首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The galaxy population in rich local galaxy clusters shows a ratio of one quarter elliptical galaxies, two quarters S0 galaxies, and one quarter spiral galaxies. Observations of clusters at redshift 0.5 show a perspicuously different ratio, the dominant galaxy type are spiral galaxies with a fraction of two quarters while the number of S0 galaxies decreases to a fraction of one quarter (Dressler et al. 1997). This shows an evolution of the galaxy population in clusters since redshift 0.5 and it has been suspected that galaxy transformation processes during the infall into a cluster are responsible for this change. These could be merging, starburst or ram-pressure stripping. We use our evolutionary synthesis models to describe various possible effects of those interactions on the star formation of spiral galaxies infalling into clusters. We study the effects of starbursts of various strengths as well as of the truncation of star formation at various epochs on the color and luminosity evolution of model galaxies of various spectral types. As a first application we present the comparison of our models with observed properties of the local S0 galaxy population to constrain possible S0 formation mechanisms in clusters. Application to other types of galaxies is planned for the future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
赵君亮 《天文学进展》2007,25(3):206-214
对星系团各类分层效应的有关问题做了概要的评述,包括成员星系在位置空间和(或)速度空间中的形态分层、光度(质量)分层和元素丰度分层的表现形式和探测途径,分层效应可能的形成机制及其对星系和星系团的结构和演化的影响。  相似文献   

3.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   

4.
Star formation happens in a clustered way which is why the star cluster population of a particular galaxy is closely related to the star formation history of this galaxy. From the probabilistic nature of a mass function follows that the mass of the most massive cluster of a complete population, M max, has a distribution with the total mass of the population as a parameter. The total mass of the population is connected to the star formation rate (SFR) by the length of a formation epoch.
Since due to evolutionary effects only massive star clusters are observable up to high ages, it is convenient to use this M max(SFR) relation for the reconstruction of a star formation history. The age distribution of the most massive clusters can therefore be used to constrain the star formation history of a galaxy. The method, including an assessment of the inherent uncertainties, is introduced with this contribution, while following papers will apply this method to a number of galaxies.  相似文献   

5.
We investigate the evolution of the star formation rate in cluster galaxies. We complement data from the Canadian Network for Observational Cosmology 1 (CNOC1) cluster survey  (0.15 < z < 0.6)  with measurements from galaxy clusters in the Two-degree Field (2dF) galaxy redshift survey  (0.05 < z < 0.1)  and measurements from recently published work on higher-redshift clusters, up to almost   z = 1  . We focus our attention on galaxies in the cluster core, i.e. galaxies with   r < 0.7  h −170 Mpc  . Averaging over clusters in redshift bins, we find that the fraction of galaxies with strong [O  ii ] emission is ≲20 per cent in cluster cores, and the fraction evolves little with redshift. In contrast, field galaxies from the survey show a very strong increase over the same redshift range. It thus appears that the environment in the cores of rich clusters is hostile to star formation at all the redshifts studied. We compare this result with the evolution of the colours of galaxies in cluster cores, first reported by Butcher and Oemler. Using the same galaxies for our analysis of the [O  ii ] emission, we confirm that the fraction of blue galaxies, which are defined as galaxies 0.2 mag bluer in the rest-frame B – V than the red sequence of each cluster, increases strongly with redshift. Because the colours of galaxies retain a memory of their recent star formation history, while emission from the [O  ii ] line does not, we suggest that these two results can best be reconciled if the rate at which the clusters are being assembled is higher in the past, and the galaxies from which it is being assembled are typically bluer.  相似文献   

6.
Abell 85 is a cD galaxy cluster in the southern hemisphere and has a redshift of 0.055. Based on the spectra of 242 member galaxies provided by the Sloan spectral survey data, using the stellar population constituents and star formation history of these member galaxies obtained from the population synthesis software STARLIGHT, we study the regularities of the variations of star formation properties of galaxies (such as the ages, metal abundances and star formation rates of the characteristic stellar populations) with the local surface density of galaxies. As revealed by the results, the galaxies situated in the highdensity environments of the central region of the cluster possess higher population ages and metal abundances, and their rates of star formation are rather low, the recent activities of star formation are obviously suppressed. Besides, the correlations of the galaxy metal abundance and speci?c star formation rate with the stellar mass are asserted.  相似文献   

7.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

8.
N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a Λ cold dark matter (ΛCDM) cosmology are used in order to follow the building-up of the colour–magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a 'dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z ∼ 1, after which major events only involve the brightest cluster galaxies.
The emerging scenario is that the evolution of the colour–magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp 'red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z ∼ 1.5) and environment.
Differently from the DS, the operatively defined RS evolves more evidently with z , the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z ≃ 1 in clusters down to 0.4 in normal groups.  相似文献   

9.
对于星系际弥散恒星的研究是分别从观测、数值模拟和半解析模型这三个方面进行的.现在已经在邻近星系团及中低红移处观测到弥散恒星,甚至在Virgo及Coma星系团中观测到了单个的弥散恒星.观测数据的积累使得人们能够从统计上了解星系际弥散恒星的性质.研究表明星系际弥散恒星围绕着星系团势阱中心呈椭球状对称分布,其在星系团恒星总质...  相似文献   

10.
As part of a study of star formation history along the Hubble sequence, we present here the results for 11 elliptical galaxies with strong nebular emission lines.After removing the dilution from the underlying old stellar populations by use of stellar population synthesis model,we derive the accurate fluxes of all the emission lines in these objects,which are then classified,using emission line ratios, into one Seyfert 2,six LINERs and four HII galaxies.We also identify one HII galaxy (A1216 04)as a hitherto unknown Wolf-Rayet galaxy from the presence of the Wolf- Rayet broad bump at 4650 (?).We propose that the star-forming activities in elliptical galaxies are triggered by either galaxy-galaxy interaction or the merging of a small satellite/a massive star cluster,as has been suggested by recent numerical simulations.  相似文献   

11.
By analyzing global starburst properties in various kinds of starburst and post-starburst galaxies and relating them to the properties of the star cluster populations they form, I explore the conditions for the formation of massive, compact, long-lived star clusters. The aim is to determine whether the relative amount of star formation that goes into star cluster formation as opposed to field star formation, and into the formation of massive long-lived clusters in particular, is universal or scales with star-formation rate, burst strength, star-formation efficiency, galaxy or gas mass, and whether or not there are special conditions or some threshold for the formation of star clusters that merit to be called globular clusters a few billion years later.  相似文献   

12.
The study of galaxy clusters and groups covers a large range of physical scales, from cosmology to large scale structure, to individual galaxies. This workshop on the evolution of galaxies in clusters and groups provided a rich assembly of subjects. Brief summaries are given in some of these topics, including: the applications of clusters to cosmology, the evolution of cluster galaxies in the context of the Butcher-Oemler effect, the galaxy populations in clusters – from dwarfs to the cD galaxy, the interplay between cluster/group environment and the evolution of clusters, the infalling cluster members and the galaxy luminosity function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
When and how red S0 galaxies were formed is a longstanding and noteworthy problem. Recent morphological and photometric studies of S0sin distant clusters of galaxies have revealed a smaller S0 population fraction and the existence of S0s with bluer colours, which suggests that some physical processes drive continuous creation of S0s with younger stellar populations in higher-redshift clusters. We propose here that the major mechanism for S0 creation is galaxy merging between two spirals of unequal masses. Our numerical simulations demonstrate that galaxy merging exhausts a large amount of the interstellar medium of two gas-rich spirals owing to the moderately enhanced star formation, and subsequently transforms the two into a single gas-poor S0 galaxy with structure and kinematics strikingly similar to those observed. This secondary S0 formation via unequal-mass merging thus provides an evolutionary link between a larger number of blue spirals observed in intermediate-redshift clusters and the red S0s prevalent in present-day ones. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The colour-magnitude relation provides important information on the formation and evolution of cluster galaxies. By looking into the evolution of the relation as a function of redshift and using the small colour scatter around the relation in Coma, we put constraints on the star formation history and the galaxy merging history of cluster early-type galaxies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We have measured central line strengths for a complete sample of early-type galaxies in the Fornax cluster, comprising 11 elliptical and 11 lenticular galaxies, more luminous than M B  = −17. In contrast to the elliptical galaxies in the sample studied by González (and recently revisited by Trager) we find that the Fornax ellipticals follow the locus of galaxies of fixed age in Worthey's models and have metallicities varying from roughly solar to three times solar. The lenticular galaxies, however, exhibit a substantial spread to younger luminosity-weighted ages, indicating a more extended star formation history. We present measurements of the more sensitive indices: C4668 and HγA; these confirm and reinforce the conclusions that the elliptical galaxies are coeval and that only the lenticular galaxies show symptoms of late star formation. The inferred difference in the age distribution between lenticular and elliptical galaxies is a robust conclusion as the models generate consistent relative ages using different age and metallicity indicators even though the absolute ages remain uncertain. The young luminosity-weighted ages of the S0s in the Fornax cluster are consistent with the recent discovery that the fraction of S0 galaxies in intermediate-redshift clusters is a factor of 2–3 lower than found locally, and suggest that a fraction of the cluster spiral galaxy population has evolved to quiescence in the 5-Gyr interval from z  = 0.5 to the present. Two of the faintest lenticular galaxies in our sample have blue continua and strong Balmer-line absorption, suggesting starbursts ≲2 Gyr ago. These may be the low-redshift analogues of the starburst or post-starburst galaxies seen in clusters at z  = 0.3, similar to the Hδ-strong galaxies in the Coma cluster.  相似文献   

16.
With the help of a statistical parameter derived from optical spectra, we show that the current star formation rate of a galaxy, falling into a cluster along a supercluster filament, is likely to undergo a sudden enhancement before the galaxy reaches the virial radius of the cluster. From a sample of 52 supercluster-scale filaments of galaxies joining a pair of rich clusters of galaxies within the two-degree Field Redshift Survey region, we find a significant enhancement of star formation, within a narrow range between ∼2 and  3  h −170 Mpc  of the centre of the cluster into which the galaxy is falling. This burst of star formation is almost exclusively seen in the fainter dwarf galaxies  ( M B ≥−20)  . The relative position of the peak does not depend on whether the galaxy is a member of a group or not, but non-group galaxies have on average a higher rate of star formation immediately before falling into a cluster. From the various trends, we conclude that the predominant process responsible for this rapid burst is the close interaction with other galaxies falling into the cluster along the same filament, if the interaction occurs before the gas reservoir of the galaxy gets stripped off due to the interaction with the intracluster medium.  相似文献   

17.
Through the morphological classifications for 290 member galaxies in the nearby galaxy Abell 2199, the star formation rates and their relations with their morphology and related physical properties are investigated in this paper. It is found that the typical star formation rate in galaxies of this galaxy cluster is strongly correlated with the Hα equivalent width, and the degree of discontinuity of the galaxy spectrum at 4000 Å is also strongly correlated with the stellar mass included in the galaxy. It is also found that star formation activities in these galaxies do not exhibit the obvious circumstance effect. This result indicates that this galaxy cluster is still situated at the stage of the violent dynamical evolution and far from the dynamical equilibrium.  相似文献   

18.
孔旭  张文浩  李成  程福臻  A.Weiss 《天文学报》2002,43(3):264-271
利用星团谱样本的星族合成方法,研究了邻近巨椭圆星系NGC5018中的星族成分和其内部的恒星形成历史,给出了星系中不同年龄和金属丰度星族的成分占有比.星族合成结果表明,NGC5018中不仅存在大量金属丰度低的年老恒星成分,而且较年轻的星族成分(T=5×108yr)对星系光度贡献也很重要.星系吞并和相互作用过程可能是触发这些较年轻星族形成的物理原因,椭圆星系内部的恒星形成历史可能是2次爆发或者多次爆发过程.这些结果可以很好地解释NGC5018颜色偏蓝、Mg2谱指数强度偏弱等观测特征.  相似文献   

19.
Dwarf galaxies, as the most numerous type of galaxy, offer the potential to study galaxy formation and evolution in detail in the nearby universe. Although they seem to be simple systems at first view, they remain poorly understood. In an attempt to alleviate this situation, the MAGPOP EU Research and Training Network embarked on a study of dwarf galaxies named MAGPOP-ITP. In this paper, we present the analysis of a sample of 24 dwarf elliptical galaxies (dEs) in the Virgo cluster and in the field, using optical long-slit spectroscopy. We examine their stellar populations in combination with their light distribution and environment. We confirm and strengthen previous results that dEs are, on average, younger and more metal-poor than normal elliptical galaxies, and that their [α/Fe] abundance ratios scatter around solar. This is in accordance with the downsizing picture of galaxy formation where mass is the main driver for the star formation history. We also find new correlations between the luminosity-weighted mean age, the large-scale asymmetry, and the projected Virgocentric distance. We find that environment plays an important role in the termination of the star formation activity by ram-pressure stripping of the gas in short time-scales, and in the transformation of discy dwarfs to more spheroidal objects by harassment over longer time-scales. This points towards a continuing infalling scenario for the evolution of dEs.  相似文献   

20.
The chemical evolution history of a galaxy hides clues about how it formed and has been changing through time. We have studied the chemical evolution history of the Milky Way (MW) and Andromeda (M31) to find which are common features in the chemical evolution of disc galaxies as well as which are galaxy-dependent. We use a semi-analytic multizone chemical evolution model. Such models have succeeded in explaining the mean trends of the observed chemical properties in these two Local Group spiral galaxies with similar mass and morphology. Our results suggest that while the evolution of the MW and M31 shares general similarities, differences in the formation history are required to explain the observations in detail. In particular, we found that the observed higher metallicity in the M31 halo can be explained by either (i) a higher halo star formation efficiency (SFE), or (ii) a larger reservoir of infalling halo gas with a longer halo formation phase. These two different pictures would lead to (i) a higher [O/Fe] at low metallicities, or (ii) younger stellar populations in the M31 halo, respectively. Both pictures result in a more massive stellar halo in M31, which suggests a possible correlation between the halo metallicity and its stellar mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号