首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the POPCORN campaign between 3 and 24 August 1994 we measured peroxyacetyl nitrate (PAN) in a rural area of Mecklenburg-Vorpommern (North-Eastern Germany) above a corn field. A total of about 5000 PAN measurements were carried out within the three weeks of the campaign. Measured PAN mixing ratios ranged from below the detection limit of 10 ppt up to an afternoon maximum of 1 ppb. The mean value of all data was 140 ppt. The daily mean PAN mixing ratios were typically in the range of 50 to 250 ppt, but during a clean air episode PAN mixing ratios of well below 40 ppt were observed. The characteristic relative diurnal variation of the PAN mixing ratios with a late night/early morning minimum and an afternoon maximum persisted during these episodes. The daily averages of the PAN mixing ratios showed clear episodic variations which coincided with the duration of typical synoptic episodes of two to six days duration. Based on the measurements of the various parameters determining the PAN formation and destruction rates, the local budget for PAN was calculated. During daytime the calculated net photochemical formation rate of PAN was nearly always significantly higher than the observed change of the PAN concentration. This demonstrates that substantial amounts of PAN (often in the range of several hundred ppt/h) were exported from the corn field. The resulting removal of NOx to some extent effects the budget of nitrogen oxides (NOx), but the export of odd oxygen radicals in the form of PAN during daytime often amounted up to 30–50% of the OH-radical formation by ozone photolysis. Thus the importance of PAN as reservoir and transport medium for odd oxygen radicals can be very substantial and may have a significant impact on the budget and distribution of odd oxygen radicals.  相似文献   

2.
During the field campaign POPCORN (Photo oxidant formation by plant emitted compounds and OH radicals in North-eastern Germany) in Pennewitt (Mecklenburg-Vorpommern, Germany) in August 1994, carbon monoxide and nonmethane hydrocarbons were measured over a large maize field by in-situ gas chromatography. Throughout the campaign CO and NMHC showed, even for a remote rural area, unexpectedly low mixing ratios. Except a few episodes, CO mixing ratios were around 120 ppb. Ethane was the only hydrocarbon showing mixing ratios exceeding 1 ppb. The mixing ratios of all other NMHC ranged between several hundred ppt and the lower limit of detection which was between 20 and 5 ppt depending on the compound. During three frontal passages CO and NMHC mixing ratios increased significantly, while between August 13 and 16, 1994, polar air masses were encountered with CO and NMHC mixing ratios dropping to values which are typical for North Atlantic background air. During this period average CO mixing ratios were 85 ppb and ethane as the most abundant hydrocarbon decreased to 650 ppt. The large-scale meteorological situation is reflected in an unusual frequency distribution of CO. The distribution shows three maxima which can be assigned to the periods of the frontal passages, to the observation of polar air masses and the rest of the campaign. Two-day backward trajectories were calculated in order to obtain information about the origin of the air masses transported to the site. The observed NMHC and CO data can be attributed to the origin of the air masses and the air mass trajectories. NMHC and CO mixing ratios were well correlated indicating that these compounds originated from similar mostly anthropogenic sources. An exception was isoprene which showed no correlation with CO. With values below 100 ppt the mixing ratio of isoprene, which is emitted by terrestrial vegetation, was also unexpectedly low during the first half of the campaign although the maximum temperatures were around 35°C.  相似文献   

3.
During three of the flights with the NOAA P3 Orion over the Arctic icecap in April 1986, the atmospheric concentration of PAN (peroxyacetyl nitrate) was measured. Due to major experimental problems, the uncertainty in the data is large (+/–50%), but, nevertheless, some important trends can be resolved. More than 600 (+/–300) ppt(v) of PAN was present in a moderately dense arctic haze layer, confirming conclusions reached from surface observations at Alert, N.W.T., Canada, that PAN is a major odd nitrogen species in Arctic polluted air masses. In relatively clean air off Barrow, Alaska, PAN levels were well below 100 (+/–50) ppt(v), increasing with altitude, in agreement with theoretical predictions concerning the occurrence of PAN in clean air. PAN mixing ratios in the upper troposphere or lower stratosphere were variable (from ca. 30 (+/–15) ppt(v) on April 13 up to 140 (+/–70) ppt(v) on April 8), suggesting involvement in the tropospheric-stratospheric exchange of odd nitrogen. To place the PAN data in a broader context, measurements of other NOy compounds as well as integrated SOx data are also reported.  相似文献   

4.
Surface NO and NO2 mixing ratios were measured aboard the research vessel Polarstern during the mission ANT VII/1 from 24 September to 5 October 1988. The measurements were taken along the meridian at 30° W in the Atlantic region covering latitudes between 30° N and 30° S. The average mixing ratios were about 12 pptv NO/30 pptv NO2 in the Northern Hemisphere and about 7 pptv NO/22 pptv NO2 in the Southern. Elevated mixing ratios of 20 pptv NO/70 pptv NO2 were found at 12° N (probably due to air masses originating from the surface of West Africa) and in the region of the ITCZ between 8° N and 5° N. Because of probable contamination by the ship, the measured mixing ratios mostly represent upper limits.  相似文献   

5.
During the cruise ANT VII/1 (September/October 1988) of the German research vessel Polarstern the latitudinal distributions of several nonmethane hydrocarbons were measured over the Atlantic between 45°N and 30°S by in-situ gas chromatography.On the average, the highest mixing ratios of ethane, propane, i- and n-butane, ethene and acetylene were observed in the Northern Hemisphere around 40° N and just north of the intertropical convergence zone, respectively. South of the equator, a bulge in the mixing ratios of ethane and acetylene was observed indicating aged biomass burning emissions. This observation coincided with enhanced tropospheric ozone found in this region at this season. On the average ethane and acetylene mixing ratios were around 500 and 100 ppt, respectively, whereas the levels of the other NMHC were in the range of some ppt up to 100 ppt.compared with the results of the cruise ANT V/5 (March/April, 1987), the ethane mixing ratios in September/October proved to be a factor of 3 lower in the Northern Hemisphere and a factor of 2 higher in the Southern Hemisphere, probably due to seasonal effects. Possible causes are the higher OH radical concentrations in summer, which result in a faster removal of ethane or stronger emission from biomass burning which also peaks in the dry season.The relative pattern of the hydrocarbons just north of the ITCZ was very similar for both measurement series. In this region, the NMHC were advected by long-range transport from the continent, whereas generally the ocean itself acts as a major NMHC source. This is supported by the results of a balance calculation between oceanic emissions and atmospheric removal rates.  相似文献   

6.
A new gas chromatographic technique with a modified photoionization detector connected in series with a conventional flame ionization detector was used to determine low concentrations of atmospheric hydrocarbons in remote atmospheres. Average mixing ratios of five aromatic hydrocarbons measured between 42°N and 30°S latitude in the Pacific Ocean in October/November 1983 were highest in the Northern Hemisphere. The average mixing ratios in the northern and southern marine atmospheres were 49±25 ppt (n=35) and 10±2 ppt (n=21) for benzene, 20±12 ppt (n=32) and 5.6±1.6 ppt (n=12) for toluene, 7.6±3.7 ppt (n=35) and 3.7±1.6 ppt (n=21) for ethylbenzene, 25±12 ppt (n=35) and 13±5 ppt (n=20) for the sum of m- and p-xylenes, and 14±6 ppt (n=35) and 6.6±3.0 ppt (n=21) for o-xylene, respectively. The first latitudinal gradients for these five aromatic compounds are reported. Benzene and toluene mixing ratios measured between July 1982 and October 1983 at a rural, mid-latitude continental site in eastern Washington state gave average values of 226±108 ppt and 133±84 ppt, respectively, with higher wintertime than summertime benzene levels. These continental samples gave calculated air mass ages averaging six days based on benzene-to-toluene ratios.  相似文献   

7.
A latitudinal profile (30° W, from 30° N to 30° S) of mixing ratios of nitric acid and particulate nitrate was determined on the Atlantic Ocean during the Polarstern cruise ANT VII/1 from Bremerhaven, Germany, to Rio Grande, Brazil. The detection of HNO3 was performed simultaneously by laser-photolysis fragment-fluorescence (LPFF) and by nylon filter packs. The detection limit was about 30 pptv for a signal accumulation time of 1 h for LPFF and about 5 pptv for the filters at a collection time of 4 h. In general, the mixing ratios of HNO3 in the Northern Hemisphere were found to be significantly higher than those in the Southern Hemisphere. The Atlantic background concentrations frequently varied between 80 pptv and the detection limit. Larger deviations from this trend were found for the more northern latitudes and for episodes like crossings of exhaust plumes from ships or from continental pollutions sources.  相似文献   

8.
Springtime measurements of NOx, ozone, PAN,J(NO2), and other compounds were made near Ny-Ålesund,Svalbard (78°54N, 11°53E), in 1994 and Poker Flat,Alaska (65°08N, 147°29W), in 1995. At Svalbard medianmixing ratios for PAN and NOx of 237 and 23.7 pptv,respectively, were observed. The median mixing ratios at Poker Flat for PANand NOx were 79.5 and 85.9 pptv, respectively. These data areused to estimate thermal PAN decomposition using several differentapproaches. At Svalbard PAN decomposition was very small, while at PokerFlat up to 30 pptv/h PAN decomposed. At both sites the NOx/PANratio increased with temperature between –10 and 20°C implyingthat PAN decomposition is an important NOx source. In-situozone production was calculated from the measured NO, NO2,O3, J(NO2), and temperature data, using thesteady state assumption Median ozone production was 605 pptv/h at PokerFlat, and one order of magnitude smaller at Svalbard during the daytime.Only at Poker Flat could a direct influence on the diurnal ozone cycle beobserved from in-situ production. These results imply that PAN decompositionis a major source of NOx in the high latitude troposphere, andthat this contributes to the observed spring maximum in surface ozone.  相似文献   

9.
Airborne measurements of volatile organic compounds (VOC) were performed overthe tropical rainforest in Surinam (0–12 km altitude,2°–7° N, 54°–58° W) using the proton transferreaction mass spectrometry (PTR-MS) technique, which allows online monitoringof compounds like isoprene, its oxidation products methyl vinyl ketone,methacrolein, tentatively identified hydroxy-isoprene-hydroperoxides, andseveral other organic compounds. Isoprene volume mixing ratios (VMR) variedfrom below the detection limit at the highest altitudes to about 7 nmol/molin the planetary boundary layer shortly before sunset. Correlations betweenisoprene and its product compounds were made for different times of day andaltitudes, with the isoprene-hydroperoxides showing the highest correlation.Model calculated mixing ratios of the isoprene oxidation products using adetailed hydrocarbon oxidation mechanism, as well as the intercomparisonmeasurement with air samples collected during the flights in canisters andlater analysed with a GC-FID, showed good agreement with the PTR-MSmeasurements, in particular at the higher mixing ratios.Low OH concentrations in the range of 1–3 × 105molecules cm-3 averaged over 24 hours were calculated due to lossof OH and HO2 in the isoprene oxidation chain, thereby stronglyenhancing the lifetime of gases in the forest boundary layer.  相似文献   

10.
In this paper we describe a gas-chromatographic method for PAN measurements in the background atmosphere, which has been adapted to the special requirements of aircraft based campaigns. The instrument is installed in a 1.21 m high, 19 inch rack which has a total weight of 70 kg and a power consumption of 750 VA. The gas chromatograph is equipped with a commercial liquid injector and a valve system for injection of gaseous samples. The gas-inlet system allows automatic injection of samples with defined and constant mass, independent from ambient pressure variations. Two different methods are used for calibration: Liquid PAN calibration samples and a diffusion source for gas-phase calibrations. Both methods have reproducibilities better than 90% and agree with each other to better than 85%. An optimum selectivity of the gas-chromatographic separation is obtained by a combination of two short megabore capillary columns of different polarity. The flow rates are 15 cm3/min, the column temperature is 26°C. For detection an electron-capture detector, operated at 30°C, is used. To allow a reliable control of these relatively low temperatures the instrument is equipped with peltier cooling. To avoid baseline or signal drifts caused by pressure variations in the aircraft cabin an electronic control of the system pressure is integrated into the instrument. The lower limit of detection is better than 15 ppt (3 ), the time needed for one measurement is less than 4 min. Preliminary results from a flight campaign conducted in June 1994 demonstrate the suitability of the instrument for airborne PAN measurements.  相似文献   

11.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

12.
Hydrogen peroxide, one of the key compounds in multiphase atmospheric chemistry, was measured on an Atlantic cruise (ANT VII/1) of the German research vessel Polarstern from 15 September to 9 October 1988, in rain and ambient air by a chemiluminescence technique. For gas phase H2O2 cryogenic sampling was employed. The presented results show an increase of gas-phase mixing ratios of about 45 pptv per degree latitude between 50° N and 0°, and a maximum of 3.5 ppbv around the equator. Generally higher mixing ratios were observed in the Southern Hemisphere, with a clear diurnal variation. The H2O2 mixing ratio is correlated to the UV radiation intensity and to the temperature difference between air and ocean surface water.  相似文献   

13.
During April 1986, as part of an international arctic air chemistry study (AGASP-2), ground level observations of aerosol trace elements, oxides of sulphur and nitrogen and particle number size distribution were made at Alert Canada (82.5N, 62.3W). Pollution haze was evident as indicated by daily aerosol number (size > 0.15 m diameter) and SO4 = concentrations in the range 125 – 260 cm–3 and 1.6 – 4.5 g m–3, respectively. Haze and associated acidic gases tended to increase throughout the period. SO2 and peroxyacetylnitrate (PAN) mixing ratios were in the range 140 – 480 and 370 – 590 ppt(v), respectively. About 88% of the total end-product nitrogen was in the form of PAN. In air dried to 2% relative humidity by warming to room temperature, the aerosol mass size distribution had a major mode at 0.3 m diameter and a minor one at 2.5 m. Aerosol mass below 1.5 m was well correlated with SO4 =, K+ and PAN. There was a steady increase in the oxidized fraction of total airborne sulphur and nitrogen oxide throughout April as the sun rose above the horizon and remained above. The mean oxidation rate of SO2 between Eurasia and Alert was estimated as 0.25 – 0.5% h–1. The molar ratio of total nitrogen oxide to total sulphur oxide in the arctic atmosphere (0.67±0.17) was comparable to that in European emissions. A remarkably strong inverse correlation of filterable Br and O3 led to the conclusion that O3 destruction and filterable Br production below the Arctic surface radiation inversion is associated with tropospheric photochemical reactions involving naturally occurring gaseous bromine compounds.  相似文献   

14.
The room-temperature photodecomposition of acetone diluted with synthetic air was studied at nine wavelengths in the spectral region 250–330 nm. The quantum yields for the products CO2 and CO indicated that it was not possible to suppress secondary reactions sufficiently, even with acetone/air mixing ratios as low as 150 ppmv, to derive from these data primary acetone photodissociation quantum yields. The behavior of CO2 and CO formation nevertheless provides some insight into the mechanism of acetone photodecomposition. When small amounts of NO2 are added to acetone/air mixtures, peroxyacetyl nitrate (PAN) is formed. Quantum yields for PAN are reported. They are better suited to represent primary quantum yields for acetone photodissociation, because PAN is a direct indicator for the formation of acetyl radicals. The data were combined with absorption cross-sections for acetone measured at wavelengths up to 360 nm to calculate photodissociation coefficients applicable to the ground-level atmosphere at 40° northern latitude. Comparison with the rates for the reaction of acetone with OH radicals shows that both processes contribute almost equally to the total acetone losses in the lower atmosphere. The resulting atmospheric life time at 40° northern latitude is 32 days, on average. This value must be considered an upper limit, since it does not take into account acetone losses due to the reaction of excited triplet acetone with oxygen.  相似文献   

15.
There are large uncertainties in identifying and quantifying the natural and anthropogenic sources of chloromethanes – methyl chloride (CH3Cl), chloroform (CHCl3) and dichloromethane (CH2Cl2), which are responsible for about 15% of the total chlorine in the stratosphere. We report two years of in situ observations of these species from the AGAGE (Advanced Global Atmospheric Gas Experiment) program at Cape Grim, Tasmania (41° S, 145° E). The average background levels of CH3Cl, CHCl3 and CH2Cl2 during 1998–2000 were 551± 8, 6.3± 0.2 and 8.9± 0.2 ppt (dry air mole fractions expressed in parts per 1012) respectively, with a two-year average amplitude of the seasonal cycles in background air of 25, 1.1 and 1.5 ppt respectively. The CH3Cl and CHCl3 records at Cape Grim show clear episodes of elevated mixing ratios up to 1300 ppt and 55 ppt respectively, which are highly correlated, suggesting common source(s). Trajectory analyses show that the sources of CH3Cl and CHCl3 that are responsible for these elevated observations are located in coastal-terrestrial and/or coastal-seawater regions in Tasmania and the south-eastern Australian mainland. Elevated levels of CH2Cl2 (up to 70 ppt above background) are associated mainly with emissions from the Melbourne/Port Phillip region, a large urban/industrial complex (population 3.5 million) 300 km north of Cape Grim.Now at the Centre for Atmospheric ChemistryNow at School of Environmental Sciences  相似文献   

16.
Naphthalene (C10H8), several other hydrocarbons, mostly derivates of naphthalene, and bromine oxide (BrO) were analyzed for narrow band (0.01 nm) absorption lines in the wavelength range between 307.7 and 308.3 nm to study their potential impact on OH radical measurements by differential absorption spectroscopy.Only naphthalene showed narrow band absorption lines in this wavelength region. From nine naphthalene lines the differential absorption cross-section was determined.The strongest naphthalene line at 308.002 nm is close to the Q 1(2) OH line, but about a factor of 200 weaker (=(65.2±15.3)×10-20 cm2/molec). The corresponding detection limit for naphthalene is about 15 ppt. We re-evaluated some spectra of our OH measurement campaign in July 1987 with respect to naphthalene and obtained an upper limit of 30 ppt for its concentration.BrO was recorded in the larger wavelength interval between 307.7 and 308.7 nm. Structured absorptions were only observed at wavelengths above 308.2 nm and no significant structures were found in the vicinity of the Q 1(2) and Q 1(3) OH lines.  相似文献   

17.
Airborne measurements of acetone were performed overthe tropical rainforest in Surinam(2°–7° N, 54°–58° W, 0–12 kmaltitude) during the LBA-CLAIRE campaign in March1998, using a novel proton transfer reaction massspectrometer (PTR-MS) that enables the on-linemonitoring of volatile organic compounds (VOC) with ahigher proton affinity than water. The measuredacetone volume mixing ratios ranged from 0.1 nmol/molup to 8 nmol/mol with an overall average of 2.6nmol/mol and a standard deviation of 1.0 nmol/mol. Theobserved altitude profile and correlations with CO,acetonitrile, propane and wind direction are discussedwith respect to potential acetone sources. No linearcorrelation between acetone and CO mixing ratios wasobserved, at variance with results of previousmeasurement campaigns. The mean acetone/CO ratio(0.022) was substantially higher than typical valuesfound before. The abundance of acetone appears to beinfluenced, but not dominated, by biomass burning,thus suggesting large emissions of acetone and/oracetone precursors, such as possibly 2-propanol, fromliving plants or decaying litter in the rainforest.  相似文献   

18.
As part of the TROPOZ II large-scale measurement campaign in January 1991 we deployed a Four Laser Airborne Infra Red (FLAIR) tunable diode laser spectrometer on board a Caravelle 116 research aircraft. We report here in situ CO measurements which were obtained with one of the four channels of the FLAIR instrument at a time resolution of either one or two minutes. The flight route of the TROPOZ II campaign followed the Atlantic coasts of North America, the Pacific and Atlantic coasts of South America and the Atlantic coasts of West Africa and Europe. A total of 48 CO vertical profiles extending from the surface to 10.5 km altitude were obtained. In the meridional direction adjacent profiles were separated by less than 10° latitude. Polewards of 30°S the CO distribution was very homogeneous with a mean mixing ratio of 55 ppbv. Between 30°S and the equator, the CO mixing ratio above 8 km altitude ranged up to 130 ppbv and was 20–60 ppbv higher than in the mid free troposhere. Three day backward trajectories for these CO rich airmasses originated over Amazonia. Earlier trace gas measurements as well as circulation studies suggested that these airmasses were of Northern Hemispheric origin and had been rapidly convected to the upper troposphere over central South America. The influence of biomass burning is clearly apparent from the measurements performed at 10°N on the African side of the Atlantic with CO mixing ratios being 100–300% higher than on the Central American side. CO mixing ratios further north ranged from 80 to 130 ppbv in the free troposphere and increased to 130–150 ppbv at lower altitudes.  相似文献   

19.
Vertical distributions of dimethylsulfide (DMS), sulfur dioxide (SO2), aerosol methane-sulfonate (MSA), non-sea-salt sulfate (nss-SO4 2-), and other aerosol ions were measured in maritime air west of Tasmania (Australia) during December 1986. A few cloudwater and rainwater samples were also collected and analyzed for major anions and cations. DMS concentrations in the mixed layer (ML) were typically between 15–60 ppt (parts per trillion, 10–12; 24 ppt=1 nmol m–3 (20°C, 1013 hPa)) and decreased in the free troposphere (FT) to about <1–2.4 ppt at 3 km. One profile study showed elevated DMS concentrations at cloud level consistent with turbulent transport (cloud pumping) of air below convective cloud cells. In another case, a diel variation of DMS was observed in the ML. Our data suggest that meteorological rather than photochemical processes were responsible for this behavior. Based on model calculations we estimate a DMS lifetime in the ML of 0.9 days and a DMS sea-to-air flux of 2–3 mol m–2 d–1. These estimates pertain to early austral summer conditions and southern mid-ocean latitudes. Typical MSA concentrations were 11 ppt in the ML and 4.7–6.8 ppt in the FT. Sulfur-dioxide values were almost constant in the ML and the lower FT within a range of 4–22 ppt between individual flight days. A strong increase of the SO2 concentration in the middle FT (5.3 km) was observed. We estimate the residence time of SO2 in the ML to be about 1 day. Aqueous-phase oxidation in clouds is probably the major removal process for SO2. The corresponding removal rate is estimated to be a factor of 3 larger than the rate of homogeneous oxidation of SO2 by OH. Model calculations suggest that roughly two-thirds of DMS in the ML are converted to SO2 and one-third to MSA. On the other hand, MSA/nss-SO4 2- mole ratios were significantly higher compared to values previously reported for other ocean areas suggesting a relatively higher production of MSA from DMS oxidation over the Southern Ocean. Nss-SO4 2- profiles were mostly parallel to those of MSA, except when air was advected partially from continental areas (Africa, Australia). In contrast to SO2, nss-SO4 2- values decreased significantly in the middle FT. NH4 +/nss-SO4 2- mole ratios indicate that most non-sea-salt sulfate particles in the ML were neutralized by ammonium.  相似文献   

20.
Ozone measurements, performed since 1987, at the Swedish TOR/EUROTRACstation Åreskutan (lat. 63.4° N, long. 13.1° E, 1250 m abovesea level) are analyzed. The annual average ozone concentration at the sitehas increased by about 0.4 ppbv (1%) per year during the period1987–1994. The corresponding trends for individual months show adecrease during April–September and an increase during the rest of theyear. The ozone budget at Åreskutan has been investigated using backtrajectories of the air parcels, and the cosmogenic radionuclide7Be as a tracer of stratospheric air. From a simple diagnosticmodel, it is estimated that the contribution of stratospheric ozone to theconcentrations measured at Åreskutan is 5 ppbv (or 14% of themeasured values) on average, reaching a maximum of 23 ppbv (50%),during the episodes of direct stratospheric influence. In spring, thestratospheric contribution to ozone budget at Åreskutan is at itsmaximum, and approximately equal to the net photochemical ozone productionin the air mass affecting the site, whereas in winter, it is compensated byozone chemical sink during the transport of air masses from pollutedEuropean regions, to Scandinavia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号