首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to extend the abilities of the αΩ dynamo model to explain the observed regularities and anomalies of the solar magnetic activity, the negative buoyancy phenomenon and the magnetic quenching of the α effect were included in the model, as well as newest helioseismically determined inner rotation of the Sun were used. Magnetic buoyancy constrains the magnitude of toroidal field produced by the Ω effect near the bottom of the solar convection zone (SCZ). Therefore, we examined two “antibuoyancy” effects: i) macroscopic turbulent diamagnetism and ii) magnetic advection caused by vertical inhomogeneity of fluid density in the SCZ, which we call the ∇ρ effect. The Sun's rotation substantially modifies the ∇ρ effect. The reconstruction of the toroidal field was examined assuming the balance between mean‐field magnetic buoyancy, turbulent diamagnetism and the rotationally modified ∇ρ effect. It is shown that at high latitudes antibuoyancy effects block the magnetic fields in the deep layers of the SCZ, and so the most likely these deep‐rooted fields could not become apparent at the surface as sunspots. In the near‐equatorial region, however, the upward ∇ρ effect can facilitate magnetic fields of about 3000 – 4000 G to emerge through the surface at the sunspot belt. Allowance for the radial inhomogeneity of turbulent velocity in derivations of the helicity parameter resulted in a change of sign of the α effect from positive to negative in the northern hemisphere near the bottom of the SCZ. The change of sign is very important for direction of the Parker's dynamo‐waves propagation and for parity of excited magnetic fields. The period of the dynamo‐wave calculated with allowance for the magnetic quenching is about seven years, that agrees by order of magnitude with the observed mean duration of the sunspot cycles. Using the modern helioseismology data to define dynamo‐parameters, we conclude that north‐south asymmetry should exist in the meridional field. At low latitudes in deep layers of the SCZ, the αΩ dynamo excites most efficiency the dipolar mode of the meridional field. Meanwhile, in high‐latitude regions a quadrupolar mode dominates in the meridional field. The obtained configuration of the net meridional field is likely to explain the magnetic anomaly of polar fields (the apparent magnetic “monopole”) observed near the maxima of solar cycles. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We report here results from a dynamo model developed on the lines of the Babcock-Leighton idea that the poloidal field is generated at the surface of the Sun from the decay of active regions. In this model magnetic buoyancy is handled with a realistic recipe – wherein toroidal flux is made to erupt from the overshoot layer wherever it exceeds a specified critical field B c (105 G). The erupted toroidal field is then acted upon by the α-effect near the surface to give rise to the poloidal field. In this paper we study the effect of buoyancy on the dynamo generated magnetic fields. Specifically, we show that the mechanism of buoyant eruption and the subsequent depletion of the toroidal field inside the overshoot layer, is capable of constraining the magnitude and distribution of the magnetic field there. We also believe that a critical study of this mechanism may give us new information regarding the solar interior and end with an example, where we propose a method for estimating an upper limit of the difusivity within the overshoot layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Flux-dominated solar dynamo models have demonstrated to reproduce the main features of the large scale solar magnetic cycle, however the use of a solar like differential rotation profile implies in the the formation of strong toroidal magnetic fields at high latitudes where they are not observed. In this work, we invoke the hypothesis of a thin-width tachocline in order to confine the high-latitude toroidal magnetic fields to a small area below the overshoot layer, thus avoiding its influence on a Babcock-Leighton type dynamo process. Our results favor a dynamo operating inside the convection zone with a tachocline that essentially works as a storage region when it coincides with the overshoot layer. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We investigated the generation of dynamo waves in the solar convection zone through a numerical simulation. We integrated the axisymmetric α–Ω kinematic dynamo equations in a spherical geometry, where the α- and Ω-profiles depend on the spatial coordinates. The model results show that the fundamental parameter that determines the behavior of the system is the product between the characteristic intensities of the α and Ω contributions. In particular, we found three different regimes in which the system exhibits different behaviors: a regime without a dynamo effect, one with an exponential amplification of the magnetic field, and one with dynamo waves.  相似文献   

5.
The correlation between stellar activity, as measured by the indicator Δ R HK, and the Rossby number Ro in late-type stars is revisited in light of recent developments in solar dynamo theory. Different stellar interior models, based on both mixing-length theory and the full spectrum of turbulence, are used in order to see to what extent the correlation of activity with Rossby number is model dependent, or otherwise can be considered universal. Although we find some modest model dependence, we find that the correlation of activity with Rossby number is significantly better than with rotation period alone for all the models we consider. Dynamo theory suggests that activity should scale with the dynamo number. A current model of the solar dynamo, the so-called interface dynamo, proposes that the amplification of the toroidal magnetic field by differential rotation (the ω -effect) and the production of the poloidal magnetic field from toroidal by helical turbulence (the α -effect) take place in different, adjacent layers near the base of the convection zone. A new scale analysis based on the interface dynamo shows that the appropriate dynamo number does not depend on the Rossby number alone, but also depends on an additional dimensionless factor related to the differential rotation. This leads to a new interpretation of the correlation between activity and Rossby number, which in turn leads to some conclusions about the magnitude of differential rotation in the dynamo layers of late-type main-sequence stars.  相似文献   

6.
Results from kinematic solar dynamo models employing α ‐effect and turbulent pumping from local convection calculations are presented. We estimate the magnitude of these effects to be around 2–3 m s–1, having scaled the local quantities with the convective velocity at the bottom of the convection zone from a solar mixing‐length model. Rotation profile of the Sun as obtained from helioseismology is applied in the models; we also investigate the effects of the observed surface shear layer on the dynamo solutions. With these choices of the small‐ and large‐scale velocity fields, we obtain estimate of the ratio of the two induction effects, C α /C Ω ≈ 10–3, which we keep fixed in all models. We also include a one‐cell meridional circulation pattern having a magnitude of 10–20 m s–1 near the surface and 1–2 m s–1 at the bottom of the convection zone. The model essentially represents a distributed turbulent dynamo, as the α ‐effect is nonzero throughout the convection zone, although it concentrates near the bottom of the convection zone obtaining a maximum around 30° of latitude. Turbulent pumping of the mean fields is predominantly down‐ and equatorward. The anisotropies in the turbulent diffusivity are neglected apart from the fact that the diffusivity is significantly reduced in the overshoot region. We find that, when all these effects are included in the model, it is possible to correctly reproduce many features of the solar activity cycle, namely the correct equatorward migration at low latitudes and the polar branch at high latitudes, and the observed negative sign of B r B ϕ . Although the activity clearly shifts towards the equator in comparison to previous models due to the combined action of the α ‐effect peaking at midlatitudes, meridional circulation and latitudinal pumping, most of the activity still occurs at too high latitudes (between 5° … 60°). Other problems include the relatively narrow parameter space within which the preferred solution is dipolar (A0), and the somewhat too short cycle lengths of the solar‐type solutions. The role of the surface shear layer is found to be important only in the case where the α ‐effect has an appreciable magnitude near the surface. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Belvedère  G.  Lanza  A.F.  Sokoloff  D. 《Solar physics》1998,183(2):435-444
Rapidly rotating young (T Tauri, pre-Main-Sequence, and Main-Sequence) stars as well as subgiants seem to show starspots not only at low and middle latitudes, as the Sun, but also at high latitudes and even around the poles. We consider a simple nonlinear Parker migratory dynamo model working in a thin shell in order to investigate how high latitude and polar spots may be produced for different values of the dynamo layer radius and thickness and for various rotation rates. Simple assumptions on the angular velocity gradient and helicity distribution are made according to symmetry properties and recent solar and stellar observations. A recently proposed asymptotic WKB-type approach is used to solve the dynamo problem and its drawbacks and advantages in the solar and stellar contexts are discussed. As a general result, we find that a sizable toroidal field can be produced over a much more extended latitude range than in the Sun, thus explaining in a natural way the occurrence of activity from the poles to the equator in such stars. Our approach complements that proposed by Schüssler et al. (1996) which is focused on the instability and emergence of the azimuthal flux tubes, as well as the analyses based on a dynamo working over an extended part of the stellar convective envelope (Moss, Tuominen, and Brandenburg, 1991; Moss et al., 1995).  相似文献   

8.
We consider a conventional stellar  α2ω  -dynamo with dynamo generators localized in two spherical shells separated by a passive layer. The signs of the α-effect as well as rotational shear in the dynamo active layers can be chosen to give dynamo waves that propagate in opposite directions (poleward and equatorward) if the layers are considered separately in the framework of the Parker migratory dynamo. In a sequence of numerical experiments we show that the variety of dynamo-generated magnetic configurations in the system under discussion is quite rich. We identify the possibility of almost independent dynamo waves existing in the two layers as well as enslavement of one layer by the other, and of activity waves generated by a joint action of the two layers. We suggest some qualitative explanations of the behaviour and discuss also the limited nature of these explanations. This variety of phenomena suggests previously underexploited freedoms to understand how predictions of dynamo theory may accommodate the observed solar and stellar activity phenomenology.  相似文献   

9.
We have investigated heating of solar polar coronal holes and acceleration of fast solar wind by means of lower hybrid (LH) waves. A three-fluid Maxwell model comprising electrons, protons, and α-particles is employed at around two solar radii heliocentric distance, where wave dissipation starts to be dominated by collisionless processes. We suggest specific wavenumber ranges corresponding to LH as well as stochastic instabilities and find that these instabilities may bring about a significant energy gain in positive ions.  相似文献   

10.
A combination of diamagnetic pumping and a nonlocal α-effect of the Babcock–Leighton type in a solar dynamo model is shown to reproduce observations of solar magnetic activity. The period of the solar cycle can be reproduced without reducing magnetic diffusivity in the bulk of the convection zone below the standard mixing-length value of 1013?cm2?s?1. The simulated global fields are antisymmetric about the equator, and the toroidal-to-poloidal field ratio is about one thousand. However, the time–latitude diagrams of magnetic fields in the model without meridional flow differ from observations. Only when the meridional flow is included and the α-effect profile peaking at mid-latitudes is applied, can the observed butterfly diagrams be reproduced.  相似文献   

11.
Observational and theoretical knowledge about global-scale solar dynamo ingredients have reached the stage that it is possible to calibrate a flux-transport dynamo for the Sun by adjusting only a few tunable parameters. The important ingredients in this class of model are differential rotation (Omega-effect), helical turbulence (alpha-effect), meridional circulation and turbulent diffusion. The meridional circulation works as a conveyor belt and governs the dynamo cycle period. Meridional circulation and magnetic diffusivity together govern the memory of the Sun's past magnetic fields. After describing the physical processes involved in a flux-transport dynamo, we will show that a predictive tool can be built from it to predict mean solar cycle features by assimilating magnetic field data from previous cycles. We will discuss the theoretical and observational connections among various predictors, such as dynamo-generated toroidal flux integral, cross-equatorial flux, polar fields and geomagnetic indices. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The paper describes the phenomenon of afternoon depression of the geomagnetic H field on quiet days near the magnetic equator in the Indian zone. These events occur most frequently around 1600 solar hr and are localized in longitude; sometimes, not seen at stations separated by even 2 hr LT. The geomagnetic disturbance tends to decrease or destroy the identity of the phenomenon. The latitudinal extent of these events is confined to the equatorial electrojet region. The events do not seem to be caused mainly by the Moon, but their occurrences are modified by the lunar age, being most frequent around new and full Moon. These events are associated with the disappearance of the q type of Es over the Equator for periods during which the H field is below the night-time level. The currents responsible for these events flow westward in the E-region and are within few degrees centred near the magnetic equator.  相似文献   

13.
Energy distributions of the thermal electrons in the ionospheric plasma were measured on 16 January 1974 and 16 September 1976 by two Japanese rockets, K-9M-45 and K-9M-55 respectively near the focus of Sq current vortex. The main effort was to investigate the energy state of the thermal electrons in a localized hot electron layer which occurs at a height of around 105 km in winter.The results obtained on 16 January 1974 showed that the thermal electrons in the hot electron layer had not a pure Maxwell distribution. While on 16 September 1976, the energy distribution of the electrons was found to be almost Maxwellian in the dynamo region as well as the F-region.  相似文献   

14.
For a variety of reasons, based on results from magnetoconvection, self-consistent dynamo calculations and helioseismology, it seems plausible that the bulk of the solar magnetic field is located in the overshoot zone. Furthermore, it has also been suggested that the solar dynamo is operating in this region. The aim of this paper is then to show that it is possible to obtain a mean electromotive force (EMF), and hence an α -effect, in the convectively stable overshoot zone, which is driven by magnetic buoyancy instabilities.
By investigating the stability of a layer of magnetic field embedded between two non-magnetic layers of plasma we are able to show the following: first, that magnetic buoyancy instabilities indeed give rise to a mean EMF and, secondly, that the electromotive force is largest in the region where the magnetic layer is unstable, i.e. where the field strength decreases fastest with height.
Moreover, the influence of the rotation rate and the magnetic field strength on the magnetic buoyancy instability has been investigated in order to determine for which values of these parameters dynamo action might occur.  相似文献   

15.
This review provides a historical overview of how research in kinematic solar dynamo modeling evolved during the last few decades and assesses the present state of research. The early pioneering papers assumed the dynamo to operate in the convection zone. It was suggested in the 1980s that the dynamo operates in a thin layer at the bottom of the convection zone. Some researchers in recent years are arguing that the poloidal field is produced near the surface—an idea that goes back to Babcock (1961) and Leighton (1969).  相似文献   

16.
A solar wind parameter ε, known as the energy coupling function, has been shown to correlate with the power consumption in the magnetosphere. It is shown in the present paper that the parameter ε can be identified semi-quantitatively as the dynamo power delivered from the solar wind to an open magnetosphere. This identification not only provides a theoretical basis for the energy coupling function, but also constitutes an observational verification of the solar wind-magnetosphere dynamo along the magnetotail. Moreover, one can now conclude that a substorm results when the dynamo power exceeds 1018 ergs ?1.  相似文献   

17.
The magnetic fields of celestial bodies are usually supposed to be due to a ‘hydromagnetic dynamo’. This term refers to a number of rather speculative processes which are supposed to take place in the liquid core of a celestial body. In this paper we shall follow another approach which is more closely connected with hydromagnetic processes well-known from the laboratory, and hence basically less speculative. The paper should be regarded as part of a general program to connect cosmical phenomena with phenomena studied in the laboratory. As has been demonstrated by laboratory experiments, a poloidal magnetic field may be increased by the transfer of energy from a toroidal magnetic field through kink instability of the current system. This mechanism can be applied to the fluid core of a celestial body. Any differential rotation will produce a toroidal field from an existing poloidal field, and the kink instability will feed toroidal energy back to the poloidal field, and hence amplify it. In the Earth-Moon system the tidal braking of the Earth's mantle acts to produce a differential angular velocity between core and mantle. The braking will be transferred to the core by hydromagnetic forces which at the same time give rise to a strong magnetic field. The strength of the field will be determined by the rate of tidal braking. It is suggested that the magnetization of lunar rocks from the period ?4 to ?3 Gyears derives from the Earth's magnetic field. As the interior of the Moon immediately after accretion probably was too cool to be melted, the Moon could not produce a magnetic field by hydromagnetic effects in its core. The observed lunar magnetization could be produced by such an amplified Earth field even if the Moon never came closer than 10 or 20 Earth's radii. This hypothesis might be checked by magnetic measurements on the Earth during the same period.  相似文献   

18.
Our global 3D simulations of convection and dynamo action in a Sun-like star reveal that persistent wreaths of strong magnetism can be built within the bulk of the convention zone. Here we examine the characteristics of buoyant magnetic structures that are self-consistently created by dynamo action and turbulent convective motions in a simulation with solar stratification but rotating at three times the current solar rate. These buoyant loops originate within sections of the magnetic wreaths in which turbulent flows amplify the fields to much higher values than is possible through laminar processes. These amplified portions can rise through the convective layer by a combination of magnetic buoyancy and advection by convective giant cells, forming buoyant loops. We measure statistical trends in the polarity, twist, and tilt of these loops. Loops are shown to preferentially arise in longitudinal patches somewhat reminiscent of active longitudes in the Sun, although broader in extent. We show that the strength of the axisymmetric toroidal field is not a good predictor of the production rate for buoyant loops or the amount of magnetic flux in the loops that are produced.  相似文献   

19.
The presently prevailing theories of sunspots and solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes for solar flare energy.In this paper, we pay attention to the fact that there are large-scale magnetic fields which divide the photosphere into positive and negative (line-of-sight) polarity regions and that they are likely to be more fundamental than sunspot fields, as emphasized most recently by McIntosh (1981). A new phenomenological model of the sunspot pair formation is then constructed by considering an amplification process of these largescale fields near their boundaries by shear flows, including localized vortex motions. The amplification results from a dynamo process associated with such vortex flows and the associated convergence flow in the largescale fields.This dynamo process generates also some of the familiar “force-free” fields or the “sheared” magnetic fields in which the magnetic field-aligned currents are essential. Upward field-aligned currents generated by the dynamo process are carried by downward streaming electrons which are expected to be accelerated by an electric potential structure; a similar structure is responsible for accelerating auroral electrons in the magnetosphere. Depending on the magnetic field configuration and the shear flows, the current-carrying electrons precipitate into different geometrical patterns, causing circular flares, umbral flares, two-ribbon flares, etc. Thus, it is suggested that “low temperature flares” are directly driven by the photospheric dynamo process.  相似文献   

20.
A fully three-dimensional, nonlinear, time-dependent, multi-layered spherical kinematic dynamo model is used to study the effect on the observable external magnetic field of flow in an electrically conducting layer above a spherical turbulent dynamo region in which the α effect generates the magnetic field. It is shown that the amplitude and structure of an observable planetary magnetic field are largely determined by the magnitude and structure of the flow in the overlying layer. It is also shown that a strong-field planetary dynamo can be readily produced by the effect of an electrically conducting flow layer at the top of a convective core. The overlying layer and the underlying convective region constitute a magnetically strongly coupled system. Such overlying layers might exist at the top of the Earth's core due to chemical or thermal causes, in the cores of other terrestrial planets for similar reasons, and in Saturn due to the differentiation of helium from hydrogen. An electrically conducting and differentially rotating layer could exist above the metallic hydrogen region in Jupiter and affect the jovian magnetic field similar to the overlying layers in other planets. Lateral temperature gradients resulting in thermal winds drive the flow in the overlying layers. All planetary magnetic fields could be maintained by similar turbulent convective dynamos in the field-generation regions of planets with the differences among observable magnetic fields due to different circulations in the overlying electrically conducting layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号