首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
This study assesses the usefulness of Nigeriasat-1 satellite data for urban land cover analysis by comparing it with Landsat and SPOT data. The data-sets for Abuja were classified with pixel- and object-based methods. While the pixel-based method was classified with the spectral properties of the images, the object-based approach included an extra layer of land use cadastre data. The classification accuracy results for OBIA show that Landsat 7 ETM, Nigeriasat-1 SLIM and SPOT 5 HRG had overall accuracies of 92, 89 and 96%, respectively, while the classification accuracy for pixel-based classification were 88% for Landsat 7 ETM, 63% for Nigeriasat-1 SLIM and 89% for SPOT 5 HRG. The results indicate that given the right classification tools, the analysis of Nigeriasat-1 data can be compared with Landsat and SPOT data which are widely used for urban land use and land cover analysis.  相似文献   

2.
The development of robust object-based classification methods suitable for medium to high resolution satellite imagery provides a valid alternative to ‘traditional’ pixel-based methods. This paper compares the results of an object-based classification to a supervised per-pixel classification for mapping land cover in the tropical north of the Northern Territory of Australia. The object-based approach involved segmentation of image data into objects at multiple scale levels. Objects were assigned classes using training objects and the Nearest Neighbour supervised and fuzzy classification algorithm. The supervised pixel-based classification involved the selection of training areas and a classification using the maximum likelihood classifier algorithm. Site-specific accuracy assessment using confusion matrices of both classifications were undertaken based on 256 reference sites. A comparison of the results shows a statistically significant higher overall accuracy of the object-based classification over the pixel-based classification. The incorporation of a digital elevation model (DEM) layer and associated class rules into the object-based classification produced slightly higher accuracies overall and for certain classes; however this was not statistically significant over the object-based using spectral information solely. The results indicate object-based analysis has good potential for extracting land cover information from satellite imagery captured over spatially heterogeneous land covers of tropical Australia.  相似文献   

3.
多尺度分割的高分辨率遥感影像变化检测   总被引:4,自引:1,他引:3  
针对高空间分辨率的遥感影像,提出了一种基于多尺度分割的变化检测算法。采用Mean-Shift分割算法对影像进行多尺度分割,构建了不同尺度上的地理对象,以不同尺度上的地理对象灰度均值构建了变化检测的多尺度特征向量,采用变化矢量分析法获得最后的变化检测结果。以城镇区和农田区的Quick Bird影像对本文算法进行了检验,从精度评价的效果来看,无论城镇区还是农田区,采用面向对象的变化检测方法精度都高于基于单像素的检测方法,且当尺度层数固定时,多尺度组合的变化检测结果优于单一尺度的变化检测结果,对城镇、农田区域的变化检测的精度分别达到87.57%和81.55%。本文算法既可以顾及大面积同质区域变化,又可以反映小的地物目标及边缘部分的变化,能够很好地满足城镇、农田等不同环境背景下的变化检测需求,在国土资源监测中具有一定的应用价值。  相似文献   

4.
High-spatial resolution remote sensing imagery provides unique opportunities for detailed characterization and monitoring of landscape dynamics. To better handle such data sets, change detection using the object-based paradigm, i.e., object-based change detection (OBCD), have demonstrated improved performances over the classic pixel-based paradigm. However, image registration remains a critical pre-process, with new challenges arising, because objects in OBCD are of various sizes and shapes. In this study, we quantified the effects of misregistration on OBCD using high-spatial resolution SPOT 5 imagery (5 m) for three types of landscapes dominated by urban, suburban and rural features, representing diverse geographic objects. The experiments were conducted in four steps: (i) Images were purposely shifted to simulate the misregistration effect. (ii) Image differencing change detection was employed to generate difference images with all the image-objects projected to a feature space consisting of both spectral and texture variables. (iii) The changes were extracted using the Mahalanobis distance and a change ratio. (iv) The results were compared to the ‘real’ changes from the image pairs that contained no purposely introduced registration error. A pixel-based change detection method using similar steps was also developed for comparisons. Results indicate that misregistration had a relatively low impact on object size and shape for most areas. When the landscape is comprised of small mean object sizes (e.g., in urban and suburban areas), the mean size of ‘change’ objects was smaller than the mean of all objects and their size discrepancy became larger with the decrease in object size. Compared to the results using the pixel-based paradigm, OBCD was less sensitive to the misregistration effect, and the sensitivity further decreased with an increase in local mean object size. However, high-spatial resolution images typically have higher spectral variability within neighboring pixels than the relatively low resolution datasets. As a result, accurate image registration remains crucial to change detection even if an object-based approach is used.  相似文献   

5.
高分辨率多光谱影像城区建筑物提取研究   总被引:4,自引:2,他引:2  
谭衢霖 《测绘学报》2010,39(6):618-623
城区高空间分辨率遥感数据由于存在大量同物异谱和异物同谱现象,应用传统的基于像元光谱分类的方法进行建筑物分类提取难以取得满意的效果。本文发展了一种从高分辨率Ikonos卫星影像上基于知识规则的面向对象分类提取城区建筑物方法,包括如下步骤:(1)融合1m全色和4m多光谱波段影像,生成1m分辨率的多光谱融合影像;(2)分割融合影像;(3)执行基于对象光谱的最近邻监督分类;(4)应用模糊逻辑分类器结合光谱、空间、纹理和上下文特征等知识规则进行建筑物分类。精度统计结果表明,本文提出的分类方法提取城区建筑物取得了93%的精度。  相似文献   

6.
Abstract

Land use/land cover (LULC) classification with high accuracy is necessary, especially in eco-environment research, urban planning, vegetation condition study and soil management. Over the last decade a number of classification algorithms have been developed for the analysis of remotely sensed data. The most notable algorithms are the object-oriented K-Nearest Neighbour (K-NN), Support Vector Machines (SVMs) and the Decision Trees (DTs) amongst many others. In this study, LULC types of Selangor area were analyzed on the basis of the classification results acquired using the pixel-based and object-based image analysis approaches. SPOT 5 satellite images with four spectral bands from 2003 and 2010 were used to carry out the image classification and ground truth data were collected from Google Earth and field trips. In pixel-based image analysis, a supervised classification was performed using the DT classifier. On the other hand, object-oriented (K-NN) image analysis was evaluated using standard nearest neighbour as classifier. Subsequently SVM object-based classification was performed. Five LULC categories were extracted and the results were compared between them. The overall classification accuracies for 2003 and 2010 showed that the object-oriented (K-NN) (90.5% and 91%) performed better results than the pixel-based DT (68.6% and 68.4%) and object-based SVM (80.6% and 78.15%). In general, the object-oriented (K-NN) performed better than both DTs and SVMs. The obtained LULC classification maps can be used to improve various applications such as change detection, urban design, environmental management and zooning.  相似文献   

7.
In this study, we used Landsat-8 imagery to test object- and pixel-based image classification approaches in an urban fringe area. For object-based classification, we applied four machine learning classifiers: decision tree (DT), naive Bayes (NB), random trees (RT), and support vector machine (SVM). For pixel-based classification, we utilized the maximum likelihood classifier (MLC). Specifically, we explored the influence of repeated sampling on classification results with different training sample sizes. We found that (1) except the overall accuracy of NB, those of the other four classifiers increased as the training sample size increased; (2) repeated sampling had a significant effect on classification accuracy, especially for the DT and NB classifiers; and (3) SVM achieved the best classification accuracy. In addition, the performance of the object-based classifiers was superior to that of the pixel-based classifier. The results of this study can provide guidance on the training sample size and classifier selection.  相似文献   

8.
To have sustainable management and proper decision-making, timely acquisition and analysis of surface features are necessary. Traditional pixel-based analysis is the popular way to extract different categories, but it is not comparable by the achievements that can be achieved through the object-based method that uses the additional characteristics of features in the process of classification. In this paper, three types of classification were used to classify SPOT 5 satellite image in mapping land cover; Support vector machine (SVM) pixel-based, SVM object-based and Decision Tree (DT) pixel-based classification. Normalised Difference Vegetation Index and the brightness value of two infrared bands (NIR and SWIR) were used in manually developed DT classification. The classification of the SVM (pixel based) was generated using the selected groups of pixels that represent the selected features. In addition, the SVM (object based) was implemented by using radial-based function kernel. The classified features were oil palm, rubber, urban area, soil, water and other vegetation. The study found that the overall classification of the DT was the lowest at 69.87% while those of SVM (pixel based) and SVM (object based) were 76.67 and 81.25%, respectively.  相似文献   

9.
Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.  相似文献   

10.
Image classification from remote sensing is becoming increasingly urgent for monitoring environmental changes. Exploring effective algorithms to increase classification accuracy is critical. This paper explores the use of multispectral HJ1B and ALOS (Advanced Land Observing Satellite) PALSAR L-band (Phased Array type L-band Synthetic Aperture Radar) for land cover classification using learning-based algorithms. Pixel-based and object-based image analysis approaches for classifying HJ1B data and the HJ1B and ALOS/PALSAR fused-images were compared using two machine learning algorithms, support vector machine (SVM) and random forest (RF), to test which algorithm can achieve the best classification accuracy in arid and semiarid regions. The overall accuracies of the pixel-based (Fused data: 79.0%; HJ1B data: 81.46%) and object-based classifications (Fused data: 80.0%; HJ1B data: 76.9%) were relatively close when using the SVM classifier. The pixel-based classification achieved a high overall accuracy (85.5%) using the RF algorithm for classifying the fused data, whereas the RF classifier using the object-based image analysis produced a lower overall accuracy (70.2%). The study demonstrates that the pixel-based classification utilized fewer variables and performed relatively better than the object-based classification using HJ1B imagery and the fused data. Generally, the integration of the HJ1B and ALOS/PALSAR imagery can improve the overall accuracy of 5.7% using the pixel-based image analysis and RF classifier.  相似文献   

11.
Macroalgae plays an important role in coastal ecosystems. The accurate delineation of macroalgae areas is important for environmental management. This study compared the pixel- and object-based methods using Gaofen satellite no. 2 image to explore an efficient classification approach. Expert system rules and nearest neighbour classifier were adopted for object-based classification, whereas maximum likelihood classifier was implemented in the pixel-based approach. Normalized difference vegetation index, normalized difference water index, mean value of the blue band and geometric characteristics were selected as features to distinguish macroalgae farms by considering the spectral and spatial characteristics. Results show that the object-based method achieved a higher overall accuracy and kappa coefficient than the pixel-based method. Moreover, the object-based approach displayed superiority in identifying Porphyra class. These findings suggest that the object-based method can delineate macroalgae farming areas efficiently and be applied in the future to monitor the macroalgae farms with high spatial resolution imagery.  相似文献   

12.
In this study, we investigated the performance of different fusion and classification techniques for land cover mapping in Hilir Perak, Peninsula Malaysia using RADAR and Landsat-8 images in a predominantly agricultural area. The fusion methods used are Brovey Transform, Wavelet Transform, Ehlers and Layer Stacking and their results classified into seven different land cover classes which include (1) pixel-based classifiers (spectral angle mapper (SAM), maximum likelihood (ML), support vector machine (SVM)) and (2) Object-based (rule-based and standard nearest neighbour (NN)) classifiers. The result shows that pixel-based classification achieved maximum accuracy of the optical data classification using SVM in Landsat-8 with 74.96% accuracy compared to SAM and ML. For multisource data classification, the highest overall accuracy recorded for layer stacking (SVM) was 79.78%, Ehlers fusion (SVM) with 45.57%, Brovey fusion (SVM) with 63.70% and Wavelet fusion (SVM) 61.16%. And for object-based classifiers, the overall classification accuracy is 95.35% for rule-based and 76.33% for NN classifier, respectively. Based on the analysis of their performances, object-based and the rule-based classifiers produced the best classification accuracy from the fused images.  相似文献   

13.
Remote sensing has been proven promising in wetland mapping. However, conventional methods in a complex and heterogeneous urban landscape usually use mono temporal Landsat TM/ETM + images, which have great uncertainty due to the spectral similarity of different land covers, and pixel-based classifications may not meet the accuracy requirement. This paper proposes an approach that combines spatiotemporal fusion and object-based image analysis, using the spatial and temporal adaptive reflectance fusion model to generate a time series of Landsat 8 OLI images on critical dates of sedge swamp and paddy rice, and the time series of MODIS NDVI to calculate phenological parameters for identifying wetlands with an object-based method. The results of a case study indicate that different types of wetlands can be successfully identified, with 92.38%. The overall accuracy and 0.85 Kappa coefficient, and 85% and 90% for the user’s accuracies of sedge swamp and paddy respectively.  相似文献   

14.
An image dataset from the Landsat OLI spaceborne sensor is compared with the Landsat TM in order to evaluate the excellence of the new imagery in urban landcover classification. Widely known pixel-based and object-based image analysis methods have been implemented in this work like Maximum Likelihood, Support Vector Machine, k-Nearest Neighbor, Feature Analyst and Sub-pixel. Classification results from Landsat OLI provide more accurate results comparing to the Landsat TM. Object-based classifications produced a more uniform result, but suffer from the absorption of small rare classes into large homogenous areas, as a consequence of the segmentation, merging and the spatial parameters in the spatial resolution (30 m) of Landsat images. Based exclusively on the overall accuracy reports, the SVM pixel-based classification from Landsat 8 proved to be the most accurate for the purpose of mapping urban land cover, using medium spatial resolution imagery.  相似文献   

15.
Logistic model tree (LMT), a new method integrating standard decision tree (DT) induction and linear logistic regression algorithm in a single tree, have been recently proposed as an alternative to DT-based learning algorithms. In this study, the LMT was applied in the context of pixel- and object-based classifications using high-resolution WorldView-2 imagery, and its performance was compared with C4.5, random forest and Adaboost. Results of the study showed that the LMT generally produced more accurate classification results than the other methods for both pixel- and object-based classifications. The improvement in classification accuracy reached to 3% in pixel-based and 5% in object-based classifications. It was also estimated that the LMT algorithm produced the most accurate results considering the allocation and overall disagreement errors. Based on the Wilcoxon’s Signed-Ranks tests, the performance differences between the LMT and the other methods were statistically significant for both pixel- and object-based image classifications.  相似文献   

16.
Very high spatial and temporal resolution remote sensing data facilitate mapping highly complex and diverse urban environments. This study analyzed and demonstrated the usefulness of combined high-resolution aerial digital images and elevation data, and its processing using object-based image analysis for mapping urban land covers and quantifying buildings. It is observed that mapping heterogeneous features across large urban areas is time consuming and challenging. This study presents and demonstrates an approach for formulating an optimal land cover classification rule set over small representative training urban area image, and its subsequent transfer to the multisensor, multitemporal images. The classification results over the training area showed an overall accuracy of 96%, and the application of rule set to different sensor images of other test areas resulted in reduced accuracies of 91% for the same sensor, 90% and 86% for the different sensors temporal data. The comparison of reference and classified buildings showed ±4% detection errors. Classification through a transferred rule set reduced the classification accuracy by about 5%–10%. However, the trade-off for this accuracy drop was about a 75% reduction in processing time for performing classification in the training area. The factors influencing the classification accuracies were mainly the shadow and temporal changes in the class characteristics.  相似文献   

17.
Airborne high–spatial resolution images were evaluated for mapping purposes in a complex Atlantic rainforest environment in southern Brazil. Two study sites, covered predominantly by secondary evergreen rainforest, were surveyed by airborne multispectral high-resolution imagery. These aerophotogrammetric images were acquired at four spectral bands (visible to near-infrared) with spatial resolution of 0.39 m. We evaluated different data input scenarios to suit the object-oriented classification approach. In addition to the four spectral bands, auxiliary products such as band ratios and digital elevation models were considered. Comparisons with traditional pixel-based classifiers were also performed. The results showed that the object-based classification approach yielded a better overall accuracy, ranging from 89% to 91%, than the pixel-based classifications, which ranged from 62% to 63%. The individual classification accuracy of forest-related classes, such as young successional forest stages, benefits the object-based approach. These classes have been reported in the literature as the most difficult to map in tropical environments. The results confirm the potential of object-based classification for mapping procedures and discrimination of successional forest stages and other related land use and land cover classes in complex Atlantic rainforest environments. The methodology is suggested for further SAAPI acquisitions in order to monitor such endangered environment as well as to support National Land and Environmental Management Protocols.  相似文献   

18.
Advances in the development of Earth observation data acquisition systems have led to the continuously growing production of remote sensing datasets, for which timely analysis has become a major challenge. In this context, distributed computing technology can provide support for efficiently handling large amounts of data. Moreover, the use of distributed computing techniques, once restricted by the availability of physical computer clusters, is currently widespread due to the increasing offer of cloud computing infrastructure services. In this work, we introduce a cloud computing approach for object-based image analysis and classification of arbitrarily large remote sensing datasets. The approach is an original combination of different distributed methods which enables exploiting machine learning methods in the creation of classification models, through the use of a web-based notebook system. A prototype of the proposed approach was implemented with the methods available in the InterCloud system integrated with the Apache Zeppelin notebook system, for collaborative data analysis and visualization. In this implementation, the Apache Zeppelin system provided the means for using the scikit-learn Python machine learning library in the design of a classification model. In this work we also evaluated the approach with an object-based image land-cover classification of a GeoEye-1 scene, using resources from a commercial cloud computing infrastructure service provided. The obtained results showed the effectiveness of the approach in efficiently handling a large data volume in a scalable way, in terms of the number of allocated computing resources.  相似文献   

19.
赵诣  蒋弥 《测绘学报》2019,48(5):609-617
提出一种基于极化参数优化的面向对象分类方法。该方法结合光学和SAR数据,有效提高了对地物的识别能力。本文方法的关键在于:在■分解中,使用光学影像指导SAR影像选择同质点,使其更精确地估计极化参数并结合光学波谱信息作为输入特征;使用面向对象的分类方法,仅将光学影像作为分割输入,避免SAR噪声引起的分割错误。以美国Bakersfield地区的Sentinel-1/2数据为例,确定7种地物类型,对比分析不同输入与不同分类器对分类结果的影响。研究表明,优化输入参数在纹理丰富区域能够有效提高分类精度;面向对象的分类结果更加稳定并较好地维持地表几何特征;改进分类方法较传统分类方法总体精度提高了近10%,达到92.6%。  相似文献   

20.
Quantification of the urban composition is important in urban planning and management. Previous research has primarily focused on unmixing medium-spatial resolution multispectral imagery using spectral mixture analysis (SMA) in order to estimate the abundance of urban components. For this study an object-based multiple endmember spectral mixture analysis (MESMA) approach was applied to unmix the 30-m Earth Observing-1 (EO-1)/Hyperion hyperspectral imagery. The abundance of two physical urban components (vegetation and impervious surface) was estimated and mapped at multiple scales and two defined geographic zones. The estimation results were validated by a reference dataset generated from fine spatial resolution aerial photography. The object-based MESMA approach was compared with its corresponding pixel-based one, and EO-1/Hyperion hyperspectral data was compared with the simulated EO-1/Advanced Land Imager (ALI) multispectral data in the unmixing modeling. The pros and cons of the object-based MESMA were evaluated. The result illustrates that the object-based MESMA is promising for unmixing the medium-spatial resolution hyperspectral imagery to quantify the urban composition, and it is an attractive alternative to the traditional pixel-based mixture analysis for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号