首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpine lakes on the Tibetan Plateau (TP) are highly sensitive to variations in climate changes, and the lake ice phenology and water level are considered to be direct indicators of regional climate variability. In this study, we first used 14 years of moderate resolution imaging spectroradiometer snow cover products to analyse the freeze dates, ablation dates, and ice coverage durations. The lake level changes during 2002–2015 were estimated, derived from satellite altimetry and Hydroweb data. Unexpectedly, the freeze dates of lake ice greatly advanced, and the ablation dates were markedly delayed. The complete freezing duration lengthened by approximately 77 days. As a result of the warm-wet climate in the northern TP, the lake area expanded from 770 to 995 km2 during 2002–2015, and the water levels rose by 4.2 m in total, at a rate of 0.3 m/year. The progressive expansion of Ayakekumu Lake profoundly affected the ice phenology. Larger water volume with larger thermal capacity likely led to the delaying of ablation dates, with the freezing point depression caused by decreasing salinity. Some new narrow and shallow bays located in southern and eastern Ayakekumu Lake were conducive to early freezing of ice. Additionally, the changes in air temperature, precipitation, potential evaporation, and sunshine duration may be related to the prolonged ice cover duration since 2002. In sum, accurate measurements of lake ice and water levels are critical for understanding the water resource balance and hydrologic cycle in arid or semi-arid regions of China.  相似文献   

2.
Land subsidence induced by excessive groundwater withdrawal has caused serious social, geological, and environmental problems in Beijing. Rapid increases in population and economic development have aggravated the situation. Monitoring and prediction of ground settlement is important to mitigate these hazards. In this study, we combined persistent-scatterer interferometric synthetic aperture radar with Grey system theory to monitor and predict land subsidence in the Beijing plain. Land subsidence during 2003–2014 was determined based on 39 ENVISAT advanced synthetic aperture radar (ASAR) images and 27 RadarSat-2 images. Results were consistent with global positioning system, leveling measurements at the point level and TerraSAR-X subsidence maps at the regional level. The average deformation rate in the line-of-sight was from ?124 to 7 mm/year. To predict future subsidence, the time-series deformation was used to build a prediction model based on an improved Grey-Markov model (IGMM), which adapted the conventional GM(1,1) model by utilizing rolling mechanism and integrating a k-means clustering method in Markov-chain state interval partitioning. Evaluation of the IGMM at both point level and regional scale showed good accuracy (root-mean-square error <3 mm; R2 = 0.94 and 0.91). Finally, land subsidence in 2015–2016 was predicted, and the maximum cumulative deformation will reach 1717 mm by the end of 2016. The promising results indicate that this method can be used as an alternative to the conventional numerical and empirical models for short-term prediction when there is lack of detailed geological or hydraulic information.  相似文献   

3.
Reservoir sedimentation is the gradual accumulation of incoming sediments from upstream catchment leading to the reduction in useful storage capacity of the reservoir. Quantifying the reservoir sedimentation rate is essential for better water resources management. Conventional techniques such as hydrographic survey have limitations including time-consuming, cumbersome and costly. On the contrary, the availability of high resolution (both spatial and temporal) in public domain overcomes all these constraints. This study assessed Jayakwadi reservoir sedimentation using Landsat 8 OLI satellite data combined with ancillary data. Multi-date remotely sensed data were used to produce the water spread area of the reservoir, which was applied to compute the sedimentation rate. The revised live storage capacity of the reservoir between maximum and minimum levels observed under the period of analysis (2015–2017) was assessed utilizing the trapezoidal formula. The revised live storage capacity is assessed as 1942.258 against the designed capacity of 2170.935 Mm3 at full reservoir level. The total loss of reservoir capacity due to the sediment deposition during the period of 41 years (1975–2017) was estimated as 228.677 Mm3 (10.53%) which provided the average sedimentation rate of 5.58 Mm3 year1. As this technique also provides the capacity of the reservoir at the different elevation on the date of the satellite pass, the revised elevation–capacity curve was also developed. The sedimentation analysis usually provides the volume of sediment deposited and rate of the deposition. However, the interest of the reservoir authorities and water resources planner’s lies in sub-watershed-wise sediment yield, and the critical sub-watersheds upstream reservoir requires conservation, etc. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) was used for the estimation of sediment yield of the reservoir. The average annual sediment yield obtained from the SWAT model using 36 years of data (1979–2014) was 13.144 Mm3 year?1 with the density of the soil (loamy and clay) of 1.44 ton m?3. The findings revealed that the rate of sedimentation obtained from the remote sensing-based methods is in agreement with the results of the hydrographic survey.  相似文献   

4.
An empirical model is developed and used with remotely sensed predictors: sea surface temperature (SST) and chlorophyll-a concentration (Chl-a), to compute surface water partial pressure of carbon dioxide (pCO2w) and air-sea fluxes of CO2 in the Hooghly estuary and its adjacent coastal oceans. In situ observations used here were based on measurements carried out in this region during winter and summer periods in 2008. The estimated pCO2w compares well with the in situ observations at root mean square error ±18 μatm. In winter, estimated pCO2w ranges between 320 and 500 μatm with large values (>400 μatm) on the south-western and south-eastern flanks of the coastal domain and lower values (340–375 μatm) on the main-channel. In summer, it remained spatially uniform at 450 μatm. Extrapolation of the results over the study region based on the Moderate Imaging Specroradiometer (MODIS) measured SST and Chl-a suggests that the region is a strong source of atmospheric CO2 during the summer with net release of 0.095 Tg C year?1 (equivalent to mean flux of 90 molC m?2 year?1) and is a weak source during the winter with net release of 0.006 Tg C yr?1 (0.5 molC m?2 year?1) from the geographical extent of 6000 Km2 area.  相似文献   

5.
Determination of Geopotential of Local Vertical Datum Surface   总被引:1,自引:0,他引:1  
1 IntroductionEachcountryoreachgroupofcountriesselectsmeansealev elatadefinedtidegaugeoratagroupofgaugesforitsverti caldatumsurface .Itisrealized ,however,thatthelocalmeansealevelisusuallydepartedfromthegeoid ,whichshouldbetheidealdatumsurfaceforheight,ow…  相似文献   

6.
This study carries out a quantitative analysis of the performance of ionospheric tomography in the topside ionosphere, utilizing data of October 2011 collected from 260 Global Navigation Satellite System (GNSS) stations in the Crustal Movement Observation Network of China. This tomographic reconstruction with a resolution of 2° in latitude, 2° in longitude and 20 km in altitude has more than 70 % of voxels traversed by GPS raypaths and is able to provide reliable bottom parts of ionospheric profiles. Compared with the observations measured by the Defense Meteorological Satellite Program (DMSP) satellites (F16, F17 and F18) at an altitude of 830–880 km, the results show that there is an overestimation in the reconstructed plasma density at the DMSP altitude, and the reconstruction is better during daytime than nighttime. In addition, the reconstruction at nighttime also indicates a solar activity and latitudinal dependence. In summary, with respect to DMSP measurements, the daytime bias is on average from ?0.32 × 105/cm3 to ?0.28 × 105/cm3, while the nighttime bias is between ?0.37 × 105/cm3 and ?0.24 × 105/cm3, and the standard deviation at daytime and at nighttime is, respectively, 0.082 × 105/cm3 to 0.244 × 105/cm3 and 0.086 × 105/cm3 to 0.428 × 105/cm3. This study suggests that vertical ionospheric profiles from other sources, such as ionosondes or GNSS occultation satellites, should be incorporated into ground-based GNSS topside tomographic studies.  相似文献   

7.
This study assessed the strength of Sentinel-2 multispectral instrument (MSI) derived Red Edge (RE) bands in estimating Leaf Area Index (LAI) and mapping canopy storage capacity (CSC) for hydrological applications in wattle infested ecosystems. To accomplish this objective, this study compared the estimation strength of models derived, using standard bands (all bands excluding the RE band) with those including RE bands, as well as different vegetation indices. Sparse Partial Least Squares (SPLSR) and Partial Least Squares Regression (PLSR) ensembles were used in this study. Results showed that the RE spectrum covered by the Sentinel-2 MSI satellite reduced the estimation error by a magnitude of 0.125 based on simple ratio (RE SR) vegetation indices from 0.157 m2· m?2 based on standard bands, and by 0.078 m2· m?2 based on red edge normalised difference vegetation (NDVI-RE). The optimal models for estimating LAI to map CSC were obtained based on the RE bands centered at 705 nm (Band 5), 740 nm (Band 6), 783 nm (Band 7) as well as 865 nm (Band 8a). A root mean square error of prediction (RMSEP) of 0.507 m2· m?2 a relative root mean square error of prediction (RRMSEP) of 11.3% and R2 of 0.91 for LAI and a RMSEP of 0.246 m2/m2 (RRMSEP = 7.9%) and R2 of 0.91 for CSC were obtained. Overall, the findings of this study underscore the relevance of the new copernicus satellite product in rapid monitoring of ecosystems that are invaded by alien invasive species.  相似文献   

8.
In geopotential space, the fundamental geodetic parameter W 0 defines the Gauss–Listing geoid which can be used to best represent the Earth’s mean sea level (MSL) and hence specifies a conventional zero height level to unify vertical datums employed by mapping agencies throughout the world. Further, W 0 cannot be considered invariant as the parameter varies temporally as a direct response to sea level change and mass redistributions. This study determines W 0 and its rate, dW 0/dt, by utilizing altimetric MSL models and an independent mean dynamic topography (MDT) model to define points on the geoid. W 0 and dW 0/dt are estimated by two approaches: (i) by means of a global gravity field model (GGM) and (ii) within normal gravity field space as the geopotential value of the best fitting reference ellipsoid. The study shows that uncertainty in W 0 is mainly influenced by MDT while the choice of methodology, GGM and MSL data coverage are not significant within reason. Our estimate W 0 =?62636854.2 ± 0.2 m2?s?2 at epoch 2005.0 differs by 1.8?m2s?2 from the International Astronomical Union reference value. This study shows that, at a sub-decadal time scale, the time variation dW 0/dt stems mainly from sea level change with negligible effect from gravity field variations. dW 0/dt =?(?2.70 ± 0.03)?×?10?2?m2?s?2?year?1, corresponding to a MSL rise of 2.9?mm?year?1, is evaluated from sea level change based on 16?years of TOPEX and Jason-1 data.  相似文献   

9.
Reservoir water levels extracted from SARAL/AltiKa GDR data for the period 2013–2014 and water spread areas delineated from Resourcesat P6-AWiFS sensor and RISAT 1 microwave data corresponding to SARAL/AltiKa cycles were used for assessment of reservoir capacity in the Mayurakshi reservoir, Jharkhand state, India. It was found that the reservoir capacity based on the SARAL is around 474.62 Mm3 in comparison to in situ based estimate i.e. around 486.6 Mm3, indicating variation of <3%. Further, comparison of these estimates computed using SARAL and in situ with original reservoir capacity (547.59 Mm3) indicated loss of reservoir capacity is around 13.33 and 11.14%, respectively, within a span of 59 years. The hydrographic survey in the year 1999–2000 also proved that the storage capacity has reduced from 547.6 Mm3 in 1955 to 474.8 Mm3 indicating loss of nearly 13.3 % of total live capacity over period of 45 years.  相似文献   

10.

Background

Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them.

Results

Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m?2. Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R2 ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha?1 for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha?1 for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R2 ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha?1 [between 0.69–0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha?1] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R2 was between 0.58–0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha?1 for the echo-based model, whereas for the CHM R2 was between 0.37–0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha?1.

Conclusions

Metrics derived from the CHM show a higher dependence on point density than metrics derived from the echo-based data model. Despite the median of the differences between metrics derived at different point densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation except for very low point densities (1 point m?2). The application of calibrated models to estimate AGB on metrics derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m?2. The fact that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitoring and for an effective implementation of climate change mitigation policies such as REDD + due to its implications for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was greater than or equal to 5 point m?2.
  相似文献   

11.
This study attempts to identify and forecast future land cover (LC) by using the Land Transformation Model (LTM), which considers pixel changes in the past and makes predictions using influential spatial features. LTM applies the Artificial Neural Networks algorithm) in conducting the analysis. In line with these objectives, two satellite images (Spot 5 acquired in 2004 and 2010) were classified using the Maximum Likelihood method for the change detection analysis. Consequently, LC maps from 2004 to 2010 with six classes (forest, agriculture, oil palm cultivations, open area, urban, and water bodies) were generated from the test area. A prediction was made on the actual soil erosion and the soil erosion rate using the Universal Soil Loss Equation (USLE) combined with remote sensing and GIS in the Semenyih watershed for 2004 and 2010 and projected to 2016. Actual and potential soil erosion maps from 2004 to 2010 and projected to 2016 were eventually generated. The results of the LC change detections indicated that three major changes were predicted from 2004 to 2016 (a period of 12 years): (1) forest cover and open area significantly decreased at rates of almost 30 and 8 km2, respectively; (2) cultivated land and oil palm have shown an increment in sizes at rates of 25.02 and 5.77 km2, respectively; and, (3) settlement and Urbanization has intensified also by almost 5 km2. Soil erosion risk analysis results also showed that the Semenyih basin exhibited an average annual soil erosion between 143.35 ton ha?1 year?1 in 2004 and 151 in 2010, followed by the expected 162.24 ton ha?1 year?1. These results indicated that Semenyih is prone to water erosion by 2016. The wide range of erosion classes were estimated at a very low level (0–1 t/ha/year) and mainly located on steep lands and forest areas. This study has shown that using both LTM and USLE in combination with remote sensing and GIS is a suitable method for forecasting LC and accurately measuring the amount of soil losses in the future.  相似文献   

12.
We analyse geodetically estimated deformation across the Nepal Himalaya in order to determine the geodetic rate of shortening between Southern Tibet and India, previously proposed to range from 12 to 21 mm yr?1. The dataset includes spirit-levelling data along a road going from the Indian to the Tibetan border across Central Nepal, data from the DORIS station on Everest, which has been analysed since 1993, GPS campaign measurements from surveys carried on between 1995 and 2001, as well as data from continuous GPS stations along a transect at the logitude of Kathmandu operated continuously since 1997. The GPS data were processed in International Terrestrial Reference Frame 2000 (ITRF2000), together with the data from 20 International GNSS Service (IGS) stations and then combined using quasi- observation combination analysis (QOCA). Finally, spatially complementary velocities at stations in Southern Tibet, initially determined in ITRF97, were expressed in ITRF2000. After analysing previous studies by different authors, we determined the pole of rotation of the Indian tectonic plate to be located in ITRF2000 at 51.409±1.560° N and ?10.915±5.556°E, with an angular velocity of 0.483±0.015°. Myr?1. Internal deformation of India is found to be small, corresponding to less than about 2 mm yr?1 of baseline change between Southern India and the Himalayan piedmont. Based on an elastic dislocation model of interseismic strain and taking into account the uncertainty on India plate motion, the mean convergence rate across Central and Eastern Nepal is estimated to 19±2.5 mm yr?1, (at the 67% confidence level). The main himalayan thrust (MHT) fault was found to be locked from the surface to a depth of about 20 km over a width of about 115 km. In these regions, the model parameters are well constrained, thanks to the long and continuous time-series from the permanent GPS as well as DORIS data. Further west, a convergence rate of 13.4±5 mm yr?1, as well as a fault zone, locked over 150 km, are proposed. The slight discrepancy between the geologically estimated deformation rate of 21±1.5 mm yr?1 and the 19±2.5 mm yr?1 geodetic rate in Central and Eastern Nepal, as well as the lower geodetic rate in Western Nepal compared to Eastern Nepal, places bounds on possible temporal variations of the pattern and rate of strain in the period between large earthquakes in this region.  相似文献   

13.
Parkachik Glacier is located in the Suru sub-basin of the Upper Indus River, Zanskar Himalaya. The Glacier has been analysed using Corona KH-4B (1971), Landsat-TM (1999), field survey (2015), Google EarthTM (2015) and ASTER GDEM (2015) for frontal recession and area changes. Overall, from 1971 to 2015, the Glacier has retreated by 127 ± 0.09 m i.e. (0.75 ± 0.07%) at a rate of 2.9 ± 0.004 ma?1 with a simultaneous decrease in area from 49.5 to 48.8 km2 i.e. 740 ± 0.7 m2 (1.5 ± 0.09%) at a rate of 74 ± 0.7 m2a?1. However, during recent decade (1999–2015), the rate of glacier recession of 3.9 ± 0.004 ma?1 with a corresponding area loss of 500 ± 0.74m2 (1 ± 0.1%) was higher than the retreat rate of 2.3 ± 0.001 ma?1 and an area loss of 240 ± 0.02m2 (0.48 ± 0.08%) during 1971–1999. In the field, the evidences of glacier recession are present in the form of separated dead ice blocks from the main Glacier, recessional dumps/moraines, active ice calving activity and a small proglacial pond/lake at the terminus/snout of the Glacier. However, the recession over the studied period has been very slow and is controlled by its topographic configuration, particularly the large altitudinal range (6030–3620 m), almost northerly aspect and steep slope (average ~ 30°).  相似文献   

14.
This study investigates the applicability of estimating chlorophyll and water content at canopy level through empirical models and band combinations. The main goal is to evaluate and compare the accuracy of these two approaches for estimating and mapping canopy chlorophyll and water content through canopy reflectance and spaceborne HJ1-A HSI data acquired over Yanzhou coal mining area. An experiment was carried out. Canopy spectral measurements were acquired in the field using an ASD spectroradiometer along with simultaneous in situ measurements of leaf chlorophyll content. We tested seven variables derived from canopy reflectance for detecting canopy chlorophyll and water content: (1) R, (2) Log(1/R), (3) Log(1/R)′, (4) FDR, (5) SDR, (6) CRR, (7) BD. Stepwise multiple linear regressions were used to select wavelengths from HJ1-A HSI image bands. Correlation analysis was also done between different band combinations and biochemistry. A statistically significant relationship between Log(1/R) and chlorophyll was found at canopy level (R2 = 0.516). SDR had the highest correlation with canopy water content (R2 = 0.490). In addition, relationship between normalized different band combinations and chlorophyll and water content is also significantly obvious (R2 = 0.577 and R2 = 0.615). Canopy chlorophyll content was estimated with the intermediate accuracy (R2 = 0.4144), while water content was estimated with an acceptable accuracy (R2 = 0.4592). Canopy chlorophyll and water content spatial distribution were mapped. Chlorophyll and water stress levels were quantified by comparing different environmental stressors.  相似文献   

15.
The challenge of assessing and monitoring the influence of rangeland management practices on grassland productivity has been hampered in southern Africa, due to the lack of cheap earth observation facilities. This study, therefore, sought to evaluate the capability of the newly launched Sentinel 2 multispectral imager (MSI) data, in relation to Hyperspectral infrared imager (HyspIRI) data in estimating grass biomass subjected to different management practices, namely, burning, mowing and fertilizer application. Using sparse partial least squares regression (SPLSR), results showed that HyspIRI data exhibited slightly higher grass biomass estimation accuracies (RMSE = 6.65 g/m2, R2 = 0.69) than Sentinel 2 MSI (RMSE = 6.79 g/m2, R2 = 0.58) across all rangeland management practices. Student t-test results then showed that Sentinel 2 MSI exhibited a comparable performance to HyspIRI in estimating the biomass of grasslands under burning, mowing and fertilizer application. In comparing the RMSEs derived using wave bands and vegetation indices of HyspIRI and Sentinel, no statistically significant differences were exhibited (α = 0.05). Sentinel (Bands 5, 6 and 7) and HyspIRI (Bands 730 nm, 740 nm, 750 nm, 710 nm), as well as their derived vegetation indices, yielded the highest predictive accuracies. These findings illustrate that the accuracy of Sentinel 2 MSI data in estimating grass biomass is acceptable when compared with HyspIRI. The findings of this work provide an insight into the prospects of large-scale grass biomass modeling and prediction, using cheap and readily available multispectral data.  相似文献   

16.
Soil moisture is a geophysical key observable for predicting floods and droughts, modeling weather and climate and optimizing agricultural management. Currently available in situ observations are limited to small sampling volumes and restricted number of sites, whereas measurements from satellites lack spatial resolution. Global navigation satellite system (GNSS) receivers can be used to estimate soil moisture time series at an intermediate scale of about 1000 m2. In this study, GNSS signal-to-noise ratio (SNR) data at the station Sutherland, South Africa, are used to estimate soil moisture variations during 2008–2014. The results capture the wetting and drying cycles in response to rainfall. The GNSS Volumetric Water Content (VWC) is highly correlated (r 2 = 0.8) with in situ observations by time-domain reflectometry sensors and is accurate to 0.05 m3/m3. The soil moisture estimates derived from the SNR of the L1 and L2P signals compared to the L2C show small differences with a RMSE of 0.03 m3/m3. A reduction in the SNR sampling rate from 1 to 30 s has very little impact on the accuracy of the soil moisture estimates (RMSE of the VWC difference 1–30 s is 0.01 m3/m3). The results show that the existing data of the global tracking network with continuous observations of the L1 and L2P signals with a 30-s sampling rate over the last two decades can provide valuable complementary soil moisture observations worldwide.  相似文献   

17.

Background

Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.

Results

We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.

Conclusions

Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha?1/year?1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
  相似文献   

18.
The study of advancement and recession of the glaciers in the Himalayas is essential due to their contrasting response towards climatic change. In the present study, Survey of India (SOI) topographical maps of 1962, IRS: LISS-III image of 2001 and LANDSAT-5: TM (Thematic Mapper) image of 2009 were used to analyze the glacier fluctuations in a part of Zanskar valley. The analysis carried out on 212 glaciers indicated decrease of 57 km2 (8 %) of glacier area over many glacier which was partly compensated with area increase by 42 km2 (6 %) in other glaciers, resulting an overall glacier area decrease by only 15 km2 (2 %) from 1962–2001. Due to glacier fragmentation the number of glaciers increased from 212 in 1962 to 238 by 2001. Although majority of glaciers (88 %) exhibited retreat (up to 13 my?1), minor advancement (<15 my?1) also took place in few glaciers during this period. Advancement took place mainly in larger glaciers (2–5 km2 and >5 km2) located over wider altitudinal range (700 m–1,000 m) whereas smaller glaciers (<2 km2) with narrow altitudinal range (100 m–500 m) exhibited retreat. The supraglacial debris analysis indicated that percentage of debris cover over glaciers ranges from 1.43 % to 18.15 %. Smaller glaciers (<2 km2) were debris free in comparison to the larger glaciers (>5 km2). During 2001–2009 majority of the glaciers were apparently stable in terms of their area and snout position indicating less impact of climate forcing in parts of Zanskar valley as compared to other parts of the Himalaya.  相似文献   

19.
Increasing population and natural disasters like drought, flood, cyclone etc., has impacted global agriculture area and hence continuously modifying cropping pattern and associated statistics. The present study analysed agriculture dynamics over one of the densely populated and disaster prone state (Bihar) in India and derived vital statistics (single, double and triple cropping area, and monthly, seasonal, annual and long term status at the state and district level) for the years 2001–2012. The study used time-series MODIS vegetation index (EVI; MOD13A2, 1 km, 16 day, 2001–2012), MODIS annual Land Cover product (MCD12Q1, 500 m, 2001–2012) and Global Land Cover map (Scasia_V4, 1 km, 2000; Globcover_V2.2, 300 m, 2005/2006 and V2.3, 2009, 300 m), and extracted horizontal (i.e., area change) and vertical (i.e., cropping intensification) agriculture change pattern. The results were inter-compared, and validated using government reports as well as with high spatial resolution data (IRS-LISS III 23.5 m). From 2001–2006 to 2007–2012, the net horizontal and vertical change in agriculture area is +145.24 and +907.82 km2, respectively, and net change in seasonal crop area (winter, summer and monsoon) is +959.21, +1009.84 and ?1061.64 km2, respectively. The districts which are located along the eastern part of Ganges experienced maximum positive changes and the districts along Gandak river in the north-western part of the study area experienced maximum negative changes. Overall, the study has quantified and revealed interesting space–time agriculture change patterns over 12 years including impacts caused by droughts and floods in the study area.  相似文献   

20.
We develop a slope correction model to improve the accuracy of mean sea surface topography models as well as marine gravity models. The correction is greatest above ocean trenches and large seamounts where the slope of the geoid exceeds 100  \(\upmu \) rad. In extreme cases, the correction to the mean sea surface height is 40 mm and the correction to the along-track altimeter slope is 1–2  \(\upmu \) rad which maps into a 1–2 mGal gravity error. Both corrections are easily applied using existing grids of sea surface slope from satellite altimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号