首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
By using an upper bound limit analysis in conjunction with finite elements and linear programming, the ultimate bearing capacity of two interfering rough strip footings, resting on a cohesionless medium, was computed. Along all the interfaces of the chosen triangular elements, velocity discontinuities were employed. The plastic strains were incorporated using an associated flow rule. For different clear spacing (S) between the two footings, the efficiency factor (ξγ) was determined, where ξγ is defined as the ratio of the failure load for a strip footing of given width in the presence of the other footing to that of a single isolated strip footing having the same width. The value of ξγ at S/B = 0 becomes equal to 2.0, and the maximum ξγ occurs at S/B = Scr/B. For S/B?Scr/B, the ultimate failure load for a footing becomes almost half that of an isolated footing having width (2B + S), and the soil mass below and in between the two footings deforms mainly in the downward direction. In contrast, for S/B>Scr/B, ground heave was noticed along both the sides of the footing. As compared to the available theories, the analysis provides generally lower values of ξγ for S/B>Scr/B. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The ultimate bearing capacity of a number of multiple strip footings, identically spaced and equally loaded to failure at the same time, is computed by using the lower bound limit analysis in combination with finite elements. The efficiency factor (ξγ), due to the component of soil unit weight, is computed with respect to changes in the clear spacing (S) between the footings. It is noted that the failure load for a footing in the group becomes always greater than that of a single isolated footing. The values of ξγ for the smooth footings are found to be always lower than the rough footings. The values of ξγ are found to increase continuously with a decrease in the spacing between footings. As compared to the available theoretical and experimental results reported in literature, the present analysis provides generally a little lower values of ξγ.  相似文献   

3.
By using the method of characteristics, the effect of footing–soil interface friction angle (δ) on the bearing capacity factor Nγ was computed for a strip footing. The analysis was performed by employing a curved trapped wedge under the footing base; this wedge joins the footing base at a distance Bt from the footing edge. For a given footing width (B), the value of Bt increases continuously with a decrease in δ. For δ=0, no trapped wedge exists below the footing base, that is, Bt/B=0.5. On the contrary, with δ=?, the point of emergence of the trapped wedge approaches toward the footing edge with an increase in ?. The magnitude of Nγ increases substantially with an increase in δ/?. The maximum depth of the plastic zone becomes higher for greater values of δ/?. The results from the present analysis were found to compare well with those reported in the literature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This paper focuses on the effective utilization of pond ash, as foundation medium. A series of laboratory model tests have been carried out using square, rectangular and strip footings on pond ash. The effects of dry density, degree of saturation of pond ash, size and shape of footing on ultimate bearing capacity of shallow foundations are presented in this paper. Local shear failure of a square footing on pond ash at 37% moisture content (optimum moisture content) is observed up to the values of dry density 11.20 kN/m3 and general shear failure takes place at the values of dry density 11.48 kN/m3 and 11.70 kN/m3. Effects of degree of saturation on ultimate bearing capacity were studied. Experimental results show that degree of saturation significantly affects the ultimate bearing capacity of strip footing. The effect of footing length to width ratio (L/B), on increase in ultimate bearing capacity of pond ash, is insignificant for L/B ≥ 10 in case of rectangular footings. The effects of size of footing on ultimate bearing capacity for all shapes of footings viz., square, rectangular and strip footings are highlighted.  相似文献   

5.
A rigorous lower bound solution, with the usage of the finite elements limit analysis, has been obtained for finding the ultimate bearing capacity of two interfering strip footings placed on a sandy medium. Smooth as well as rough footing–soil interfaces are considered in the analysis. The failure load for an interfering footing becomes always greater than that for a single isolated footing. The effect of the interference on the failure load (i) for rough footings becomes greater than that for smooth footings, (ii) increases with an increase in ?, and (iii) becomes almost negligible beyond S/B > 3. Compared with various theoretical and experimental results reported in literature, the present analysis generally provides the lowest magnitude of the collapse load. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The ultimate bearing capacity of a new strip footing placed on a cohesionless soil medium, in the presence of an existing strip footing, the load on which is assumed to be known, has been determined. Both the footings are assumed to be perfectly rigid and rough. The analysis is carried out by using an upper bound finite element limit analysis. For different clear spacing (S) between the footings, the values of the efficiency factor (ξγ) were determined; where ξγ is defined as the ratio of the failure load for an interfering new footing of a given width (B) to that for a single isolated footing having the same width. For ϕ < 30°, it is generally noted that the magnitude of ξγ increases continuously with a decrease in S/B. For ϕ > 30°, on the other hand if the applied load on the existing footing is approximately greater than half the failure load for a single isolated footing having the same width, the peak magnitude of ξγ was found to occur at around S/B ≈ 0.1 rather than at S/B = 0. The increase in ξγ becomes further significant with an increase in the magnitude of the load on the existing footing.  相似文献   

7.
In recent times, rapid urbanisation coupled with scarcity of land forces several structures to come up ever closer to each other, which may sometime cause severe damage to the structures from both strength and serviceability point of view, and therefore, a need is felt to devise simplified methods to capture the effect of footing interference. In the present study, an attempt has been made to model the settlement behaviour of two strip footings placed in close spacing on layered soil deposit consisting of a strong top layer underlying a weak bottom layer. Theory of elasticity is employed to derive the governing differential equations and subsequently solved by the finite difference method. The perfectly rough strip footings are considered to be resting on the surface of two-layer soil system, and the soil is assumed to behave as linear elastic material under a range of static foundation load. The effect of various parameters such as the elastic moduli and thickness of two layers, clear spacing between the footings and footing load on the settlement behaviour of closely spaced footings has been determined. The variation of vertical normal stress at the interface of two different soil layers as well as at the base of the failure domain also forms an important part of this study. The results are presented in terms of settlement ratio (ξδ), and their variation is obtained with the change in clear spacing between two footings. The present theoretical investigation indicates that the settlement of closely spaced footings is found to be higher than that of single isolated footing, which further reduces with increase in the spacing between the footings.  相似文献   

8.
By applying the lower bound finite element limit analysis in conjunction with non-linear optimisation, the bearing capacity factors, Nc, Nq and Nγ, due to the components of cohesion, surcharge and unit weight, respectively, have been estimated for a horizontal strip footing placed along a sloping ground surface. The variation of Nc, Nq and Nγ with changes in slope angle (β) for different soil friction angle (φ) have been computed for smooth as well as rough strip footings. The analysis reveals that along a sloping ground surface, in addition to Nγ, the factors Nc and Nq also vary considerably with changes in footing roughness. Compared to the smooth footing, the extent of the plastic zone around the footing becomes greater for the rough footing. The results obtained from the analysis are found to compare well with those previously reported in literature.  相似文献   

9.
The ultimate bearing capacity of two closely spaced strip footings, placed on a cohesionless medium and loaded simultaneously to failure at the same magnitude of failure load, was determined by using an upper bound limit analysis. A logarithmic spiral radial shear zone, comprising of a number of triangular rigid blocks, was assumed to exist around each footing edge. The equations of the logarithmic spiral arcs were based on angles φL and φR rather than soil friction angle φ; the values of φL and φR were gradually varied in between 0 and φ. The ultimate bearing capacity was found to become maximum corresponding to a certain critical spacing between the footings. For spacing greater than the critical, the bearing capacity was found to decrease continuously with increase in the spacing. The extent of the spacing corresponding to which the ultimate bearing capacity becomes either maximum or equal to that of a single isolated footing increases with increase in φ. The results compare reasonably well with the available theoretical and experimental data.  相似文献   

10.
We studied the upper-bound ultimate bearing capacity of smooth strip shallow footings with symmetrical and asymmetrical horizontal confinements on purely frictional sand within the framework of upper-bound limit analysis. The subsoil follows the associated flow rule, and no surcharge on the soil surface is assumed. The contact between the soil and the horizontal confinement walls is assumed to be perfectly rough. The upper-bound solutions for the objective functions are obtained using nonlinear sequential quadratic programming. The results for the different internal friction angles φ are provided in terms of the variation of two parameters, namely, the bearing capacity factor Nγ and the correction factor of bearing capacity Kγ, with respect to the change in the clear spacing between the edge of smooth footing and the rigid vertical walls. The values of Nγ and Kγ increase with φ and decrease with the clear spacing between the edge of the smooth footing and the rigid vertical walls. Nγ and Kγ are more sensitive to this confining effect as φ increases. The numerical results, a comparative analysis with the results from previous studies, and design charts are also included.  相似文献   

11.
The method of stress characteristics has been used for computing the ultimate bearing capacity of strip and circular footings placed on rock mass. The modified Hoek‐and‐Brown failure criterion has been used. Both smooth and rough footing‐rock interfaces have been modeled. The bearing capacity has been expressed in terms of nondimensional factors Nσ0 and Nσ, corresponding to rock mass with (1) γ = 0 and (2) γ ≠ 0, respectively. The numerical results have been presented as a function of different input parameters needed to define the Hoek‐and‐Brown criterion. Slip line patterns and the pressure distribution along the footing base have also been examined. The results are found to compare generally well with the reported solutions.  相似文献   

12.
By using small scale model tests, the interference effect on the vertical load-deformation behavior of a number of equally spaced strip footings, placed on the surface of dry sand, was investigated. At any stage, all the footings were assumed to (i) carry exactly equal magnitude of load, and (ii) settle to the same extent. No tilt of the footing was permitted. The effect of clear spacing (s) among footings on the results was explored. A new experimental setup was proposed in which only one footing needs to be employed rather than a number of footings. The bearing capacity increases continuously with decrease in spacing among the footings. The interference effect becomes further prominent with increase in soil friction angle. In contrast to an increase in the bearing capacity, with decrease in spacing of footings, an increase in the footing settlement associated with the ultimate state of shear failure was observed. The present experimental observations were similar to those predicted by the available theory, based on the method of characteristics. As compared to the theory, the present experimental data, however, indicates much greater effect of interference especially for larger spacing among footings.  相似文献   

13.
The effect of a smooth rigid stratum, located beneath a dense sand layer, on the bearing capacity and settlement of surface and shallow strip footings is investigated using an advanced experimental model. A theoretical analysis is presented for the bearing capacity of surface footings. The results indicate that the bearing capacity reaches a minimum value at a specific sand-layer thickness. Any increase in the layer thickness above this value causes an increase in the bearing capacity up to that corresponding to a continuous media.Notation H= thickness of the sand layer - B= foundation width - N q and N = bearing capacity factors for a semi-infinite layer - N qs and N s= bearing capacity factors for a finite layer - H o /B= limiting depth - D r= relative density - = angle of soil internal friction - M= model width - D= depth of surcharge - q= bearing stress, pressure applied on the footing - q u= bearing capacity - = unit weight of sand  相似文献   

14.
In this paper, an effort is made to evaluate the seismic bearing capacity of shallow strip footing resting on c–ф soil. The formulation is developed to get a single coefficient of bearing capacity for simultaneous resistance of weight, surcharge and cohesion. Limit equilibrium method in Pseudo-static approach with Coulomb mechanism is applied here to evaluate the seismic bearing capacity. The seismic bearing capacity of footing (quE) is expressed in terms of single coefficient NγE. The effect of various parameters viz. angle of internal friction of soil (ф), angle of wall friction (δ), cohesion (c), ratio of depth to width of footing (df/B0), seismic acceleration (kh, kv) are studied on the variation of seismic bearing capacity co-efficients.  相似文献   

15.
Design of shallow foundations relies on bearing capacity values calculated using procedures that are based in part on solutions obtained using the method of characteristics, which assumes a soil following an associated flow rule. In this paper, we use the finite element method to determine the vertical bearing capacity of strip and circular footings resting on a sand layer. Analyses were performed using an elastic–perfectly plastic Mohr–Coulomb constitutive model. To investigate the effect of dilatancy angle on the footing bearing capacity, two series of analyses were performed, one using an associated flow rule and one using a non-associated flow rule. The study focuses on the values of the bearing capacity factors Nq and Nγ and of the shape factors sq and sγ for circular footings. Relationships for these factors that are valid for realistic pairs of friction angle and dilatancy angle values are also proposed.  相似文献   

16.
The vertical uplift resistance of two interfering rigid rough strip anchors embedded horizontally in sand at shallow depths has been examined. The analysis is performed by using an upper bound theorem of limit analysis in combination with finite elements and linear programming. It is specified that both the anchors are loaded to failure simultaneously at the same magnitude of the failure load. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (ξγ) is determined. On account of interference, the magnitude of ξγ is found to reduce continuously with a decrease in the spacing between the anchors. The results from the numerical analysis were found to compare reasonably well with the available theoretical data from the literature.  相似文献   

17.
Measured settlements of buildings on the weathered Keuper Marl appeared to be much smaller than calculated settlements, which were based on stiffness modulus from standard oedometer tests. Therefore, both special triaxial K 0-tests and oedometer tests were carried out for an accurate determination of stiffness moduli. Modulus obtained in the triaxial K 0-tests were at least two to three times the values obtained in the oedometer tests. To verify observations from the laboratory tests, the loads and the settlements of two single footings on weathered Keuper mudstone have been measured during construction of a building over 1 year. Also, a large scale footing load test with measurements of deformations were conducted on the weathered Keuper mudstone. The measured settlements of the two single footings and the tested foundation were compared with the settlements based on conventional calculations with moduli from oedometer tests and triaxial K 0-tests. Up to a foundation pressure of σv = 500 kN/m2 the calculated settlement based on E S-modulus obtained from triaxial K 0-tests was found to correspond well to the measured deformation. For foundation pressure beyond 500 kN/m2, the foundation response was highly non-linear and it could not be described any more with the linear-elastic model. Therefore the footing load test was also simulated by FEM analyses.  相似文献   

18.
The ultimate uplift resistance of a group of multiple strip anchors placed in sand and subjected to equal magnitudes of vertical upward pullout loads has been determined by means of model experiments. Instead of using a number of anchor plates in the experiments, a single anchor plate was used by simulating the boundary conditions along the planes of symmetry on both the sides of the anchor plate. The effect of clear spacing (s) between the anchors, for different combinations of embedment ratio (λ) of anchors and friction angle (ϕ) of soil mass, was examined in detail. The results were presented in terms of a non-dimensional efficiency factor (ξγ), which was defined as the ratio of the failure load for an intervening strip anchor of a given width (B) to that of a single strip anchor plate having the same width. It was clearly noted that the magnitude of ξγ reduces quite extensively with a decrease in the spacing between the anchors. The magnitude of ξγ for a given s/B was found to vary only marginally with respect to changes in λ and ϕ. The experimental results presented in this study compare reasonably well with the theoretical and experimental data available in literature.  相似文献   

19.
The classical solution to the bearing capacity problem predicts the limit load on symmetrically loaded shallow strip footings. A useful hypothesis was suggested by Meyerhof to account for eccentricity of loading, in which the footing width is reduced by twice-the-eccentricity to its ‘effective’ size. This hypothesis sometimes has been criticized as being overconservative. This paper examines Meyerhof’s suggestion and presents the bearing capacity of eccentrically loaded footings calculated using the kinematic approach of limit analysis. It is found that the effective width rule yields a bearing capacity equivalent to that calculated based on the assumption that the footing is smooth. For more realistic footing models and for cohesive soils the effective width rule is a reasonable account of eccentricity in bearing capacity calculations. Only for significant bonding at the soil-footing interface and for large eccentricities does the effective width rule become overly conservative. For cohesionless soils, however, the effective width rule may overestimate the best upper bound. This overestimation increases with an increase in eccentricity. ©  相似文献   

20.
This study employs two statistical learning algorithms (Support Vector Machine (SVM) and Relevance Vector Machine (RVM)) for the determination of ultimate bearing capacity (qu) of shallow foundation on cohesionless soil. SVM is firmly based on the theory of statistical learning, uses regression technique by introducing varepsilon‐insensitive loss function. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. It also gives variance of predicted data. The inputs of models are width of footing (B), depth of footing (D), footing geometry (L/B), unit weight of sand (γ) and angle of shearing resistance (?). Equations have been developed for the determination of qu of shallow foundation on cohesionless soil based on the SVM and RVM models. Sensitivity analysis has also been carried out to determine the effect of each input parameter. This study shows that the developed SVM and RVM are robust models for the prediction of qu of shallow foundation on cohesionless soil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号