首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
朱小明  李海波  刘博 《岩土力学》2014,299(2):371-379
利用人工材料浇注含二阶起伏体的模拟岩石节理试样,进行常法向荷载循环剪切试验,研究节理剪切力学特性在循环剪切过程中的劣化规律。试验结果表明:二阶起伏体对节理循环剪切力学特性有重要影响,剪切强度、剪切刚度、剪胀角随剪切循环次数增大而衰减,衰减趋势随着二阶起伏度的增大而加快;法向应力、二阶起伏度较大时,二阶起伏体对剪切力学特性的影响主要体现在第1轮剪切循环中,在随后的剪切循环中影响不明显;法向应力、二阶起伏度较小时,二阶起伏体的影响在前几轮循环剪切过程中均有较清晰的体现。基于Hertz接触力学理论,提出了节理面微凸体球面接触细观模型,揭示了节理循环剪切宏观试验现象的力学机制  相似文献   

2.
The Barcelona basic model cannot predict the mechanical behaviour of unsaturated expansive soils, whereas the Barcelona expansive model (BExM) can only predict the stress–strain behaviour of unsaturated expansive soils without the water‐retention behaviour being incorporated. Moreover, the micro‐parameters and the coupling function between micro‐structural and macro‐structural strains in the BExM are difficult to determine. Experimental data show that the compression curves for non‐expansive soils under constant suctions are shifted towards higher void ratios with increasing suction, whereas the opposite is true for expansive soils. According to the observed water‐retention behaviour of unsaturated expansive soils, the air‐entry value increases with density, and the relationship between the degree of saturation and void ratio is linear at constant suction. According to the above observation, an elastoplastic constitutive model is developed for predicting the hydraulic and mechanical behaviour of unsaturated expansive soils, based on the existing hydro‐mechanical model for non‐expansive unsaturated soil. The model takes into consideration the effect of degree of saturation on the mechanical behaviour and that of void ratio on the water‐retention behaviour. The concept of equivalent void ratio curve is introduced to distinguish the plastic potential curve from the yield curve. The model predictions are compared with the test results of an unsaturated expansive soil, including swelling tests under constant net stress, isotropic compression tests and triaxial shear tests under constant suction. The comparison indicates that the model offers great potential for quantitatively predicting the hydraulic and mechanical behaviour of unsaturated expansive soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Two or more different fluids generally saturate chalk in oil reservoir, and therefore its behaviour can be very complicated. In this paper, a constitutive law is proposed for modelling the mechanical behaviour of a chalk saturated by two non‐miscible fluids, water and oil. The effects of the capillary pressure or suction are taken into account. They are considered as an independent variable, as in the Barcelona's basic model developed for unsaturated soils. On the other hand, internal friction and pore collapse are modelled as independent mechanisms. The determination of the parameters is based on triaxial and oedometer tests. Finally, in order to validate the model, predictions are compared with experimental results of water‐flooding test. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Unsaturated soils are highly heterogeneous 3‐phase porous media. Variations of temperature, the degree of saturation, and density have dramatic impacts on the hydro‐mechanical behavior of unsaturated soils. To model all these features, we present a thermo‐hydro‐plastic model in which the hydro‐mechanical hardening and thermal softening are incorporated in a hierarchical fashion for unsaturated soils. This novel constitutive model can capture heterogeneities in density, suction, the degree of saturation, and temperature. Specifically, this constitutive model has 2 ingredients: (1) it has a “mesoscale” mechanical state variable—porosity and 3 environmental state variables—suction, the degree of saturation, and temperature; (2) both temperature and mechanical effects on water retention properties are taken into account. The return mapping algorithm is applied to implement this model at Gauss point assuming an infinitesimal strain. At each time step, the return mapping is conducted only in principal elastic strain space, assuming no return mapping in suction and temperature. The numerical results obtained by this constitutive model are compared with the experimental results. It shows that the proposed model can simulate the thermo‐hydro‐mechanical behavior of unsaturated soils with satisfaction. We also conduct shear band analysis of an unsaturated soil specimen under plane strain condition to demonstrate the impact of temperature variation on shear banding triggered by initial material heterogeneities.  相似文献   

5.
The volumetric compaction due to wetting processes is a phenomenon observed quite often in unsaturated soils. Under certain circumstances, saturation events can result into a sudden and unexpected collapse of the system. These phenomena are usually referred to as wetting‐induced collapses, without providing any detailed theoretical justification for this terminology. In order to predict in a general fashion the occurrence of coupled instabilities induced by saturation processes, a generalization of the theoretical approaches usually employed for saturated geomaterials is here provided. More specifically, this paper addresses the problem of hydro‐mechanical instability in unsaturated soils from an energy standpoint. For this purpose, an extension of the definition of the second‐order work is here suggested for the case of unsaturated porous media. On the basis of some examples of numerical simulations of laboratory tests, coupled hydro‐mechanical instabilities are then interpreted in the light of this second‐order energy measure. Finally, the implications of the theoretical results here presented are commented from a constitutive modelling perspective. Two possible alternative approaches to formulate incremental coupled constitutive relations are indeed discussed, showing how the onset of hydro‐mechanical instabilities can be predicted using an extended form of Hill's stability criterion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
As is well known, granular soils under cyclic loading dissipate a large amount of energy and accumulate large irreversible strains. Usually, with time, this second effect reduces and the accumulation rate decreases with the number of cycles until obtaining a sort of ideal stationary cyclic state at which ratcheting disappears. In this paper, only this ideal state is taken into consideration and simulated by means of a multi‐mechanism constitutive model for plastic adaptation. For this purpose, the concept of cycle is discussed, many different categories of cyclic stress/strain paths are considered and some theoretical issues concerning both the flow and the strain‐hardening rules are tackled. Even though the paper focuses on soil behaviour, the conclusions can be extended to all materials exhibiting ratcheting due to volumetric behaviour.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A new constitutive model is developed for the mechanical behaviour of unsaturated soils based on the theory of hypoplasticity and the effective stress principle. The governing constitutive relations are presented and their application is demonstrated using several experimental data from the literature. Attention is given to the stiffening effect of suction on the mechanical response of unsaturated soils and the phenomenon of wetting‐induced collapse. All model parameters have direct physical interpretation, procedures for their quantification from test data are highlighted. Quantitative predictions of the model are presented for wetting, drying and constant suction tests. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a three‐dimensional elastoplastic constitutive model for predicting the hydraulic and mechanical behaviour of unsaturated soils. It is based on experimental results obtained from a series of controlled‐suction triaxial tests on unsaturated compacted clay with different initial densities. Hydraulic hysteresis in the water‐retention behaviour is modelled as an elastoplastic process, with the elastic part modelled by a series of scanning curves and the elastoplastic part modelled by the main drying and wetting curves. The effect of void ratio on the water‐retention behaviour is studied using data obtained from controlled‐suction wetting–drying cyclic tests on unsaturated compacted clay with different initial densities. The effect of the degree of saturation on the stress–strain‐strength behaviour and the effect of void ratio on the water‐retention behaviour are considered in the model, as is the effect of suction on the hydraulic and mechanical behaviour. The initial density dependency of the compacted soil behaviour is modelled by experimental relationships between the initial density and the corresponding yield stress and, thereby, between the initial density and the normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure and yield surfaces in the deviatoric stress plane are given by the Matsuoka–Nakai criterion. Model predictions of the stress–strain and water‐retention behaviour are compared with those obtained from triaxial tests with different initial densities under isotropic compression, triaxial compression and triaxial extension, with or without variation in suction. The comparisons indicate that the model accurately predicts the hydraulic and mechanical behaviour of unsaturated compacted soils with different initial densities using the same material constant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Numerous constitutive models built on coaxial theory and validated under axi‐symmetric condition often describe the stress–stain relationships and predict the inceptions of shear banding in sands inaccurately under true triaxial condition. By adopting an elaborated Mohr–Coulomb yield function and using non‐coaxial non‐associated flow rule, a 3D non‐coaxial elasto‐plasticity model is proposed and validated by a series of true triaxial tests on loose sands. The bifurcation analysis of true triaxial tests on dense sands predicts the influence of the intermediate principal stress ratio on the onset of shear band accurately. The failure of soils is shown to be related to the formation of shear band under most intermediate principal stress ratio conditions except for those which are close to the axi‐symmetric compression condition. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
11.
徐令宇  蔡飞  陈国兴  王国新 《岩土力学》2016,37(11):3329-3335
已有震害研究表明,震后边坡会因持续变形而破坏,且伴随着土体强度逐渐降低的现象,即土的循环软化行为。因此,有必要研究考虑循环软化的非线性动力本构模型以用于复杂条件下地震边坡稳定性分析。在已有的非线性动力本构模型基础上,提出了考虑循环软化的处理方法。同时,在FLAC3D平台上实现了本构模型二次开发,并通过了理论公式与已有文献中试验数据的验证。结果表明:计算出的骨干曲线与理论公式一致,且计算出的动剪切模量比及阻尼比与试验数据吻合较好,能够克服Hardin-Drnevich模型和Davidenkov模型在较大应变处(>0.01%)过高地估算阻尼比的缺陷;考虑了循环软化后,计算出的剪切强度有明显降低,且当遇到骨干曲线剪应力可以连续地过渡到软化后的主干曲线上,模型的收敛性较好。所开发的本构模型可为大应变条件下软土场地及边坡地震灾害评估提供支持。  相似文献   

12.
An elasto-plastic model is proposed for modeling the constitutive behavior of the interface between gravelly soils and structural materials. This model is based on the two-surface plasticity formulation and it is compatible with the concept of critical state soil mechanics. The model requires the same set of eight calibration parameters for predicting the monotonic and cyclic responses of both loose and dense interfaces. The model simulates cyclic densification, shear degradation and the effects of normal pressure, soil density, and stress path. The performance of the proposed constitutive model is validated by tests data under different normal stresses and boundary conditions.  相似文献   

13.
Performance of three classes of explicit and implicit time‐stepping integrators is assessed for a cyclic plasticity constitutive model for sands. The model is representative of an important class of cyclic plasticity models for soils and includes both isotropic and nonlinear kinematic hardening. The implicit algorithm is based on the closest point projection method and the explicit algorithm follows a cutting‐plane integration procedure. A sub‐stepping technique was also implemented. The performance of these algorithms is assessed through a series of numerical simulations ranging from simulations of laboratory tests (such as triaxial and bi‐axial compression, direct shear, and cyclic triaxial tests) to the analysis of a typical boundary value problem of geotechnical earthquake engineering. These simulations show that the closest point projection algorithm remains stable and accurate for relatively large strain increments and for cases where the mean effective stress in a soil element reaches very small values leading to a liquefaction state. It is also shown that while the cutting plane (CP) and sub‐stepping (SS) algorithms provide high efficiency and good accuracy for small to medium size strain increments, their accuracy and efficiency deteriorate faster than the closest point projection method for large strain increments. The CP and SS algorithms also face convergence difficulties in the liquefaction analysis when the soil approaches very small mean effective stresses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
15.
循环荷载下黏土应变积累积强化模型研究   总被引:2,自引:1,他引:1  
刘方成  尚守平  王海东 《岩土力学》2008,29(9):2457-2462
循环加载历史是影响土的动力特性的一个重要因素。通过对一种原状粉质黏土进行高循环次数单剪试验,研究了黏土体应变随剪应变幅值及循环次数的变化规律,以及由于体应变的累积对黏土动力特性产生的影响。试验结果表明,黏土的体应变随着循环次数的增多和循环剪应变幅值的增大而增大,而土的动力特性则随着体应变的不断累积而出现强化现象,表现为动剪模量增加,阻尼比减小。对累积体应变与动剪模量、阻尼比之间的关系进行了研究,提出了相应的强化关系式。在常用的非线性模型基础上,通过引入动剪模量的强化系数和阻尼比的衰减系数,建立了一种能考虑循环应变历史影响的土动力模型。  相似文献   

16.
An evaluation method for the mechanical behavior of unsaturated soils is studied in this paper. Although the mechanical behavior of unsaturated soils is complicated, a simple modeling is preferable in practice. This is because the soil properties are not homogeneous and ground data is limited when structures are being designed. In addition, in order to evaluate the reliability of the design, the physical meanings of the parameters applied in the prediction model should be clear. Firstly, the authors study the relationship between compaction curves and compression indexes in the unsaturated state that is used in the proposed constitutive model. Based on the constitutive model, the stress paths for constant volume shear tests are formulated under a constant void ratio condition and the stress paths for undrained shear tests are calculated under a constant water content condition. In the case of unsaturated specimens, the volume of these specimens changes with the shear deformation and the stress paths depend on the initial degree of saturation. The results of the calculation qualitatively describe the test results by considering the changes in effective confining pressure in the undrained condition and the water retention curves.  相似文献   

17.
天然沉积粉质黏土的应力路径试验研究   总被引:1,自引:0,他引:1  
殷杰  刘夫江  刘辰  刘春伟 《岩土力学》2013,34(12):3389-3392
天然沉积土在沉积过程中产生了结构性和各向异性,使其受力变形特性与重塑土存在明显的差异。实际工程中的天然土体往往在受荷过程中会经历不同的应力路径,因此,需要开展考虑结构性和各向异性影响的应力路径试验。通过研究不同应力路径下土体的力学特性,为建立复杂应力路径下的合理的本构模型提供试验依据。采用大直径PVC管取样器获取张家港地区地下2.5 m深的粉质黏土不扰动土样,通过GDS三轴仪对土样进行了K0固结不同排水应力路径试验。结果表明,应力路径对不扰动土样的体积变形和剪切变形均有显著影响,且球应力和偏应力对土的体应变和剪应变存在交叉影响。无论以体积变形为主还是剪切变形为主的应力路径下,应力-应变曲线都有明显的屈服性状。通过描绘试验所得各应力路径下的屈服点,获得张家港不扰动土样的屈服轨迹大致呈倾斜的椭圆形状,采用Wheeler模型的屈服面与试验屈服点的吻合程度要优于Nakano模型。  相似文献   

18.
孙德安  陈振新 《岩土力学》2012,33(Z2):16-021
目前大多数非饱和土的弹塑性本构模型用非饱和击实土的试验结果进行验证,但现场其他类型的土,如沉积土经常有在非饱和状态下外部环境变化的情况。现有的非饱和土弹塑性模型是否适用于沉积土一类的现场土是需要研究的课题。进行非饱和上海第③层土的吸力控制排水排气三轴剪切试验,使用文中提出的能统一考虑非饱和土水力性状和力学性状的弹塑性本构模型,预测上述三轴试验结果,并与试验数据进行比较。比较结果显示,建立的本构模型能够很好地预测非饱和上海软土的水力和力学性质,说明该模型不仅可以适用击实土的预测,还能够很好地适用于其他类型非饱和土的水力和力学性质的模拟。  相似文献   

19.
This paper presents the development, calibration, and validation of a smoothed particle hydrodynamics (SPH) model for the simulation of seismically induced slope deformation under undrained condition. A constitutive model that combines the isotropic strain softening viscoplasticity and the modified Kondner and Zelasko rule is developed and implemented into SPH formulations. The developed SPH model accounts for the effects of wave propagation in the sliding mass, cyclic nonlinear behavior of soil, and progressive reduction in shear strength during sliding, which are not explicitly considered in various Newmark‐type analyses widely used in the current research and practice in geotechnical earthquake engineering. Soil parameters needed for the developed model can be calibrated using typical laboratory shear strength tests, and experimental or empirical shear modulus reduction curve and damping curve. The strain‐rate effects on soil strength are considered. The developed SPH model is validated against a readily available and well‐documented model slope test on a shaking table. The model simulated slope failure mode, acceleration response spectra, and slope deformations are in excellent agreement with the experimental data. It is thus suggested that the developed SPH model may be utilized to reliably simulate earthquake‐induced slope deformations. This paper also indicates that if implemented with appropriate constitutive models, SPH method can be used to model large‐deformation problems with high fidelity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Behavior of unsaturated soils is influenced by many factors, and the influences of these factors are usually coupled together. Suction‐controlled triaxial (SCTX) tests are considered to allow researchers to investigate influences of individual variables on unsaturated soils under specified stress path with controls of stresses, pore water, and air pressures. In the past 50 years, SCTX testing method has been established as a standard approach to characterize constitutive behavior of unsaturated soils. Most important concepts for modern unsaturated soil mechanics were developed upon results from the SCTX tests. Among these, one of the most important contributions in the constitutive modeling of elasto‐plastic behavior for unsaturated soils is the Barcelona basic model (BBM) proposed by Alonso et al. in 1990. The BBM successfully explained many features of unsaturated soils and received extensive acceptance. However, the SCTX tests are designed based upon the divide‐and‐conquer approach in which an implicit assumption is used: soil behavior is stress‐path independent. However, it is well‐established that unsaturated soil behavior is elasto‐plastic and stress‐path dependent. It is found that the SCTX tests in fact cannot control the stress path of an unsaturated soil during loading. This incapability, in combination with complicated loading/collapse behavior of unsaturated soils, makes the SCTX tests for characterizing unsaturated soil questionable. This paper discusses the limitations of the SCTX tests in the characterization of unsaturated soils. A possible solution to the problem was proposed based on a newly developed modified state surface approach. The discussions are limited for isotropic conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号