首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

2.
The western Musgrave Ranges are broadly divided into three groups of metamorphic rocks. A central granulite‐facies core is bounded on the north by rocks of amphibolite grade and on the south by rocks transitional between the granulite and amphibolite facies. Faults trending east‐west separate the three groups of rocks.

The detailed structural relationships between the granulites and the lower grade rocks are described and discussed. The granulites are structurally relatively simple and are characterised by the presence of a strong southwesterly‐plunging, mineral‐streaking lineation. In marked contrast, the transitional rocks are more complexly folded on a macroscopic scale and they also have a well‐developed mineral lineation plunging to the southeast. These two lineation orientations are considered to be directions of maximum elongation. The amphibolite‐facies rocks are also complexly folded and at least two lineations related to different phases of deformation have been recognized.

A suite of foliated and lineated dolerite dykes which occurs throughout the area inherited their fabric during a period of intense deformation and recrystallization, which resulted in the development of numerous mylonite zones.

It is suggested that the granulite‐facies rocks may represent a suite of cover rocks which have been thrust in a northerly direction over a pre‐existing amphibolite‐facies basement.  相似文献   

3.
Although the U–Pb zircon chronometer has been widely used for dating metamorphism in moderate‐ to high‐grade rocks, it is generally difficult to link the U–Pb age of zircon to specific metamorphic reactions. In this study, the initial Hf isotopic composition of secondary zircon is compared with the evolution of Hf isotopic composition of the bulk sample, back‐projected from the measured value through time. This approach may enhance the interpretation of radiometric ages performed on metamorphic mineral assemblages. Here, U–Pb, Sm–Nd and Lu–Hf geochronology and thermobarometry have been integrated and applied to two metamorphosed diabase dykes in the Sveconorwegian orogen, SW Sweden. The dykes are located ~5 km east of the NNE‐trending Göta Älv deformation zone in the Idefjorden terrane, and trend parallel to this zone. The Lunden dyke is recrystallized into a coronitic, granulite facies assemblage. U–Pb isotopic analyses of baddeleyite in this dyke indicate an emplacement age of c. 1300 Ma. Thermobarometric techniques applied to garnet and omphacitic clinopyroxene coronas indicate high‐pressure metamorphism at ~15 kbar and ~740 °C. The growth of polycrystalline zircon at the expense of baddeleyite occurred at 1046 ± 6 Ma. The identical Hf isotopic composition of polycrystalline zircon and baddeleyite shows that the baddeleyite‐to‐zircon transition took place before Hf equilibration among the other metamorphic minerals and, hence the c. 1046 Ma age of polycrystalline zircon sets an upper age limit of metamorphism of this sample. The Haregården dyke is recrystallized into a granoblastic transitional upper amphibolite to granulite facies assemblage. The estimated P–T conditions are ~10 kbar and ~700 °C. Analyses of small (~30 μm), clear and round zircon in this sample yield a Concordia U–Pb age of 1026 ± 4 Ma, which is indistinguishable from the Lu‐Hf and Sm‐Nd mineral isochron ages of 1027 ± 9 and 1022 ± 34 Ma, respectively. This type of secondary zircon plots at the lower end of the Lu‐Hf isochron and indicates simultaneous growth with garnet at c. 1026 Ma, a time when Hf isotopic equilibrium among minerals must have been reached.  相似文献   

4.
《Precambrian Research》2001,105(2-4):143-164
New fieldwork, map interpretation, petrography and single zircon U–Pb geochronology has allowed the identification of different crustal blocks in the Paamiut region, in the southern portion of the West Greenland Archaean Craton. Changes of metamorphic grade from only amphibolite facies to granulite facies (some subsequently retrogressed) corresponds with zones of Archaean high strain ductile deformation ± mylonites. U–Pb zircon dates are presented for the TTG (tonalite, trondhjemite, granodiorite) protoliths from each block in the Paamiut region, and the southern portion of the previously identified Tasiusarsuaq terrane lying to the north. The southern part of the Tasiusarsuaq terrane contains 2880–2860 Ma TTG rocks and underwent amphibolite facies metamorphism. Structurally underneath the Tasiusarsuaq terrane to the south is the Sioraq block containing 2870–2830 Ma TTG rocks partly retrogressed from granulite facies. Structurally underneath and to the south is the Paamiut block, dominated by 2850–2770 Ma granodioritic rocks that have only undergone amphibolite facies metamorphism. Also structurally overlying the Paamiut block, but cropping out separately from the Sioraq block, is the Neria block. This appears to be dominated by 2940–2920 Ma gneisses that have been totally retrogressed from granulite facies and strongly deformed. In the southernmost part of the region the Neria block overlies the greenschist to lowermost amphibolite facies Sermiligaarsuk block that contains the ⩾2945 Ma Tartoq Group. Rocks from all the blocks record ancient loss of Pb from zircons and some new zircon growth at 2820 Ma, interpreted to indicate a high grade metamorphic event at that time, including granulite facies metamorphism in the Sioraq and Neria blocks. The blocks of different metamorphic grade are interpreted to have moved to their current positions after the 2820 Ma metamorphism, explaining the change in metamorphic history across some mylonites and ductile shear zones which deform and retrogress granulite facies textures. The juxtaposed blocks and their contacts were subsequently folded under amphibolite facies conditions. The contacts are cut by undeformed Palaeoproterozoic dolerite dykes which post-date amphibolite facies metamorphism. These results, together with previously published data from the Godthåbsfjord region (north of Paamiut) shows that the North Atlantic Craton in West Greenland from Ivittuut in the south to Maniitsoq in the north (∼550 km) consists of a mosaic of ductile fault-bounded packages that attained their present relative positions in the late Archaean.  相似文献   

5.
This study explores the origin and geochemical evolution ofapatite, monazite, and xenotime along two metamorphic traverses.The first, from the Kigluaik Mountains, Seward Peninsula, Alaska,consists of a localized (85 cm) orthopyroxene–clinopyroxene-bearingdehydration zone. The second consists of orthopyroxene ±clinopyroxene-bearing granulite facies metabasite layers interlayeredwith metapelites over a 3–4 km traverse, along the ValStrona, Ivrea–Verbano Zone, Northern Italy (IVZ). In bothdehydration zones small Th- and U-poor inclusions of monaziteand/or xenotime occur in the apatite. These inclusions are metasomaticallyinduced and nucleated within the apatite via the coupled substitutionsNa+ + (Y + REE)3+ = 2 Ca2+ and Si4+ + (Y + REE)3+ = P5+ + Ca2+.These are not present in apatite from the original amphibolitefacies gneiss. Apatite, in both dehydration zones, also showsa relative increase in both F and Cl compared with apatite fromthe amphibolite facies zone. Granulite facies metabasites inthe IVZ also contain isolated monazite grains, which range fromuniform to complexly zoned in Th the (13–30·1 mol% ThSiO4). These are the product of breakdown and subsequentmobilization of the lanthanides and actinides from monazite-(Ce)in the metapelite layers into the metabasite layers at the startof granulite facies metamorphism. KEY WORDS: apatite; monazite; xenotime; KCl–NaCl brines; metasomatism; phosphate minerals; charnockite–enderbite; granulite facies metamorphism  相似文献   

6.
The Crossite Content of Ca-Amphibole as a Guide to Pressure of Metamorphism   总被引:10,自引:0,他引:10  
A correlation between the crossite component (NaM4) in Ca-amphiboleand pressure of metamorphism has long been recognized (Shido& Miyashiro, 1959), but only recently has the reaction beenidentified which buffers this aspect of amphibole composition(Brown, 1974): Ca-amphibole+iron oxide+albite+chloriteI+H2O (±stilp,qtz) = crossite+epidote (±muscovite, qtz). The exact stoichiometry of the reaction depends on compositionalvariables in the minerals, especially Fe2+/Mg and Fe3+/Al. Ca-amphiboleshould have fixed NaM4, at any given T and P, where it coexistswith iron oxide, albite, and chlorite. Comparison of Ca-amphibole composition with mineral assemblage,in rocks from Otago, N.Z., and elsewhere, supports this hypothesis.In any terrane NaM4 is nearly constant at a particular metamorphicgrade where amphibole exists in the buffering assemblage, butvaries widely outside of this assemblage. Variations in Fe2+/Mgand Fe3+/Al in the amphibole have relatively little effect onNaM4, but in high pressure amphiboles NaM4 varies inverselywith Aliv. Ca-amphiboles from high pressure areas have substantially moreNaM4 (Otago, 0.6 of 2.0) than those from lower pressure areas(Sierra contact aureoles, 0.1). These relations suggest thatin the buffering assemblage, the NaM4 content of Ca-amphiboleshould be a useful relative barometer for low to medium grademetamorphic rocks.  相似文献   

7.
Early Palaeozoic kyanite–staurolite‐bearing epidote–amphibolites including foliated epidote–amphibolite (FEA), and nonfoliated leucocratic or melanocratic metagabbros (LMG, MMG), occur in the Fuko Pass metacumulate unit (FPM) of the Oeyama belt, SW Japan. Microtextural relationships and mineral chemistry define three metamorphic stages: relict granulite facies metamorphism (M1), high‐P (HP) epidote–amphibolite facies metamorphism (M2), and retrogression (M3). M1 is preserved as relict Al‐rich diopside (up to 8.5 wt.% Al2O3) and pseudomorphs after spinel and plagioclase in the MMG, suggesting a medium‐P granulite facies condition (0.8–1.3 GPa at > 850 °C). An unusually low‐variance M2 assemblage, Hbl + Czo + Ky ± St + Pg + Rt ± Ab ± Crn, occurs in the matrix of all rock types. The presence of relict plagioclase inclusions in M2 kyanite associated with clinozoisite indicates a hydration reaction to form the kyanite‐bearing M2 assemblage during cooling. The corundum‐bearing phase equilibria constrain a qualitative metamorphic P–T condition of 1.1–1.9 GPa at 550–800 °C for M2. The M2 minerals were locally replaced by M3 margarite, paragonite, plagioclase and/or chlorite. The breakdown of M2 kyanite to produce the M3 assemblage at < 0.5 GPa and 450–500 °C suggests a greenschist facies overprint during decompression. The P–T evolution of the FPM may represent subduction of an oceanic plateau with a granulite facies lower crust and subsequent exhumation in a Pacific‐type orogen.  相似文献   

8.
定结(Dinggye)位于藏南高喜马拉雅结晶岩系的中部,研究该区域麻粒岩的变质P-T轨迹对于理解青藏高原的碰撞和抬升过程至关重要.通过对该地区的高压基性麻粒岩(退变榴辉岩)的岩相学观察,确定了4期矿物组合:(1)峰期榴辉岩相矿物组合(M1)由石榴子石(核部)+绿辉石(假象)+石英+金红石组成;(2)高压麻粒岩相矿物组合(M2)主要由石榴子石(幔部)+单斜辉石+斜长石+钛铁矿+角闪石+黑云母组成;(3)中压麻粒岩相矿物组合(M3)由石榴子石(边缘)+斜方辉石+斜长石+钛铁矿+黑云母组成;(4)角闪岩相矿物组合(M4)主要由角闪石+斜长石组成.在NCFMASHTO体系下,用THERMOCALC软件对该高压基性麻粒岩进行了热力学模拟.结合传统温压计和平均温压计计算结果,求得M2、M3、M4阶段的温压条件分别为786~826 ℃、0.78~0.96 GPa;798~850 ℃、0.71~0.75 GPa;610~666 ℃、0.51~0.60 GPa,这指示了一条以峰期后近等温降压(ITD)为特征的顺时针P-T轨迹.结合已有地质资料,表明定结高压基性麻粒岩(退变榴辉岩)是喜马拉雅碰撞造山的产物,峰期后经历了近等温降压的构造抬升过程.   相似文献   

9.
Blue Mountain is a central-type alkali ultrabasic-gabbro ringcomplex (1?1?5 km) introducing Upper Jurassic sediments, Marlborough,New Zealand. The ultrabasic-gabbroic rocks contain lenses ofkaersutite pegmatite and sodic syenite pegmatite and are intrudedby ring dykes of titanaugite-ilmenite gabbro and lamprophyre.The margin of the intrusion is defined by a ring dyke of alkaligabbro. The plutonic rocks are cut by a swarm of hornblende-biotite-richlamprophyre dykes. Thermal metamorphism has converted the sedimentsto a hornfels ranging in grade from the albite-epidote hornfelsfacies to the upper limit of the hornblende hornfels facies. The rocks are nepheline normative and consist of olivine (Fo82-74),endiopside (Ca45Mg48Fe7-Ca36Mg55Fe9), titanaugite (Ca40Mg50Fe10-Ca44Mg39Fe17),plagioclase (An73-18), and ilmenitetitaniferous magnetite, withvarious amounts of titaniferous hornblende and titanbiotite.There is a complete gradation between end-iopside and titanaugitewith the coupled substitution Ry+z+Si(Ti+4+Fe+3)+Al+3 and asympathetic increase in CaAl2SiO6 (0?2-10?2 percent) and CaTiAl2O6(2?1-8?1 per cent) with fractionation. Endiopside shows a small,progressive Mg enrichment along a trend subparallel to the CaMgSi2O6-Mg2Si2O6boundary, and titanaugite is enriched in Ca and Fe+2+Fe+3 withdifferentiation. Oscillatory zoning between endiopside and titanaugiteis common. Exsolved ilmenite needles occur in the most Fe-richtitanaugites. The amphiboles show the trend: titaniferous hornblende(1?0–5?7 per cent TiO2)kaersutite (6?4 per cent TiO2)Fe-richhastingsite (18?0–19?1 per cent FeO as total Fe). Biotiteis high in TiO2 (6?6–7?8 per cent). Ilmenite and titaniferousmagnetite (3?5–10?6 per cent TiO2) are typically homogeneousgrains; their composition can be expressed in terms of R+2RO3:R+2O:R2+3O4. The intrusion of igneous rocks was probably controlled by subterraneanring fracturing. Subsidence of the country rock within the ringfracture provided space for periodic injections of magma froma lower reservoir up the initial ring fracture to form the BlueMountain rocks at a higher level. Downward movement of the floorof the intrusion during crystallization caused inward slumpingof the cumulates which affected the textural, mineralogical,and chemical evolution of the rocks in different parts of theintrusion. The order of mineral fractionation is reflected by the chemicalvariation in the in situ ultrabasic-gabbroic rocks and the successiveintrusions of titanaugite-ilmenite gabbro and lamprophyre ringdykes, marginal alkali gabbro and lamprophyre dyke swarm. Aninitial decrease, then increase in SiO2; a steady decrease inMgO, CaO, Ni, and Cr: an initial increase, then decrease inFeO+Fe2O3, TiO2, MnO, and V; almost linear increase in Al2O3and late stage increase in alkalis and P2O3, implies fractionationof olivine and endiopside, followed by titanaugite and Fe-Tioxides, followed by plagioclase, hornblende, biotite, and apatite.Reversals in the composition of cumulus olivine and endiopsideand Solidification Index, indicate that the ultrabasic-gabbroicsequence is composed of four main injections of magma. The ultrabasic rocks crystallized under conditions of high PH2Oand fairly high, constant PO2; PH2 and PO2 increased duringthe formation of the gabbroic rocks until fracturing of thechamber roof occurred. The abundance of euhedral amphibole inthe latter injection phases suggests that amphibole accumulatedfrom a hydrous SiO2 undersaturated magma when an increase inPO2, stabilized its crystallization. Plutonic complexes similar to Blue Mountain are found withinand beneath the volcanic piles of many oceanic islands, e.g.Canaries, Reunion, and Tahiti, and those intruding thick sedimentarysequences, as at Blue Mountain, e.g. the pipe-like intrusionsof the Monteregian Hills, Quebec.  相似文献   

10.
Melt loss and the preservation of granulite facies mineral assemblages   总被引:29,自引:3,他引:29  
The loss of a metamorphic fluid via the partitioning of H2O into silicate melt at higher metamorphic grade implies that, in the absence of open system behaviour of melt, the amount of H2O contained within rocks remains constant at temperatures above the solidus. Thus, granulite facies rocks, composed of predominantly anhydrous minerals and a hydrous silicate melt should undergo considerable retrogression to hydrous upper amphibolite facies assemblages on cooling as the melt crystallizes and releases its H2O. The common occurrence of weakly retrogressed granulite facies assemblages is consistent with substantial melt loss from the majority of granulite facies rocks. Phase diagram modelling of the effects of melt loss in hypothetical aluminous and subaluminous metapelitic compositions shows that the amount of melt that has to be removed from a rock to preserve a granulite facies assemblage varies markedly with rock composition, the number of partial melt loss events and the P–T conditions at which melt loss occurs. In an aluminous metapelite, the removal of nearly all of the melt at temperatures above the breakdown of biotite is required for the preservation of the peak mineral assemblage. In contrast, the proportion of melt loss required to preserve peak assemblages in a subaluminous metapelite is close to half that required for the aluminous metapelite. Thus, if a given proportion of melt is removed from a sequence of metapelitic granulites of varying composition, the degree of preservation of the peak metamorphic assemblage may vary widely.  相似文献   

11.
The El Arenal metagabbros preserve coronitic shells of orthopyroxene ± Fe‐oxide around olivine, as well as three different types of symplectite consisting of amphibole + spinel, clinopyroxene + spinel and, more rarely, orthopyroxene + spinel. The textural features of the metagabbros can be explained by the breakdown of the olivine + plagioclase pair, producing orthopyroxene coronas and clinopyroxene + spinel symplectites, followed by the formation of amphibole + spinel symplectites, reflecting a decrease in temperature and, possibly, an increase in water activity with respect to the previous stage. The metagabbros underwent a complex P–T history consisting of an igneous stage followed by cooling in granulite, amphibolite and greenschist facies conditions. Although the P–T conditions of emplacement of the igneous protolith are still doubtful, the magmatic assemblage suggests that igneous crystallization occurred at a pressure lower than 6 kbar and at 900–1100 °C. Granulitic P–T conditions have been estimated at about 900 °C and 7–8 kbar combining conventional thermobarometry and pseudosection analysis. Pseudosection calculation has also shown that the formation of the amphibole + spinel symplectite could have been favoured by an increase in water activity during the amphibolite stage, as the temperature of formation of this symplectite strongly depends on aH2O (<740 °C for aH2O = 0.5; <790 °C for aH2O = 1). Furthermore, but not pervasive, re‐equilibration under greenschist facies P–T conditions is documented by retrograde epidote and chlorite. The resulting counterclockwise P–T path consists of progressive, nearly isobaric cooling from the igneous stage down to the granulite, amphibolite and greenschist stage.  相似文献   

12.
The Terre Adélie Craton displays superimposed strain fields related to the Neoarchean (2.6–2.4 Ga, M1) and Paleo-Mesoproterozoic (1.7–1.5 Ga, M2) metamorphic events. M1 is a regional granulite facies event, constrained by P-T modelling at ~0.8–1.0 GPa – 800–850 °C, followed by a decompressional retrogression in the upper amphibolite facies at ~0.6 GPa – 750 °C. M2 Stage 1 P-T peak is constrained at 0.6–0.7 GPa – 670–700 °C, followed by a steep P-T path down to 0.3 GPa – 550 °C. Retrogression after M2 PT peak occurred in a context of dextral shearing along the Mertz Shear Zone along with thrust motions within the eastern Terre Adélie Craton. In this paper, we present a series of 63 new 40Ar/39Ar ages of biotite and amphibole pairs in mafic rocks from a complete traverse of the Terre Adélie Craton. 40Ar/39Ar dating constrains M2 amphibolite facies metamorphism at a regional scale between 1700 and 1650 Ma, during stage 1 peak metamorphism. During retrogression, lower amphibolite facies recrystallization mainly occurred along vertical shear zones and mafic dykes between 1650 and 1600 Ma (Stage 2), followed by amphibolite to greenschist facies metamorphism until after 1500 Ma (Stage 3). At the scale of the Mawson continent, this event is related to the growth of an active margin above an oblique subduction zone. The supra-subduction model best explains opening of Dumont D'Urville and Hunter basins at 1.71 Ga followed by their rapid closure and metamorphism at 1.70 Ga. In this context, episodic shear zone reactivation and magmatic dyke emplacement led to a partial reequilibration of the 40Ar/39Ar system until <1500 Ma. This latter phase of mafic magmatism largely coincides with a hot spot event at the scale of the Gawler Craton and western Laurentia paleocontinent.  相似文献   

13.
Amphibolite facies metamorphism of gabbroic dykes, together with their quartzo-feldspathic, granulite facies country rock (Archean basement, west Greenland), transformed the gabbroic rocks into amphibolites with remarkably high K/Rb values (up to 2300, average 727), reflecting correspondingly high K/Rb values in the country rock. A similar dyke transformation in an amphibolite facies complex (Precambrian basement, southwest Sweden) produced amphibolites with more common K/Rb values (average 375) similar to those found in the country rock. As the protolith chemistry and the P-T conditions of origin for the two amphibolite occurrences are very similar, it is concluded that the difference in K/Rb distribution is caused by the difference in country rocks. The K and Rb values in the two amphibolite occurrences lie between protolith and country-rock values, suggesting an exchange of K and Rb between basic rock and quartzo-feldspathic country rock, probably through the hydrothermal fluids which assisted in the amphibolite formation.  相似文献   

14.
FROST  RONALD 《Journal of Petrology》1975,16(2):272-313
The 2 km wide contact aureole produced from serpentinite bythe intrusion of the Mount Stuart Batholith into the IngallsComplex at Paddy-Go-Easy Pass contains the following ultramaficassemblages, in order of increasing grade: serpentine-forsterite-diopside,serpentine-forsterite-tremolite, forsterite-talc, forsterite-anthophyllite,forsterite-enstatite-anthophyllite, forsterite-enstatite-chlorite,forsterite-enstatite-spinel. Associated metarodingites displayfive metamorphic zones, the diagnostic assemblages of whichare, in increasing grade: grossular-idocrase-chlorite, grossular-diopside-chlorite,epidote-diopside-chlorite, epidotediopside-spinel, plagioclase-grossular-diopside.Mafic hornfels in the aureole contains no orthopyroxene, indicatingthat the conditions of pyroxene hornfels facies were not reached. The breakdown of chlorite is best displayed in aluminous blackwallreaction zones around mafic inclusions in the peridotite. Attemperatures above those of the anthophyllite-out isograd, butwithin the field of forsterite+tremolite, these chlorite-richrocks react to form the assemblage: forsterite-enstatite-spinel.Calculations show that cordierite did not form as a result ofchlorite breakdown in the natural system because impurities,such as iron and chromium, displaced the equilibrium: forsterite+cordierite= enstatite+spinel to much lower pressures than the three kilobarsfound in the pure system. The primary chromite of the peridotite has been altered to chrome-magnetitein the serpentinite. This alteration seems to be isochemicalover the whole rock, as true chromite, formed by metamorphism,occurs at grades above that of the forsterite-enstatite-anthophylliteassemblage. Calcic amphibole in high-grade metaperidotite is tremolite,even in the presence of aluminous chromite, whereas that inmetamorphosed blackwall rock grades from tremolite into hornblende.The pattern of substitution appears to be: Mg2Si3rlhar2;(Na,K)(AlVI)2(AlIV)3.  相似文献   

15.
Partial chemical analyses of the accessory iron oxide and iron-titaniumoxide minerals from more than one hundred samples of Adirondackigneous, metamorphic, and metasomatic rocks portray the degreeof oxidation of the minerals and afford a basis for a discussionof their relation to the accompanying silicate assemblage andpetrogeny. Among the granitic igneous rocks, the green pyroxenicfacies have the least oxidized iron-titanium oxide mineralsand a pink potassium-rich microperthitic microcline facies themost oxidized. Granites and syenites may crystallize with eitheran iron-rich variety of hornblende (or pyroxene) plus ilmenite,or with an iron-magnesium variety of hornblende (or of pyroxene)plus magnetite plus ilmenite, depending on the degree of oxidation.The granite facies of the orthogneisses of the Diana Complex(Precambrian) have a more oxidized mineral assemblage than thesyenitic and quartz syenitic facies. The anorthosites and gabbroanorthosites have relatively oxygen-rich oxide minerals. Orthogneissesin the granulite facies have a lower ratio of Fe2O3/FeO thansimilar gneisses in the amphibolite facies. At least part ofthis lower ratio is due to metamorphism at higher temperaturesand pressures. A regional belt of granitic orthogneiss metamorphosedin the amphibolite facies has a magnetite-sphene instead ofa magnetite-ilmenite assemblage. Metasomatism of biotite-quartz-plagioclasegneiss to sillimanitic quartz-microcline gneisses is accompaniedby decrease in mafic silicates and a series of changes of mineralsin intermediate stages such that, in general, biotite yieldswith increasing degrees of oxidation successively such assemblagesas (1) biotite, garnet, magnetite, hemo-ilmenite, and ilmeno-hematite;(2) pale brown mica, sillimanite, magnetite, and ilmeno-hematite;and (3) rutilo-hematite, rutile, and meagre silicates includingsillimanite, muscovite, and chlorite. Diabase altered to monzodioriteby potassium-bearing solutions has ilmeno-magnetite partly alteredto ilmeno-maghemite.  相似文献   

16.
Mafic eclogites sampled from a restricted area in the Lanterman Range (Antarctica) retrogressed variably under amphibolite facies metamorphism. Assemblages range from well-preserved eclogite, with minor growth of Na-Ca amphibole, to strongly retrogressed ones with extensive development of Ca amphibole. 40Ar-39Ar furnace step-heating experiments on the different amphiboles yield results varying from plateau ages of ~498 Ma to a near-plateau age of ~490 Ma, and the greater the amphibolite retrogression, the younger the age. 40Ar-39Ar infrared laser-probe analyses on rock chips from a well-preserved eclogite and a slightly retrogressed one reveal the presence of an excess argon component. Whereas excess argon is invariably present in garnet and clinopyroxene developed under high-pressure metamorphism, it is heterogeneously distributed in amphibole on a millimetre scale. Results indicate that excess argon was incorporated during high-pressure metamorphism; this component was then lost during retrogression, while a change in composition of ambient argon to atmospheric argon occurred. New 40Ar-39Ar data and previously published Sm-Nd garnet and U-Pb rutile ages obtained from the same well-preserved eclogite sample suggest that the oldest Na-Ca amphibole age is reliable and not an artefact due to the incorporation of excess argon. The variably retrogressed eclogites are thought to derive from different parts of the enclosing metasedimentary rocks that were variably invaded by fluids during amphibolite facies metamorphism. Thus the circulation of fluids promoting (re)crystallisation, and not temperature, was the main process controlling the rate of argon transport in the studied eclogites. The different 40Ar-39Ar ages are interpreted to record diachronous amphibole growth at different crustal levels during exhumation. Data indicate that there was about a 10-Ma interval between the eclogite facies stage (at ̿.5 GPa) and the Ca amphibole-hydration forming reaction (at 0.3-0.5 GPa); this translates into an average exhumation rate of 3-4 km/Ma.  相似文献   

17.
The proposed PT grid of mineral facies of metamorphic rocks, which retains the commonly adopted nomenclature (greenschist, epidote-amphibolite, amphibolite, granulite, glaucophane-schist, and eclogite facies), is based on original calculations and the published calculated and experimental data on mineral equilibria. To validate the facies and subfacies PT boundaries, the mineral equilibria in metapelitic and metabasic rocks have been used.  相似文献   

18.
The metamorphic evolution of rocks cropping out near Stoer, within the Assynt terrane of the central region of the mainland Lewisian complex of NW Scotland, is investigated using phase equilibria modelling in the NCKFMASHTO and MnNCKFMASHTO model systems. The focus is on the Cnoc an t’Sidhean suite, garnet‐bearing biotite‐rich rocks (brown gneiss) with rare layers of white mica gneiss, which have been interpreted as sedimentary in origin. The results show that these rocks are polymetamorphic and experienced granulite facies peak metamorphism (Badcallian) followed by retrograde fluid‐driven metamorphism (Inverian) under amphibolite facies conditions. The brown gneisses are inferred to have contained an essentially anhydrous granulite facies peak metamorphic assemblage of garnet, quartz, plagioclase and ilmenite (±rutile, K‐feldspar and pyroxene) with biotite, hornblende, muscovite, chlorite and/or epidote as hydrous retrograde minerals. P–T constraints imposed by phase equilibria modelling imply conditions of 13–16 kbar at >900 °C for the Badcallian granulite facies metamorphic peak, consistent with the field evidence for partial melting in most lithologies. The white mica gneiss comprises a muscovite‐dominated matrix containing porphyroblasts of staurolite, corundum, kyanite and rare garnet. Previous studies have suggested that staurolite, corundum, kyanite and muscovite all grew at the granulite facies peak, with partial melting and melt loss producing a highly aluminous residue. However, at the inferred peak P–T conditions, staurolite and muscovite are not predicted to be stable, suggesting they are retrograde phases that grew during amphibolite facies retrograde metamorphism. The large proportion of mica suggests extensive H2O‐rich fluid‐influx, consistent with the retrograde growth of hornblende, biotite, epidote and chlorite in the brown gneisses. P–T conditions of 5.0–6.5 kbar at 520–550 °C are derived for the Inverian event. In situ dating of zircon from samples of the white mica gneiss yield apparent ages that are difficult to interpret. However, the data are permissive of granulite facies (Badcallian) metamorphism having occurred at c. 2.7–2.8 Ga with subsequent fluid driven (Inverian) retrogression at c. 2.5–2.6 Ga, consistent with previous interpretations.  相似文献   

19.
Jane D. Sills 《Lithos》1983,16(2):113-124
Gneisses, metamorphosed at granulite facies ca 2.7 Ga, were subsequently retrogressed to amphibolite facies during a prolonged period of retrogression, perhaps lasting as long as 200 m.y. The Scourie dykes were emplaced towards the end of this event. Localised Laxfordian shear zones further modified the mineral assemblages. The retrogression caused the production of a uniform plagioclase-hornblende- ± quartz ± biotite assemblage. A study of hornblende composition shows that it depends on metamorphic grade, host rock composition and paragenesis. The sequence of mineral assemblages suggests that retrogression took place on a falling temperature path, beginning at about 650±50°C. Post-tectonic muscovite indicates that temperatures were still in excess of 500°C after the formation of Laxfordian shear zones. This indicates that the Lewisian complex was uplifted and cooled extremely slowly.  相似文献   

20.
The central part of the Carolina terrane in western South Carolina comprises a 30 to 40 km wide zone of high grade gneisses that are distinct from greenschist facies metavolcanic rocks of the Carolina slate belt (to the SE) and amphibolite facies metavolcanic and metaplutonic rocks of the Charlotte belt (to the NW). This region, termed the Silverstreet domain, is characterized by penetratively deformed felsic gneisses, granitic gneisses, and amphibolites. Mineral assemblages and textures suggest that these rocks formed under high‐pressure metamorphic conditions, ranging from eclogite facies through high‐P granulite to upper amphibolite facies. Mafic rocks occur as amphibolite dykes, as metre‐scale blocks of coarse‐grained garnet‐clinopyroxene amphibolite in felsic gneiss, and as residual boulders in deeply weathered felsic gneiss. Inferred omphacite has been replaced by a vermicular symplectite of sodic plagioclase in diopside, consistent with decompression at moderate to high temperatures and a change from eclogite to granulite facies conditions. All samples have been partially or wholly retrograded to amphibolite assemblages. We infer the following P‐T‐t history: (1) eclogite facies P‐T conditions at ≥ 1.4 GPa, 650–730 °C (2) high‐P granulite facies P‐T conditions at 1.2–1.5 GPa, 700–800 °C (3) retrograde amphibolite facies P‐T conditions at 0.9–1.2 GPa and 720–660 °C. This metamorphic evolution must predate intrusion of the 415 Ma Newberry granite and must postdate formation of the Charlotte belt and Slate belt arcs (620 to 550 Ma). Comparison with other medium temperature eclogites and high pressure granulites suggests that these assemblages are most likely to form during collisional orogenesis. Eclogite and high‐P granulite facies metamorphism in the Silverstreet domain may coincide with a ≈570–535 Ma event documented in the western Charlotte belt or to a late Ordovician‐early Silurian event. The occurrence of these high‐P assemblages within the Carolina terrane implies that, prior to this event, the western Carolina terrane (Charlotte belt) and the eastern Carolina terrane (Carolina Slate belt) formed separate terranes. The collisional event represented by these high‐pressure assemblages implies amalgamation of these formerly separate terranes into a single composite terrane prior to its accretion to Laurentia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号