首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Analytical solutions are presented for linear finite‐strain one‐dimensional consolidation of initially unconsolidated soil layers with surcharge loading for both one‐ and two‐way drainage. These solutions complement earlier solutions for initially unconsolidated soil layers without surcharge and initially normally consolidated soil layers with surcharge. Small‐strain solutions for the consolidation of initially unconsolidated soil layers with surcharge loading are also presented, and the relationship between the earlier solutions for initially unconsolidated soil without surcharge and the corresponding small‐strain solutions, which was not addressed in the earlier work, is clarified. The new solutions for initially unconsolidated soil with surcharge loading can be applied to the analysis of low stress consolidation tests and to the partial validation of numerical solutions of non‐linear finite‐strain consolidation. They also clarify a formerly perplexing aspect of finite‐strain solution charts first noted in numerical solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents an elasto‐plastic model for non‐linear analyses of cement‐treated sand. Various laboratory tests were systematically carried out to investigate the pre‐peak and post‐peak behaviours of a cement‐treated sand. On the basis of these experimental results, the new model was built within the framework of a relatively simple elasto‐plastic theory. Two failure criteria are employed to express tensile and shear failure characteristics observed in the experimental results of the cement‐treated sand. The proposed model can describe strain‐hardening and strain‐softening responses under both failure modes. In the strain‐softening rules, the smeared crack concept is used, and a characteristic length is considered to avoid the issue of mesh‐size dependency. Since the failure criterion and strain‐hardening/softening rules are based on the experimental evidences, the model is relatively easy to understand and the parameters used in the model have clear physical meaning. The proposed model was applied to simulate the behaviour of cement‐treated sand in various laboratory tests, allowing for a reasonable comprehensive evaluation. It was demonstrated that the proposed model is suitable for describing both the tensile and shear failure behaviours of cement‐treated sand. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Strain localization developing inside soft rock specimens is examined through experimental observation and numerical simulation. In the experimental study, soft rock specimens are sheared at different strain rates under plane strain conditions and deformation and strain localization characteristics are analysed. Transition of localization mode from highly localized mode for higher strain rate to distributed and diffused mode of strain localization for lower strain rates was observed. In the numerical study, simulations of plane strain compression tests are carried out at different strain rates by using an overstressed‐type elasto‐viscoplastic model in finite element computations. The role of strain rates on setting gradients of strain fields across shear band is clarified. The probable mechanism for transition of localization mode is discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Unbounded plane stress and plane strain domains subjected to static loading undergo infinite displacements, even when the zero displacement boundary condition at infinity is enforced. However, the stress and strain fields are well behaved, and are of practical interest. This causes significant difficulty when analysis is attempted using displacement‐based numerical methods, such as the finite‐element method. To circumvent this difficulty problems of this nature are often changed subtly before analysis to limit the displacements to finite values. Such a process is unsatisfactory, as it distorts the solution in some way, and may lead to a stiffness matrix that is nearly singular. In this paper, the semi‐analytical scaled boundary finite‐element method is extended to permit the analysis of such problems without requiring any modification of the problem itself. This is possible because the governing differential equations are solved analytically in the radial direction. The displacement solutions so obtained include an infinite component, but relative motion between any two points in the unbounded domain can be computed accurately. No small arbitrary constants are introduced, no arbitrary truncation of the domain is performed, and no ill‐conditioned matrices are inverted. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Gas hydrate‐bearing sediments (GHBSs) have been considered as a potential energy resource. In this paper, the mechanical properties of GHBS are firstly investigated by the integrated test apparatus for synthesis of GHBS using silty sand as skeleton. Triaxial tests indicate an obvious transition of stress‐strain relationship from strain hardening under low hydrate saturation and strain softening under high hydrate saturation. The hypoplastic models coupled with Drucker‐Prager criterion and the Mohr‐Coulomb criterion are proposed to analyze the stress‐strain relationship of GHBS with considering the effective porosity because of the hydrate filling in the pores of GHBS. The strain hardening and softening behaviors are well predicted with less material parameters compared with the classical models. Compared with the test results, the proposed hypoplastic models are verified to be capable of capturing the salient features of the mechanical behaviors of GHBS under the conditions of little temperature change and no hydrate dissociation.  相似文献   

6.
This study focuses on the three‐dimensional (3‐D) characteristics of wave propagation in pipe‐pile using elastodynamic finite integration technique. First, a real 3‐D pile‐soil model in cylindrical coordinate system is presented. Then, the governing equations are established. With the boundary and initial conditions, the numerical solution is obtained. The accuracy and feasibility of the self‐written code are further verified via comparing with the measured data. Velocity histories at different angles of pile top and pile tip are illustrated, and the snapshots reflecting the 3‐D characteristics of wave propagation are given. It shows that the interferences of Rayleigh waves can confuse the result interpretation for pile integrity testing. The increase of hammer contact time can effectively mitigate the interferences, and the interferences of Rayleigh waves are weakest at an angle of 90° from where hammer hits. Besides, surrounding soil can partly mitigate the wave interferences. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
8.
High‐strain zones are potential pathways of melt migration through the crust. However, the identification of melt‐present high‐strain deformation is commonly limited to cases where the interpreted volume of melt “frozen” within the high‐strain zone is high (>10%). In this contribution, we examine high‐strain zones in the Pembroke Granulite, an otherwise low‐strain outcrop of volcanic arc lower crust exposed in Fiordland, New Zealand. These high‐strain zones display compositional layering, flaser‐shaped mineral grains, and closely spaced foliation planes indicative of high‐strain deformation. Asymmetric leucosome surrounding peritectic garnet grains suggest deformation was synchronous with minor amounts of in situ partial melting. High‐strain zones lack typical mylonite microstructures and instead display typical equilibrium microstructures, such as straight grain boundaries, 120° triple junctions, and subhedral grain shapes. We identify five key microstructures indicative of the former presence of melt within the high‐strain zones: (a) small dihedral angles of interstitial phases; (b) elongate interstitial grains; (c) small aggregates of quartz grains with xenomorphic plagioclase grains connected in three dimensions; (d) fine‐grained, K‐feldspar bearing, multiphase aggregates with or without augite rims; and (e) mm‐ to cm‐scale felsic dykelets. Preservation of key microstructures indicates that deformation ceased as conditions crossed the solidus, breaking the positive feedback loop between deformation and the presence of melt. We propose that microstructures indicative of the former presence of melt, such as the five identified above, may be used as a tool for recognising rocks formed during melt‐present high‐strain deformation where low (<5%) volumes of leucosome are “frozen” within the high‐strain zone.  相似文献   

9.
A literature review has shown that there exist adequate techniques to obtain ground reaction curves for tunnels excavated in elastic‐brittle and perfectly plastic materials. However, for strain‐softening materials it seems that the problem has not been sufficiently analysed. In this paper, a one‐dimensional numerical solution to obtain the ground reaction curve (GRC) for circular tunnels excavated in strain‐softening materials is presented. The problem is formulated in a very general form and leads to a system of ordinary differential equations. By adequately defining a fictitious ‘time’ variable and re‐scaling some variables the problem is converted into an initial value one, which can be solved numerically by a Runge–Kutta–Fehlberg method, which is implemented in MATLAB environment. The method has been developed for various common particular behaviour models including Tresca, Mohr–Coulomb and Hoek–Brown failure criteria, in all cases with non‐associative flow rules and two‐segment piecewise linear functions related to a principal strain‐dependent plastic parameter to model the transition between peak and residual failure criteria. Some particular examples for the different failure criteria have been run, which agree well with closed‐form solutions—if existing—or with FDM‐based code results. Parametric studies and specific charts are created to highlight the influence of different parameters. The proposed methodology intends to be a wider and general numerical basis where standard and newly featured behaviour modes focusing on obtaining GRC for tunnels excavated in strain‐softening materials can be implemented. This way of solving such problems has proved to be more efficient and less time consuming than using FEM‐ or FDM‐based numerical 2D codes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
This paper discusses the results of a large experimental program designed to investigate in a systematic manner the main features of the incremental response of fine‐grained soils. The results are obtained from triaxial stress probing experiments carried out on a French silty clay (Beaucaire Marl). All the tests have been performed on reconstituted specimens, normally consolidated to an initial state which is either isotropic or anisotropic. In the interpretation of the experimental results, extensive use is made of the concept of strain response envelope. The response envelopes obtained for different stress increment magnitudes are remarkably consistent with each other and indicate an inelastic and irreversible material response, i.e. a strong dependence on the stress increment direction, also at relatively small strain levels. A companion paper (Int. J. Numer. Anal. Meth. Geomech., this issue, 2006) assesses the performance of some advanced constitutive models in reproducing the behaviour of reconstituted Beaucaire Marl as observed in this experimental program. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a numerical model for the elasto‐plastic electro‐osmosis consolidation of unsaturated clays experiencing large strains, by considering electro‐osmosis and hydro‐mechanical flows in a deformable multiphase porous medium. The coupled governing equations involving the pore water flow, pore gas flow, electric flow and mechanical deformation in unsaturated clays are derived within the framework of averaging theory and solved numerically using finite elements. The displacements of the solid phase, the pressure of the water phase, the pressure of the gas phase and the electric potential are taken as the primary unknowns in the proposed model. The nonlinear variation of transport parameters during electro‐osmosis consolidation are incorporated into the model using empirical expressions that strongly depend on the degree of water saturation, whereas the Barcelona Basic Model is employed to simulate the elasto‐plastic mechanical behaviour of unsaturated clays. The accuracy of the proposed model is evaluated by validating it against two well‐known numerical examples, involving electro‐osmosis and unsaturated soil behaviour respectively. Two further examples are then investigated to study the capability of the computational algorithm in modelling multiphase flow in electro‐osmosis consolidation. Finally, the effects of gas generation at the anode, the deformation characteristics, the degree of saturation and the time dependent evolution of the excess pore pressure are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono‐metamorphic processes, however, they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron‐based X‐ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite–garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated garnet clusters with increasing strain. The microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. The microtomographic observations were combined with light microscope and backscatter electron images as well as electron microprobe (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X‐ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low‐strain domain, garnet grains form a well interconnected large garnet aggregate that develops throughout the entire sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow, and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet shows a near‐random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo‐nucleation and overgrowth. Microprobe chemical analysis revealed that garnet compositions progressively equilibrate to eclogite facies, becoming more almandine‐rich. We interpret these observations as pointing to a mechanical disintegration of the garnet coronas during strain localization, and their rearrangement into individual garnet clusters through a combination of garnet coalescence and overgrowth while the rock was deforming.  相似文献   

13.
In this paper, the performance of different advanced constitutive models for soils is evaluated with respect to the experimentally observed behaviour of a soft reconstituted clay subject to a wide range of loading directions, see (presented in the companion paper). The models considered include a three‐surface kinematic hardening elastoplastic model; the CLoE hypoplastic model; a recently proposed K‐hypoplastic model for clays, and an enhanced version of the same model incorporating the concept of intergranular strain. A clear qualitative picture of the relative performance of the different models as a function of the loading direction is obtained by means of the incremental strain response envelopes. The definition of suitable error measures allows to obtain further quantitative information in this respect. For the particular initial conditions and loading programme considered in this study, the kinematic hardening and the enhanced K‐hypoplastic models appear to provide the best performance overall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
To assess the homogeneity of and provide the first Sr‐Nd‐Hf‐Pb isotopic reference values for the Chinese Geological Standard Glasses CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5, we measured these isotopes in several measurement sessions over the course of nearly 3 years. The results were obtained by high‐precision MC‐ICP‐MS and TIMS. Our investigation indicates that these CGSG glass reference materials are homogenous with regard to Sr‐Nd‐Hf‐Pb isotopic distribution and are therefore suitable geochemical materials for Sr‐Nd‐Hf‐Pb isotope measurements. Clear differences in Sr‐Nd‐Hf‐Pb isotopic composition were observed between the glasses and the original powdered rock reference materials (CGSG‐2 and GSR‐7, and especially CGSG‐5 and GSR‐2) because of flux addition during preparation of the glasses. The new Sr‐Nd‐Hf‐Pb isotope data provided here might be useful to the geochemical community for in situ and bulk analysis.  相似文献   

15.
Strain‐softening in geomaterials often leads to ill‐posed boundary‐valued problems (BVP), which cannot be solved with finite element methods without introducing some kind of regularization such as nonlocal plasticity. Hereafter we propose to apply spectral analysis for testing the performance of nonlocal plasticity in regularizing ill‐posed BVP and producing mesh‐independent solutions when local plasticity usually fails. The spectral analysis consists of examining the eigenvalues and eigenvectors of the global tangential stiffness matrix of the incremental equilibrium equations. Based on spectral analysis, we propose a criterion for passing or failing the test of constitutive regularization in the context of BVP. If the eigenvalues of the tangential operator are all positive then the regularization succeeds, otherwise it fails and may not prevent artificial mesh‐dependent solutions from appearing. The approach is illustrated in the particular case of a biaxial compression with strain‐softening plasticity. In this particular case, local softening plasticity is found to produce negative eigenvalues in the tangential stiffness matrix, which indicates ill‐posed BVP. In contrast, nonlocal softening plasticity always produces positive eigenvalues, which regularizes ill‐posed BVP. The dominant eigenvectors, which generate localized deformation patterns, have a bandwidth independent of mesh size, provided that the mesh is fine enough to capture localization. These mesh‐independent eigenmodes explain why nonlocal plasticity produces numerical solutions that are mesh‐independent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper deals with FE investigations of shear localization in dilatant granular bodies. The calculations were carried out with a hypoplastic constitutive law enhanced by micro‐polar terms to properly model the shear zone evolution. The behaviour of an initially medium dense sand specimen with very smooth and very rough horizontal boundaries was analyzed during a plane strain compression test. A stochastic distribution of the initial void ratio was assumed to be spatially correlated. Attention was focused on the non‐coaxiality of the directions of the principal strain increments and principal stresses in the shear zone and on the stress–dilatancy rule. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper studies the excavation of a spherical cavity subjected to hydrostatic initial stresses in the infinite homogeneous and isotropic rock mass with strain‐softening Mohr–Coulomb (M‐C) and Hoek–Brown (H‐B) behaviors. Numerical solutions of the spherical cavity are obtained and the application to determining stress–strain curve of strain‐softening M‐C and H‐B rock mass is studied. A closed‐form solution for the elastic–brittle–plastic medium is introduced first, and then a numerical procedure that simplifies the strain‐softening process into a series of brittle–plastic ones is presented. The approach is validated against the facts that the strain‐softening process evolves into a brittle–plastic one when the softening slope is very steep, whereas it evolves into an elasto‐plastic one when the softening slope approaches zero. Numerical solutions for the prediction of displacements and stresses around the spherical cavity in the strain‐softening M‐C and H‐B rock mass are presented. On the basis of the analysis of the spherical cavity in strain‐softening rock mass, the stress–strain relationship at an infinitesimal cube around the cavity is obtained and discussed with different evolution laws for the strength parameters considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This paper extends the material point method to analyze coupled dynamic, two‐phase boundary‐valued problems via a velocity formulation, in which solid and fluid phase velocities are the variables. Key components of the proposed approach are the adoption of Verruijt's sequence of update steps when integrating over time and the enhancement of volumetric strains. The connection between fractional step method and the time‐stepping algorithm presented in this paper is addressed. Enhancement of volumetric strains allows lower order variations in pressure and mitigates spurious pressure fields and locking that plague low‐order finite‐element implementations. A stress averaging technique to smoothen stress variations is proposed, and the local damping procedure adopted by FLAC is extended to handle two‐phase problems. Special Kelvin‐Voigt boundaries are developed to suppress reflections at artificial boundaries. Idealized examples are presented to demonstrate the capability of the proposed framework to accurately capture the physics of wave propagation, consolidation and wave attack on a sea dike. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The paper presents a constitutive model for simulating the high strain‐rate behavior of sands. Based on the concepts of critical‐state soil mechanics, the bounding surface plasticity theory and the overstress theory of viscoplasticity, the constitutive model simulates the high strain‐rate behavior of sands under uniaxial, triaxial and multi‐axial loading conditions. The model parameters are determined for Ottawa and Fontainebleau sands, and the performance of the model under extreme transient loading conditions is demonstrated through simulations of split Hopkinson pressure bar tests up to a strain rate of 2000/s. The constitutive model is implemented in a finite‐element analysis software Abaqus to analyze underground tunnels in sandy soil subjected to internal blast loads. Parametric studies are conducted to examine the effect of relative density and type of sand and of the depth of tunnel on the variation of stresses and deformations in the soil adjacent to the tunnels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In both nature and synthetic experiments, the common iron oxide haematite (α‐Fe2O3) can incorporate significant amounts of U into its crystal structure and retain radiogenic Pb over geological time. Haematite is a ubiquitous component of many ore deposit types and, therefore, represents a valuable hydrothermal mineral geochronometer, allowing direct constraints to be placed on the timing of ore formation and upgrading. However, to date, no suitable natural haematite reference material has been identified. Here, a synthetic haematite U‐Pb reference material (MR‐HFO) is characterised using LA‐ICP‐MS and ID‐TIMS. Centimetre‐scale ‘chips’ of synthesised α‐Fe2O3 were randomly microsampled via laser ablation‐extraction and analysed using ID‐TIMS. Reproducible U/Pb and Pb/Pb measurements were obtained across four separate chips (n = 13). Subsequently, an evaluation of the suitability MR‐HFO in constraining U‐Pb data via LA‐ICP‐MS is presented using a selection of natural samples ranging from Cenozoic to Proterozoic in age. The MR‐HFO normalised U‐Pb ratios are more concordant and ages more accurate versus the same LA‐ICP‐MS spot analyses normalised to zircon reference material, when compared with independently acquired ID‐TIMS data from the same natural haematite grains. Results establish MR‐HFO as a suitable reference material for LA‐ICP‐MS haematite U‐Pb geochronology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号