首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
The data on the geochemistry and geochronology of zircons from wehrlites and clinopyroxenites of the dunite–wehrlite–clinopyroxenite banded complex that lies at the base of the crustal section of the ophiolite complex of the Nurali massif are presented. The obtained U–Pb age of the banded complex of 450 ± 4 Ma differs markedly from the previous age data. According to REE distribution patterns zircons from ultramafic rocks are attributed to the magmatic type and they indicate the age and supposed genetic similarity of the above rocks with lherzolites and dunites from the mantle section of the Nurali massif.  相似文献   

2.
Zircons in dunites of the Sakharin and East Khararnin massifs, situated in the South Urals and part of the platinum-bearing Uralian belt, were investigated for the first time. Several types were identified in the polygene-polychronous zircon assemblage of both massifs. The first is represented by Proterozoic (from 1517 ± 12 to 2693 ± 9 Ma) crystals similar to those widely spread in the Riphean and more ancient Uralian deposits. The second type includes dunite varieties of typical magmatic habit and of ages from 377 ± 3.6 Ma to 402 ± 3 Ma. The third contains crystals and crystal fragments of a high degree of crystallinity. The concordant Archean dating (2808 ± 26 Ma) for zircons of this type determines the minimum age of the dunite substrate. Zircons of Type 4 are heterogeneous, consist of the relict (nuclear) part represented by crystals of Types I and III and the newly formed mantle, and are consistent with zircons of Type II.  相似文献   

3.
The paper reports the results of mineralogical and isotope-geochronological study of zircons from the Uzyansky Kraka (UK) Massif, which represents the part of the large (more than 900 km2) lherzolite allochthon thrusted onto the Paleozoic sequences of the East European margin. The massif shows a distinct stratification (from the top downward): spinel lherzolites, garnet pyroxenites, and dunites. The formation of stratified section is considered to be related to the decompression uplift of mantle lherzolite block. Zircons from the massif rocks were dated using SHRIMP-II ion microprobe. The oldest relict datings characterizing endogenous transformations of protolith were established in the zircons from the lherzolites (2037 ± 20 and 1132 ± 6 Ma), garnet pyroxenites (953 ± 11 Ma), and dunites (632 ± 11 Ma). All rock associations contain zircons with ages within 590–550 and 445–390 Ma, which mark the stages of mantle stratification of lherzolite block into complementary series and their emplacement at the upper crustal level. Age values within 299–196 Ma were found only in the dunites and date the influence of the Paleozoic strike-slipping. Our studies led us to conclude that the modern structure of the Ural collision orogen contains the fragments of subcontinental lithosphere, which were previously described only for the massifs of the root zones of the Western and Central Europe. Some general petrogenetic questions of lherzolite massifs from orogenic regions are discussed.  相似文献   

4.
The paper presents data on the geochemical and geochronological characteristics of zircons from mafic rocks of part of the Monchegorsk layered complex represented by the Vurechuaivench massif. Ages of zircons (SHRIMP-II) from samples V-l-09 (anorthosite) and V-2-09 (gabbronorite) are dated back to 2508 ± 7 and 2504 ± 8 Ma, respectively. The chondrite-normalized REE patterns confirm the magmatic nature of zircons. The data unequivocally indicate that the U–Pb age of zircon from both gabbronorite and anorthosite corresponds to the age of melt crystallization in a magmatic chamber. The mantle origin of gabbroic rocks of the Vurechuaivench massif is confirmed by the REE patterns of three zircon generations with different crystallization sequences. The wide range of the Ce/Ce* ratio (9.96–105.24) established for zircons from gabbroic rocks of the Vurechuaivench massif indicates sharply oxidative conditions of zircon crystallization. For deepseated mantle rocks, these data can only be explained by significant contamination of the melt with country rock material.  相似文献   

5.
The presence of zircons of crustal origin in the dunites of Kytlym, a subduction-related concentrically zoned dunite–clinopyroxenite–gabbro massif of the Urals Platinum-Bearing Belt, may provide the first direct evidence of the recycling of continental crust into the mantle. Zircons were part of subducted sediments that melted to produce silicic magmas with entrained restitic zircons. These melts induced partial melting in the overlying mantle, which later crystallized as the Kytlym massif. Zircons rapidly captured into early formed dunites were prevented from dissolving completely and underwent different degrees of recrystallization. A few crystals still record their original ages, which range from ∼410 Myr to ∼2800 Myr, thus revealing a different origin. The majority, however, recrystallized in the presence of a limited amount of melt and record the diapir formation, 350–370 Ma, which was coeval with the Uralian high-pressure metamorphism. Lastly, several grains record an age of ∼330 Myr, which is identical, within error, to the Rb–Sr age of the tilaitic gabbros, (337 ± 22 Myr), and may, therefore, represent the crystallization age of the last melts formed during the evolution of Kytlym.  相似文献   

6.
The Zedong ophiolite is the largest ophiolite massif east of Dazhuqu in the Yarlung Zangbo Suture Zone in the southern Tibetan Plateau. However, its age, geodynamic setting and relationship to the Xigaze ophiolite remain controversial. New zircon U–Pb ages, whole-rock geochemical and Nd–Pb isotopic data from ophiolitic units provide constraints on the geodynamic and tectonic evolution of the Zedong ophiolite. U–Pb zircon geochronology of dolerite lavas and late gabbro–diabase dikes yield weighted mean ages of 153.9 ± 2.5 Ma and 149.2 ± 5.1 Ma, respectively. Strong positive εNd(t) and positive Δ7/4Pb and Δ8/4Pb values indicate derivation from a highly depleted mantle source with an isotopic composition similar to that of the Indian MORB-type mantle. The geochemistry of ophiolitic lavas and early dikes are analogous to typical island arc tholeiites whereas late dikes are similar to boninites. The geochemistry of these rock types suggests multi-stage partial melting of the mantle and gradually enhanced subduction influences to the mantle source through time. Combined with the MORB-like 162.9 ± 2.8 Ma Luobusha ophiolitic lavas, we suggest that the Luobusha lavas, Zedong lavas and early dikes originated in an infant proto-arc setting whereas late dikes in the Zedong ophiolite originated in a forearc setting. Together, they represent a Neo-Tethyan subduction initiation sequence. The Late Jurassic intra-oceanic proto-arc to forearc setting of the Zedong ophiolite contrasts with the continental margin forearc setting for the Xigaze ophiolite, which suggests a laterally complex geodynamic setting for ophiolites along the Yarlung Zangbo Suture Zone.  相似文献   

7.
The material and isotope-geochemical peculiarities of zircons from dunites of the Kondyor massif (Aldan Province, Southeast Siberian Craton) have been described for the first time. This massif is associated with an economic platinum placer deposit. On the basis of detailed study of the morphology, internal structure, and geochemical characteristics, zircons have been subdivided into two types. The first type is represented by crystals of oval and rounded shapes, characterized by a bimodal distribution of ??ancient?? (2477 ± 18 and 1885 ± 52 Ma) U-Pb (SHRIMP-II) ages. The second type of zircons forms idiomorphic crystals and aggregates of prismatic habitus, forming two ??young?? age clusters (176 ± 1.2 and 143 ± 2.0 Ma). The obtained results allow us to make a conclusion about the long evolution of platinum-bearing dunites. The first type of zircons formed by metamictic cores and homogeneous peripheral rims indicates the time of metamorphism at the Archean-Proterozoic boundary (??2.5 Ga), implying an older age of porous zircon cores. Such zircons characterize the minimal age of the initial mantle substance or a close time when the platinum-bearing dunite was generated. Based on their formation time, the second type of zircons can be referred to the epoch of tectonic-magmatic activation of the Aldan Shield. The new geochronological data, along with the material identity of dunites from the Urals and the Aldan Province, argue for a common genetic origin of platinum-bearing dunites of the fold belts and ancient cratons.  相似文献   

8.
The Qinling Orogenic Belt was formed by subduction and collision between the North and South China Blocks along the Shangdan suture. The Songshugou ultramafic massif located on the northern side of the Shangdan suture provides essential insights into the mantle origin and evolutionary processes during spreading and subduction of the Shangdan oceanic lithosphere. The ultramafic massif comprises harzburgite, coarse- and fine-grained dunites. The spinels from harzburgite exhibit low Cr# and high Mg# numbers, suggesting a mid-ocean ridge peridotite origin, whereas spinels from both coarse- and fine-grained dunites are indicated as resulted from melt-rock reaction due to their systematic higher Cr# and low Mg# numbers. This melt-rock reaction in the dunites is also indicated by the low TiO2 (mostly <0.4 wt%) in the spinel and high Fo (90–92) in olivines. Due to its relatively homogeneous nature in the mantle, oxygen isotopic composition is a sensitive indicator for the petrogenesis and tectonic setting of the Songshugou ultramafic rocks. Based on in-situ oxygen isotope analyses of olivines from twenty-six rock samples, most harzburgites from the Songshugou ultramafic massif show low δ18O values of 4.54–5.30‰, suggesting the olivines are equilibrium with N-MORB magmas and originally formed in a mid-ocean ridge setting. The coarse- and fine-grained dunites exhibit slightly higher olivine δ18O values of 4.69–6.00‰ and 5.00–6.11‰, respectively, suggesting they may have been modified by subduction-related boninitic melt-rock reaction. The δ18O values of olivines systematically increasing from the harzburgites, to coarse-grained dunites and fine-grained dunites may suggest enhancing of melt-rock reaction. The decreasing of Os concentration, 187Re/188Os and 187Os/188Os ratios from harzburgite to dunite suggest an 187Os-enriched, subduction zone melt was responsible for creating the melt channel for melt-rock reactions. Together with the high-temperature ductile deformation microstructures, these isotopic and mineral geochemical features suggest that the harzburgites represent mantle residues after partial melting at mid-ocean ridge or supra-subduction zone, while the dunites were probably resulted from reactions between boninitic melt and harzburgites in a supra-subduction zone. Re-Os geochronology yields a maximum Re depletion model age (TRD) of 805 Ma, constraining the minimum formation age of the harzburgites derived from oceanic mantle. Eight samples of whole rock and chromite yield a Re-Os isochron age of 500 ± 120 Ma, constraining the timing of melt-rock reactions. Combined with the regional geology and our previous investigations, the Songshugou ultramafic rocks favors a mantle origin at mid-ocean ridge before 805 Ma, and were modified by boninitic melt percolations in a SSZ setting at ca. 500 Ma. This long-term tectonic process from spreading to subduction might imply a huge Pan-Tethyan ocean between the Laurasia (e.g., North China Block) and Gondwana (e.g., South China Block) and/or a one-side subduction.  相似文献   

9.
The ophiolite complexes outcrop extending more than 700 km in the Dzhalair-Nayman zone located between the Chuya-Kendyk Tas (in the southwest) and Aktau-Dzhungar (in the northeast) Precambrian sialic massifs in South Kazakhstan. The most complete ophiolite sections are described in the central (Andassai massif) and southeastern (Dulankara massif) parts of the zone. Plagiogranites occur in a sheeted dyke complex in the upper part of ophiolite sections. A bimodal volcanic series occurs atop the section. The U/Pb zircons ages for the Andassai and Dulankara plagiogranites are 519 ± 4 and 521 ± 2 Ma, respectively. Ophiolites associated with bimodal volcanic series are also found in the north and northeast of Kazakhstan. They may form, together with the Lower Cambrian complexes of the Dzhalair-Nayman zone, a single paleostructure, whose fragments are well-traceable for over 2000 km  相似文献   

10.
First isotopic-geochemical data were obtained on basite-ultrabasite rocks from the southern Kovdor area that were previously provisionally ascribed to the drusite (coronite) complex based on the occurrence of drusite (coronite) textures. The mineral and whole-rock Sm-Nd isochron age determined for five rock samples from the Sorkajoki and Poioiva massifs and the massif of Elevation 403 m turned out to be close (within the error): 2485 ± 51, 2509 ± 93, and 2517 ± 75 Ma, respectively. The crystallization age was evaluated for the two massifs (Poiojovski and Mount Krutaya Vostochnaya) by the U-Pb system of zircons. Our samples contained both magmatic and xenogenic crustal zircons, whose age was estimated at 2700 Ma. The crystallization age of the massifs themselves (data on the magmatic zircons) is 2410 ± 10 Ma. The undepleted character of the mantle source (ɛNd = +0.9) and the much younger age of the massifs than that of other known manifestations of ultrabasic magmatism in the territory of Karelia and the Kola Peninsula (including the layered pluton classic drusite massifs) suggest that the central part of the Belomorian Mobile Belt hosts one more independent intrusive rock complex, which has never been recognized previously and which is different from typical drusites.  相似文献   

11.
The U–Pb (SHRIMP) dating of zircon from the layered complex of ophiolitic gabbro in the Klyuchevsk massif yielded an age of 456 ± 6 Ma corresponding within the limits of error to zircon dates obtained for other petrographic varieties from this massif. The investigation of the composition of silicate inclusions in dated zircon grains revealed that they are represented by typical metamorphic minerals: albite, zoisite, and secondary amphiboles. The data indicate that zircon was crystallized during metamorphic transformations of gabbroids and its U–Pb age (Late Ordovician–Silurian) is characteristic of all rocks in the ophiolite association of the Klyuchevsk massif indicating the age of metamorphism, not their formation time.  相似文献   

12.
Zircons in serpentinites from Nyashevo massif of the Ilmenogorskii complex were dated for the first time by means of the SHRIMP technique. The maximum date of 1892 ± 23 Ma for the zircons accounts for the minimum age of their mantle substrate probably constituting the restite residue. The date is comparable to those for metamorphic rocks of the Selyankino group, as well as of fenite–sand amphibolites of the Ilmenogorskii complex. The Upper Ordovician age limit of 443 ± 12 Ma is adequate for formation of the massif and conforms to the age of the Buldym massif and miaskites. The Early Permian dates of zircons (275.8 ± 2.1 Ma) represent late shear processes in the Ilmenogorskii complex.  相似文献   

13.
The U-Pb age was obtained for the coexisting baddeleytte-zircon system from dunites of the Konder massif, Aldan shield. Four groups of zircons are heterogeneous by morphology, habit, age, and geochemistry in contrast to homogeneous baddeleytte. The studied zircon groups are characterized by several U-Pb age clusters in the range of 1895 ± 50 to 125.8 ± 3.8 Ma, which indicates their long evolution in Pt-bearing dunites. The young assemblage of baddeleytte and zircon (124.9 ± 1.9 and 125.8 ± 3.8 Ma, respectively) also differs from ancient zircons in the morphology and geochemistry and probably dates to a much later event of diapir evolution, which may be referred to the formation of apatite-phlogopite ore pyroxenites inside the dunite core and tectono-magmatic activation of the Aldan shield.  相似文献   

14.
Plagiogranites and conodonts from chert intercalations in basalts of the ophiolite association in the Tekturmas zone of Central Kazakhstan were subjected to the U?Pb geochronological and stratigraphic investigations, respectively. The age of plagiogranite crystallization is estimated to be 489 ± 8 Ma corresponding to the stratigraphic interval spanning from the uppermost Upper Cambrian to the lower Tremadocian. Conodonts from cherts of the Kuzek Formation are distributed along the section interval from the uppermost part of the Darriwilian (Middle Ordovician) to the lower part of the Sandbian (Upper Ordovician), which corresponds to the period of 457?460 Ma. It is revealed that the formation of the ophiolite section in the Tekturmas zone was a multistage process lasting from the Late Cambrian to the initial Late Ordovician.  相似文献   

15.
The Tamvatnei ophiolite massif is located in the external part of the Koryak-Kamchatka accretionary orogen, within the limits of the Anadyr-Koryak Fold System (Late Cretaceous accretion), composed largely of complexes of enzymatic island arcs and backarc basins referred to the Jurassic-Early Neocomian. Lherzolite type ophiolites of the Tamvatnei massif, located in the harzburgite province of the Mainitsa and Algan-Velikorechenskii terranes and being a regional anomaly in terms of geological structure and rock composition, were not dated by paleontological methods. The geological data indicate only their pre-Senonian age of formation, and K-Ar datings for mafites by the rock bulk compositions cover nearly the whole Early Cretaceous. The isotope dating of ten accessory zircon grains from quartz diorite, which finished the formation of magnesian series of gabbro-diabases belonging to the Tamvatnei hypoabyssal ophiolite complex and that of magnesian andesites from the lower stratum of the volcanogenetic complex, yielded a concordant age of 138.9 ± 1.9 Ma. These results, as well as the previously acquired date for amphibole from amphibole microgabbro belonging to the hypoabyssal complex (120.0 ± 2.4 Ma; after P. U. Layer), indicate that Tamvatnei lherzolite-type ophiolites formed in the Valanginian-Aptian, i.e., later than the Late Mesozoic suprasubduction ophiolites from the adjacent Mainitsa and Algan terranes, whose volcanogenic-siliceous strata are dated at the Jurassic-Valanginian. The obtained results prove the model for Tamvatnei ophiolite generation in an introarc basin founded during breakup of the crust of the Mainitsa-Algan island-arc system.  相似文献   

16.
40Ar-39Ar, Sm-Nd, U-Pb, and Lu-Hf isotope data are reported on the gabbro of the Volkovsky Massif, the only massif of the Uralian Platinum Belt wherein economic copper-iron-vanadium and high-grade gold-palladium mineralization is present. The massif is made up of gabbro blocks with concentrically zoned structure and diorite intrusions in its core. In the northeast and southwest, the gabbro is cut by syenite of the Kushva Massif. Gabbro blocks mainly consist of the olivine-anorthite gabbro, while labradorite two- pyroxene gabbro intersects both olivine-anorthite gabbro and Ti-magnetite and copper-PGE mineralization developed in them. The study of both gabbro types by Sm-Nd isochron and U-Pb (SHRIMP II) zircon methods with subsequent REE and Lu-Hf isotope analysis of zircon made it possible to date reliably (428 ± 7 Ma (SHRIMP) and 436 ± 21 Ma (Sm-Nd)) postore labradorite gabbro and, correspondingly, the upper age limit of the mineralization of the Volkovsky Massif. Ore-bearing olivine-anorthite gabbro contain four different-age zircon populations: 2682 ± 37–972 ± 18 Ma, 655 ± 15 to 565 ± 9 Ma; 450 ± 12 Ma, and 343 ± 8 Ma. Hf-Nd isotope systematics showed that zircon with an age of 450 ± 12 Ma presumably marks the formation age of the rocks, the older zircon was trapped, while zircon with an age of 343 ± 8 Ma was formed during low-temperature transformation of the rock and sometimes contains excess radiogenic Hf. Proterozoic xenogenic zircon was inherited from diverse rocks of ancient crust, while the oldest grain with an age of 2065 Ma was possibly formed in a deep mantle source. Vendian zircon was presumably also entrapped, and its morphology and geochemistry point to the crystallization from a basaltic melt. The abundance of pre-Paleozoic zircon in the olivine-anorthite gabbro suggests significant contribution of ancient material in their petrogenesis. This material could serve as source of ore components (metals and sulfur) for unique copper-sulfide gold-PGE mineralization of the Volkovsky Massif.  相似文献   

17.
The paper presents new determinations of the U-Pb zircon age of high-Al chromitite from dunite of the mantle section of the Voikar-Synya massif at the Kershor site in the boundary zone with rocks of the dunite-wehrlite-clinopyroxenite complex. The high-Cr chromitite from dunite in the central part of the same massif contains zircon dated at ca. 0.6 Ga [10]. It is suggested that Paleoproterozoic (2.0?1.9 Ga) zircons from chromitites of the mantle section near the petrological Moho boundary were formed in the course of partial melting of peridotites and/or their interaction with migrating MORB-type melts. The occurrence of Vendian and Paleoproterozoic zircons in chromitites from different parts of the mantle section, as well as previously published petrological, geochemical, and geological data [2, 11, 22] allow us to suggest a complex multistage evolution of the mantle section in ophiolites. The arguments stated below show that chromitites and host dunites could have been formed at different times and were probably related to different processes. Thus, not only various complexes of the pre-Paleozoic oceanic crust reworked in the suprasubduction setting differ in age, but also the mantle rock of similar petrography, vary in the time of their formation.  相似文献   

18.
The basement of the south Ulutau sialitic massif, which is located in the western part of Central Kazakhstan, comprises metamorphized volcanogenic-sedimentary and plutonic complexes of Proterozoic age. The upper boundary of the metamorphism age corresponds to the age of nonmetamorphized syenites from the Karsakpai massif (673 ± 2 Ma, Late Riphean). U-Pb geochronological studies of accessory zircon were made, and a Late Riphean age of biotite alkali granite from the Aktas massif (the youngst metamorphic Precambrian igneous units in South Ulutau) was found. The obtained age estimate of 791 ± 7 Ma can be considered as the lower age limit of metamorphism. Thus, the last stage of regional metamorphism in South Ulutau took place in the second half of the Late Riphean, in the time interval of 790?C670 Ma.  相似文献   

19.
Several spindle-shaped grains of zircon, which have a small size (<0.25 mm) and a distinct purplish pink coloration were found in the crushed samples of kimberlites from the Aykhal, Komsomolskaya-Magnitnaya, Botuobinskaya (Siberian platform), and Nyurbinskaya (Yakutia) pipes and olivine lamproites of the Khani massif (West Aldan). U-Pb SHRIMP II zircon dating performed at the VSEGEI Center for Isotopic Research yielded the ages of 1870–1890 Ma for the pipes of the Western province (Aykhal and Komsomolskaya) and 2200–2750 Ma for the pipes of the eastern province (Nyurbinskaya and Botuobinskaya), which allowed us to consider these zircons to be xenogenic to kimberlites. Although these zircons resemble in their age and color those from the granulite xenoliths in the Udachnaya pipe [2], no other granulite minerals are found there. Thus, major geological events in the mantle and lower crust, which led to the formation of zircon-bearing rocks, happened at 1800–1900 Ma in the northern part of the kimberlite province, whereas in the Eastern part of the province (Nakyn field) these events were much older (2220–2700 Ma). It is known that the period of 1800–1900 Ma in the Earth’s history was accompanied by intense tectonic movements and widespread alkaline-carbonatite magmatism. This magmatism was related to plume activity responsible for overheating the large portions of the mantle to the temperatures at which some diamonds in mantle rocks would burn (northern part of the kimberlite province). In the Nakyn area, the mantle underwent few or no geological processes at that time, and perhaps for this reason this area hosts more diamondiferous kimberlites. The age of olivine lamproites from the Khani massif is 2672–2732 Ma. Thus, these are some of the world’s oldest known K-alkaline rocks.  相似文献   

20.
The dike-vein complex of the Moncha Tundra Massif comprises dolerites, gabbro-pegmatites, and aplites. The dolerite dikes are classified into three groups: high-Ti ferrodolerites, ferrodolerites, low-Ti and low-Fe gabbro-dolerites. The U-Pb age of the ferrodolerites is 2505 ± 8 Ma, and the amphibole-plagioclase metagabbroids hosting a ferrodolerite dike are dated at 2516 ± 12 Ma. Data on the U-Pb isotopic system of zircon from the gabbro-pegmatites and titanite from the aplites indicate that the late magmatic evolution of the Moncha Tundra Massif proceeded at 2445 ± 1.7 Ma, and the youngest magmatic events in the massif related to the Svecofennian orogeny occurred at 1900 ± 9 Ma. The data obtained on the Sm-Nd and Rb-Sr isotopic systems and the distribution of trace elements and REE in rocks of the dike-vein complex of the massifs provide insight into the composition of the sources from which the parental magmas were derived. The high-Ti ferrodolerites were melted out of a deep-sitting plume source that contained an asthenospheric component. The ferrodolerites were derived from a mantle MORB-type source that contained a crustal component. The parental melts of the gabbro-dolerites were melted out of the lithospheric mantle depleted in incompatible elements after Archean crust-forming processes above an ascending mantle plume, with the participation of a crustal component. The gabbro-dolerites and the rocks of the layered complex of the Moncha Tundra Massif exhibit similar geochemical characteristics, which suggest that their parental melts could be derived from similar sources but with more clearly pronounced crustal contamination of the parental melts of the rocks of the massif itself. The geochemical traits of the gabbro-pegmatites are thought to be explained not only by the enrichment of the residual magmas in trace elements and a contribution of a crustal component but also by the uneven effect of sublithospheric mantle sources. The aplites were derived from a sialic crustal source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号