperature–salinity relationship in the temperature range of 0.6–0.12 °C, occupying 400–1500 m. It is also high in dissolved oxygen, which has been increasing since 1969, unlike the decrease in the ESDW and East Sea Bottom Water (ESBW). In the eastern Japan Basin a new water with high salinity in the temperature range of 1–5 °C was found in the upper layer and named the High Salinity Intermediate Water (HSIW). The origin of the East Sea Intermediate Water (ESIW), whose characteristics were found near the Korea Strait in the southwestern part of the East Sea in 1981 [Kim, K., & Chung, J. Y. (1984) On the salinity-minimum and dissolved oxygen-maximum layer in the East Sea (Sea of Japan), In T. Ichiye (Ed.), Ocean Hydrodynamics of the Japan and East China Seas (pp. 55–65). Amsterdam: Elsevier Science Publishers], is traced by its low salinity and high dissolved oxygen in the western Japan Basin. CTD data collected in winters of 1995–1999 confirmed that the HSIW and ESIW are formed locally in the Eastern and Western Japan Basin. CREAMS CTD data reveal that overall structure and characteristics of water masses in the East Sea are as complicated as those of the open oceans, where minute variations of salinity in deep waters are carefully magnified to the limit of CTD resolution. Since the 1960s water mass characteristics in the East Sea have changed, as bottom water formation has stopped or slowed down and production of the ESCW has increased recently.  相似文献   

16.
Wyville Thomson Ridge Overflow Water (WTOW), which is the only part of the outflow from the Norwegian Sea not to directly enter the Iceland Basin, is shown to be a significant water mass in the northern Rockall Trough. It is found primarily at intermediate depths (600–1200 m) beneath the northward flowing warm Atlantic waters, and above recirculating Mediterranean influenced waters and Labrador Sea Water (LSW). The bottom of the WTOW layer can be identified by a mid-depth inflexion point in potential temperature–salinity plots. An analysis of historical data reveals that WTOW has been present in all but eight of the last 31 years at 57.5°N in the Rockall Trough. A denser component of WTOW below 1500 m has also been present, although it appears to be less persistent (12 out of the 31 years) and limited to the west of the section. The signature of intermediate WTOW was absent in two periods, the mid-1980s and early 1990s, both of which coincided with a freshening, and probable increase in volume, of LSW in the trough. Potential temperature–salinity diagrams from historical observations indicate that WTOW persists at least as far south as 55°N (and as far west as 20°W in the Iceland Basin) although its signature is quickly lost on leaving the Rockall Trough. We suggest that a transport of WTOW down the western side of the trough exists, with WTOW at intermediate depths entering the eastern trough either via a cyclonic recirculation, or as a result of eddy activity. Further, WTOW is seen on the Rockall–Hatton Plateau and in the deep channels connecting with the Iceland Basin, suggesting additional possible WTOW transport pathways. These suggested transport routes remain to be confirmed by further observational or modelling studies.  相似文献   

17.
In this study we test Talley's hypothesis that Oyashio winter mixed-layer water (26.5–26.6σ θ) increases its density to produce the North Pacific Intermediate Water (NPIW) salinity minimum (26.7– 26.8σθ) in the Mixed Water Region, assuming a combination of cabbeling and double diffusion. The possible density change of Oyashio winter mixed-layer water is discussed using an instantaneous ratio of the change of temperature and salinity along any particular intrusion (R l ). We estimate the range of R l DD required to convert Oyashio winter mixed-layer water to the NPIW salinity minimum due to double diffusion, and then assume double-diffusive intrusions as this conversion mechanism. A double-diffusive intrusion model is used to estimate R l DD in a situation where salt fingering dominates vertical mixing, as well as to determine whether Oyashio winter mixed-layer water can become the NPIW salinity minimum. Possible density changes are estimated from the model R l DD by assuming the amount of density change due to cabbeling. From these results, we conclude that Oyashio winter mixed-layer water contributes to a freshening of the lighter layer of the NPIW salinity minimum (around 26.70σθ) in the MWR.  相似文献   

18.
The circulation and hydrography of the north-eastern North Atlantic has been studied with an emphasis on the upper layers and the deep water types which take part in the thermohaline overturning of the Oceanic Conveyor Belt. Over 900 hydrographic stations were used for this study, mainly from the 1987–1991 period. The hydrographic properties of Subpolar Mode Water in the upper layer, which is transported towards the Norwegian Sea, showed large regional variation. The deep water mass was dominated by the cold inflow of deep water from the Norwegian Sea and by a cyclonic recirculation of Lower Deep Water with a high Antarctic Bottom Water content. At intermediate levels the dominating water type was Labrador Sea Water with only minor influence of Mediterranean Sea Water. In the permanent pycnocline traces of Antarctic Intermediate Water were found.Geostrophic transports have been estimated, and these agreed in order of magnitude with the local heat budget, with current measurements, with data from surface drifters, and with the observed water mass modification. A total of 23 Sv of surface water entered the region, of which 20 Sv originated from the North Atlantic Current, while 3 Sv entered via an eastern boundary current. Of this total, 13 Sv of surface water left the area across the Reykjanes Ridge, and 7 Sv entered the Norwegian Sea, while 3 Sv was entrained by the cold overflow across the Iceland-Scotland Ridge. Approximately 1.4 Sv of Norwegian Sea Deep Water was involved in the overflow into the Iceland Basin, which, with about 1.1 Sv of entrained water and 1.1 Sv recirculating Lower Deep Water, formed a deep northern boundary current in the Iceland Basin. At intermediate depths, where Labrador Sea Water formed the dominant water type, about 2 Sv of entrained surface water contributed to a saline water mass which was transported westwards along the south Icelandic slope.  相似文献   

19.
In the period 1991–1996 the WOCE hydrographic section A1E/AR7E between Greenland and Ireland was repeated five times. The observed thermohaline changes altered the baroclinic structure along the eastern margin of the subpolar gyre significantly. Between June 1995 and August 1996 an overall increase of the temperature and thickness and a decrease of the density of the Subpolar Mode Water (SPMW) layer were observed, accompanied by an increase of its salinity east of the Reykjanes Ridge and a decrease of its salinity in the Irminger Sea. The changes were most pronounced in the Iceland Basin, where the Subarctic Front retreated westwards, coinciding with a strong weakening of the Westerlies as determined by the North Atlantic Oscillation. They are related to a local reduction of the Ekman upwelling and the ocean-to-atmosphere heat flux on the one hand and to the advection of anomalies from the subtropics on the other hand.The eastward spreading of the different Labrador Sea Water (LSW) vintages led to a corresponding cooling of the LSW in the Irminger Sea and in the Iceland Basin in the period 1991–1996. The renewal of the LSW in the Rockall Trough occurred more sporadically, indicating that the North Atlantic Current (NAC) impedes the southward spreading of LSW in the eastern Atlantic. The changes in 1996 seem to have also counteracted this spreading.  相似文献   

20.
Here we examine the consequences of strong tidal mixing on spatial and temporal distributions of biota and sea ice above Kashevarov Bank, Sea of Okhotsk, using data from field surveys (hydrography, pressure gauge and current meter moorings, and bio-acoustic soundings) and remote sensing (NOAA AVHRR). Fortnightly variations in the amplitude of diurnal tidal currents, primarily resulting from the K1–O1 interaction, are shown to dominate water motion over the bank. These currents (with maximum velocities 2 m s−1) create a sharp tidally-mixed front that separates well-mixed water above the bank from stratified water along its flanks. Such mixing draws water upward from the cold dichothermal layer (100–150 m) into the surface layer, and thus serves to ventilate the intermediate layers of the Sea of Okhotsk. In summer, fortnightly modulation of the tidal mixing creates temporal variations in water column stratification, a critical factor in the joint supply of nutrients and light required to sustain phytoplankton growth. As such, chlorophyll-a and oxygen values vary in response to the fortnightly cycle, and zooplankton likewise form dense aggregations within the tidally-mixed front in response to the phytoplankton production. It is further noted that the brood cycle of dominant zooplankton species on the bank matches the fortnightly modulation of the tidal currents. In winter, tidal mixing draws relatively warm water upward from mid-depth to maintain a polynya that cyclically opens and closes in response to fortnightly variation in vertical heat flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号