首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
Cosmic-ray intensity data for the period 1964–1985 covering two solar cycles are used to investigate the solar activity behaviour in relation to cosmic-ray modulation. A detailed statistical analysis of them shows a large time-lag of about one and half years between cosmic-ray intensity and solar activity (as indicated by sunspot number, solar flares and high-speed solar-wind streams) during the 21st solar cycle appearing for a first time. This lag indicates the very high activity level of this solar cycle estimating the size of the modulating region to the unambiguous value of 180 AU. The account of the solar-wind speed in the 11-year variation significantly decreases the modulation region of cosmic-rays to the value of 40 AU.A comparison with the behaviour of the previous solar cycle establishes a distinction between even and odd solar cycles. This is explained in terms of different contributions of drift, convection and diffusion to the whole modulation mechanism during even and odd solar cycles.  相似文献   

2.
V. Letfus 《Solar physics》1993,145(2):377-388
Maximum relative sunspot numbers for the 16th and 17th century were computed by means of the dependence of the maximum relative sunspot numbers on the solar cycle rise time and on the cycle asymmetry. In these dependencies four separate modes of relations, two for odd and two for even cycles, were identified. These modes are coupled two and two in even-odd cycle pairs. The rise times and the asymmetries of solar cycles in the 16th and 17th centuries were taken from cycle extreme estimates by Schove (1979), from auroral and telescopic sunspot observations during this period, but with some necessary corrections. Annual relative sunspot numbers and decade averages were estimated from the cycle maxima and the epochs of extremes. In addition, the efficiency of auroral records in latitudes lower than 55 deg was computed for the time interval 1500–1868. For this purpose the dependence of occurrence numbers of aurorae on the cycle and decade means of the relative sunspot numbers was derived.  相似文献   

3.
Litvinenko  Yuri E.  Wheatland  M.S. 《Solar physics》2004,219(2):265-277
Wheatland and Litvinenko (2001) presented a model for dynamical energy balance in the flaring solar corona which predicts a time lag between flare occurrence and the supply of energy to the corona (`driving'). They also suggested that an observed net lag between flare numbers and sunspot numbers over cycles 21 and 22 might provide support for the model. Temmer, Veronig, and Hanslmeier (2003) examined data for five individual solar cycles (19–23) and confirmed a lag between flare and sunspot numbers for odd solar cycles, but found no lag for even cycles. Following the suggestion of Temmer, Veronig, and Hanslmeier, the energy balance model is here extended to incorporate 22-year driving consistent with the phenomenological Gnevyshev—Ohl rule. The model is found to exhibit a greater lag for the smaller (even) cycles, in contradiction with the findings of Temmer, Veronig, and Hanslmeier. A modification to the model is investigated in which the flaring rate is proportional to the free energy and to the driving rate for small driving rates, but is proportional only to the free energy for large driving rates. The modified model can in principle account for the observations.  相似文献   

4.
To investigate the long-term modulation of galactic cosmic rays at the ground-based detector energies, the monthly values of the neutron monitor (Climax, Mt. Washington, Deep River, and Huancayo) and ionization chamber (Cheltenham/Fredericksburg, Huancayo, and Yakutsk) intensities have been correlated with the sunspot numbers (used as a proxy index for transient solar activity) for each phase of sunspot cycles 18 to 22. Systematic differences are found for results concerning odd and even sunspot cycles. During odd cycles (19 and 21) the onset time of cosmic-ray modulation is delayed when compared with the onset time of the sunspot cycle, while they are more similar during even (18, 20, and 22) cycles. Checking the green corona data, on a half-year basis, we found typical heliolatitudinal differences during ascending phases of consecutive sunspot cycles. This finding suggests a significant role of the latitudinal coronal behaviour in the heliospherical dynamics during a Hale cycle. Such effectiveness concerns not only the transient interplanetary perturbations but also the recurrent ones. In fact, when lag between cosmic-ray data and sunspot numbers is considered, the anticorrelation between both parameters is very high (correlation coefficient |r| > 0.9) for all the phases considered, except for the declining ones of cycles 20 and 21, when high-speed solar wind streams coming from coronal holes affect the cosmic-ray propagation, and theRz parameter is no longer the right proxy index for solar-induced effects in the interplanetary medium.  相似文献   

5.
Rotational Modulation of Microwave Solar Flux   总被引:1,自引:0,他引:1  
Time series data of 10.7 cm solar flux for one solar cycle (1985–1995 years) was processed through autocorrelation. Rotation modulation with varying persistence and period was quite evident. The persistence of modulation seems to have no relation with sunspot numbers. The persistence of modulation is more noticeable during 1985–1986, 1989–1990, and 1990–1991. In other years the modulation is seen, but its persistence is less. The sidereal rotation period varies from 24.07 days to 26.44 days with no systematic relation with sunspot numbers. The results indicate that the solar corona rotates slightly faster than photospheric features. The solar flux was split into two parts, i.e., background emission which remains unaffected by solar rotation and the localized emission which produces the observed rotational modulation. Both these parts show a direct relation with the sunspot numbers. The magnitude of localized emission almost diminishes during the period of low sunspot number, whereas background emission remains at a 33% level even when almost no sunspots may be present. The localized regions appear to shift on the solar surface in heliolongitudes.  相似文献   

6.
We examine the `Group' sunspot numbers constructed by Hoyt and Schatten to determine their utility in characterizing the solar activity cycle. We compare smoothed monthly Group sunspot numbers to Zürich (International) sunspot numbers, 10.7-cm radio flux, and total sunspot area. We find that the Zürich numbers follow the 10.7-cm radio flux and total sunspot area measurements only slightly better than the Group numbers. We examine several significant characteristics of the sunspot cycle using both Group numbers and Zürich numbers. We find that the `Waldmeier Effect' – the anti-correlation between cycle amplitude and the elapsed time between minimum and maximum of a cycle – is much more apparent in the Zürich numbers. The `Amplitude–Period Effect' – the anti-correlation between cycle amplitude and the length of the previous cycle from minimum to minimum – is also much more apparent in the Zürich numbers. The `Amplitude–Minimum Effect' – the correlation between cycle amplitude and the activity level at the previous (onset) minimum is equally apparent in both the Zürich numbers and the Group numbers. The `Even–Odd Effect' – in which odd-numbered cycles are larger than their even-numbered precursors – is somewhat stronger in the Group numbers but with a tighter relationship in the Zürich numbers. The `Secular Trend' – the increase in cycle amplitudes since the Maunder Minimum – is much stronger in Group numbers. After removing this trend we find little evidence for multi-cycle periodicities like the 80-year Gleissberg cycle or the two- and three-cycle periodicities. We also find little evidence for a correlation between the amplitude of a cycle and its period or for a bimodal distribution of cycle periods. We conclude that the Group numbers are most useful for extending the sunspot cycle data further back in time and thereby adding more cycles and improving the statistics. However, the Zürich numbers are slightly more useful for characterizing the on-going levels of solar activity.  相似文献   

7.
The paper reports the results of the analysis of the data on polar faculae for three solar cycles (1960–1986) at the Kislovodsk Station of the Pulkovo Observatory and on polar bright points in Ca ii K line for two solar cycles (1940–1957) at the Kodaikanal Station of the Indian Institute of Astrophysics. We have noticed that the monthly numbers of polar faculae and polar bright points in Ca ii K line and monthly sunspot areas in each hemisphere of the following solar cycle have a correlation with each other. A new cycle of polar faculae and polar bright points in the Ca ii K line begins after the polar magnetic field reversal. We find that the smaller the period between the ending of the polar field reversal and the beginning of a new sunspot cycle is, the more intense is the cycle itself. The intensity of the forthcoming solar cycle (cycle 22) and the periods of strong fluctuations in activity expected in this cycle are also discussed.  相似文献   

8.
Duhau  S. 《Solar physics》2003,213(1):203-212
A non-linear coupling function between sunspot maxima and aa minima modulations has been found as a result of a wavelet analysis of geomagnetic index aa and Wolf sunspot number yearly means since 1844. It has been demonstrated that the increase of these modulations for the past 158 years has not been steady, instead, it has occurred in less than 30 years starting around 1923. Otherwise sunspot maxima have oscillated about a constant level of 90 and 141, prior to 1923 and after 1949, respectively. The relevance of these findings regarding the forecasting of solar activity is analyzed here. It is found that if sunspot cycle maxima were still oscillating around the 141 constant value, then the Gnevyshev–Ohl rule would be violated for two consecutive even–odd sunspot pairs (22–23 and 24–25) for the first time in 1700 years. Instead, we present evidence that solar activity is in a declining episode that started about 1993. A value for maximum sunspot number in solar cycle 24 (87.5±23.5) is estimated from our results.  相似文献   

9.
Letfus  V. 《Solar physics》2000,194(1):175-184
We revised relative sunspot numbers in the time interval 1700–1748 for which Wolf derived their annual means. The frequency of daily observations, counting simultaneously the number of sunspots and the number of sunspot groups necessary for determinating Wolf's relative sunspot numbers, is in this time interval very low and covers, on average, 4.8% of the number of all days only. There also exist incomplete observations not convenient to determine relative sunspot numbers. To enlarge the number of daily relative sunspot numbers we used the nonlinear, two-step interpolation method derived earlier by Letfus (1996, 1999). After interpolation, the mean value increased to 13.8%. Waldmeier (1968) found that the scaling factor k can be derived directly from the observed number of spots f and from the number of sunspot groups g. From the observations made at Zürich (Wolf and his assistants, Wolfer), at Peckeloh, and at Moncalieri during the years 1861–1928, we derived a new, more correct empirical relation. The resulting annual relative sunspot numbers are given in Table II. However, only for 26 years (53.0%) from the total number of 49 years was it possible to derive annual relative sunspot numbers. The observations were missing for the other years. This corresponds with results of Wolf, which gives the annual relative sunspot numbers for all 49 years. For the years when the data were missing, he marked these values as interpolated or very uncertain ones. Most of the observations originate from two data series (Kirch, Plantade), for which Wolf derived a higher scaling factor (k=2.0) than followed from the newly derived relation (k=1.40). The investigated time interval covers four solar cycles. After our results, the height of the first cycle (No. –4), given by Wolf, should be lowered by about two-thirds, the following two cycles (Nos. –3 and –2) lowered by one-third, as given by Wolf, and only the height of the fourth one (No. –1) should be unchanged. The activity levels of the cycles, as represented by group sunspot numbers, are lower by about one-fourth and, in the case of the first one (No. –4) even by two-thirds of the levels derived by us. The group sunspot numbers, derived from a much greater number of observations, have also greater credibility than other estimates. The shapes of the cycles, as given by Wolf, can be considered only as their more or less idealized form.  相似文献   

10.
A detailed correlative analysis between sunspot numbers (SSN) and tilt angle (TA) with cosmic ray intensity (CRI) in the neutron monitor energy range has been performed for the solar cycles 21, 22 and 23. It is found that solar activity parameters (SSN and TA) are highly (positive) correlated with each other and have inverse correlation with cosmic ray intensity (CRI). The ‘running cross correlation coefficient’ between cosmic ray intensity and tilt angle has also been calculated and it is found that the correlation is positive during the maxima of odd cycles 21 and 23. Moreover, the time lag analysis between CRI and SSN, and between CRI and TA has also been performed and is supported by hysteresis curves, which are wide for odd cycles and narrow for even cycles.  相似文献   

11.
Recently, Wheatland and Litvinenko (2001) have suggested that over the solar cycle both the flaring rate and the magnetic free energy in the corona lag behind the energy supply to the system. To test this model result, we analyzed the evolution of solar flare occurrence with regard to sunspot numbers (as well as sunspot areas), using H flare data available for the period 1955–2002, and soft X-ray flare data (GOES 1–8 Å) for the period 1976–2002. For solar cycles 19, 21, and 23, we find a characteristic time lag between flare activity and sunspot activity in the range 1015 months, consistent with the model predictions by Wheatland and Litvinenko (2001). The phenomenon turns out to be more prominent for highly energetic flares. The investigation of solar activity separately for the northern and southern hemisphere allows us to exclude any bias due to overlapping effects from the activity of both hemispheres and confirms the dynamic relevance of the delay phenomenon. Yet, no characteristic time lag >0 is found for solar cycles 20 and 22. The finding that in odd-numbered cycles flare activity is statistically delayed with respect to sunspot activity, while in even-numbered cycles it is not, suggests a connection to the 22-year magnetic cycle of the Sun. Further insight into the connection to the 22-year magnetic cycle could possibly be gained when a 22-year variation in the energy supply rate is taken into account in the Wheatland and Litvinenko (2001) model. The existence of a 22-year modulation in the energy supply rate is suggested by the empirical Gnevyshev – Ohl rule, and might be caused by a relic solar field.  相似文献   

12.
R. P. Kane 《Solar physics》2014,289(7):2727-2732
Hysteresis plots between cosmic-ray (CR) intensity (recorded at the Climax station) and sunspot relative number R Z show broad loops in odd cycles (19, 21, and 23) and narrow loops in even cycles (20 and 22). However, in the even cycles, the loops are not narrow throughout the whole cycle; around the sunspot-maximum period, a broad loop is seen. Only in the rising and declining phases, the loops are narrow in even cycles. The CR modulation is known to have a delay with respect to R Z, and the delay was believed to be longer in odd cycles (19, 21, and 23; about 10 months) than the delay in even cycles (20 and 22; about 3?–?5 months). When this was reexamined, it was found that the delays are different during the sunspot-minimum periods (2, 6, and 14 months for odd cycles and 7 and 9 months for even cycles) and sunspot-maximum periods (0, 4, and 7 months for odd cycles and 5 and 8 months for even cycles). Thus, the differences between odd and even cycles are not significant throughout the whole cycle. In the recent even cycle 24, hysteresis plots show a preliminary broadening near the sunspot maximum, which occurred recently (February 2012). The CR level (recorded at Newark station) is still high in 2013, indicating a long lag (exceeding 10 months) with respect to the sunspot maximum.  相似文献   

13.
Intermediate-term periodicities in solar activity   总被引:2,自引:0,他引:2  
The presence of intermediate-term periodicities in solar activity, at approximately 323 and 540 days, has been claimed by different authors. In this paper, we have performed a search for them in the historical records of two main indices of solar activity, namely, the daily sunspot areas (cycles 12–21) and the daily Zürich sunspot number (cycles 6–21). Two different methods to compute power spectra have been used, one of them being especially appropriate to deal with gapped time series. The results obtained for the periodicity near 323 days indicate that it has only been present in cycle 21, while in previous cycles no significant evidence for it has been found. On the other hand, a significant periodicity at 350 days is found in sunspot areas and Zürich sunspot number during cycles 12–21 considered all together, also having been detected in some individual cycles. However, this last periodicity must be looked into with care due to the lack of confirmation for it coming from other features of solar activity. The periodicity around 540 days is found in cycles 12, 14, and 17 in sunspot areas, while during cycles 18 and 19 it is present, with a very high significance, in sunspot areas and Zürich sunspot number. It also appears at 528 days in sunspot areas during cycles 12–21. On the other hand, it is important to note the coincidence between the asymmetry, favouring the northern hemisphere, of sunspot areas and solar flares during cycle 19, and the fact that the periodicity at 540 days was only present, with high significance, in that hemisphere during that solar cycle.  相似文献   

14.
Defining the first spotless day of a sunspot cycle as the first day without spots relative to sunspot maximum during the decline of the solar cycle, one finds that the timing of that occurrence can be used as a predictor for the occurrence of solar minimum of the following cycle. For cycle 22, the first spotless day occurred in April 1994, based on the International sunspot number index, although other indices (Boulder and American) indicated the first spotless day to have occurred earlier (September 1993). For cycles 9–14, sunspot minimum followed the first spotless day by about 72 months, having a range of 62–82 months; for cycles 15–21, sunspot minimum followed the first spotless day by about 35 months, having a range of 27–40 months. Similarly, the timing of first spotless day relative to sunspot minimum and maximum for the same cycle reveals that it followed minimum (maximum) by about 69 (18) months during cycles 9–14 and by about 90 (44) months during cycles 15–21. Accepting April 1994 as the month of first spotless day occurrence for cycle 22, one finds that it occurred 91 months into the cycle and 57 months following sunspot maximum. Such values indicate that its behavior more closely matches that found for cycles 15–21 rather than for cycles 9–14. Therefore, one infers that sunspot minimum for cycle 23 will occur in about 2–3 years, or about April 1996 to April 1997. Accepting the earlier date of first spotless day occurrence indicates that sunspot minimum for cycle 23 could come several months earlier, perhaps late 1995.The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

15.
A correlation analysis shows that the sunspot numbers at the peaks of the last eight solar cycles are well-correlated with the sunspot numbers in heliolatitudes 20°–40° (specially in the southern hemisphere) occurring in the solar minimum years immediately preceding the solar maximum years.On leave from Physical Research Laboratory, Ahmedabad, India.  相似文献   

16.
A study of the green corona rotation rate, during the period 1970–1974, confirms that the differential rotation degree varies systematically through a solar cycle and that the corona rotates in an almost rigid manner before sunspot minimum. During the first two years, 1970–1971, the differential rotation degree, characteristic of high solar activity periods is detected. While during the years of declining activity, 1972–1974, a drastic decrease of the differential rotation degree occurs and the green corona rotates almost rigidly, as the coronal holes observed in the same period. These conclusions are valid only for the rotation of coronal features with lifetime of at least one solar rotation.  相似文献   

17.
Several studies show that temporal variations in the Galactic cosmic ray (GCR) intensity display a distinct 11-year periodicity due to solar modulation of the galactic cosmic rays in the heliosphere. The 11-year periodicity of GCRs is inversely proportional to, but out of phase with, the 11-year solar cycle, implying that there is a time lag between actual solar cycle and the GCR intensity, which is known as the hysteresis effect. In this study, we use the hysteresis effect to model the relationship between neutron counting rates (NCRs), an indicator of the GCR intensity, and sunspot numbers (SSNs) over the period that covers the last four solar cycles (20, 21, 22, and 23). Both linear and ellipse models were applied to SSNs during odd and even cycles in order to calculate temporal variations of NCRs. We find that ellipse modeling provides higher correlation coefficients for odd cycles compared to linear models, e.g. 0.97, 0.97, 0.92, and 0.97 compared to 0.69, 0.72, 0.53, and 0.68 for data from McMurdo, Swarthmore, South Pole, and Thule neutron monitors, respectively, during solar cycle 21 with overall improvement of 31 % for odd cycles. When combined to a continuous model, the better correlation observed for the odd cycles increases the overall correlation between observed and modeled NCRs. The new empirical model therefore provides a better representation of the relationship between NCRs and SSNs. A major goal of the ongoing research is to use the new non-linear empirical model to reconstruct SSNs on annual time scales prior to 1610, where we do not have observational records of SSNs, based on changes in NCRs reconstructed from 10Be in ice cores.  相似文献   

18.
Observations of the white light corona were made on over 900 days during the years 1964–67 at heights between 1.125 and 2.0 R with the K-coronameter at Mount Haleakala and Mauna Loa, Hawaii. The brightness distribution of the minimum corona was elliptical with average equatorial intensities three times the polar. Coronal features of the new cycle at 1.125 R occurred predominantly in the sunspot zones at 25–30° latitude and in a high latitude zone which migrated toward the North pole before solar maximum. The brightness of the inner corona doubled over this period and a close association is found between the average corona and 10.7-cm solar radio flux. Electron densities in the equatorial regions were nearly twice those of Van de Hulst's model corona, in agreement with the results of recent eclipse observations.At Hawaii Institute of Geophysics.  相似文献   

19.
Meyer  F. De 《Solar physics》2003,217(2):349-366
The mean annual sunspot record for the time interval 1700–2002 can be considered as a sequence of independent, partly overlapping events, triggered quasi-periodically at intervals of the order of 11 years. The individual cycles are approximated by the step response of a band-pass dynamical system and the resulting model consists of the superposition of the response to the independent pulses. The simulated sunspot data explain 98.4% of the cycle peak height variance and the residual standard deviation is 8.2 mean annual sunspots. An empirical linear relationship is found between the amplitude of the transfer function model for each cycle and the pulse interval of the preceding cycle that can be used as a tool of short-term forecasting of solar activity. A peak height of 112 for the solar cycle 23 occurring in 2000 is predicted, whereas the next cycle would start at about 2007 and will have a maximum around 110 in 2011. Cycle 24 is expected to have an annual mean peak value in the range 95 to 125. The model reproduces the high level of amplitude modulation in the interval 1950–2000 with a decrease afterwards, but the peak values for the cycles 18, 19, 21, and 22 are fairly underestimated. The semi-empirical model also recreates recurring sunspot minima and is linked to the phenomenon of the reversal of the solar magnetic field.  相似文献   

20.
D. J. Schove 《Solar physics》1979,63(2):423-432
Dates of solar maxima and minima extending back to c. 1610 were estimated by Wolf and Wolfer at Zürich (Waldmeier, 1961) in the nineteenth century, and those back to c. 1710 have been generally accepted. Slight modifications have already been suggested by the author (Schove, 1967) for the seventeenth century, although, in that century, even the existence of the eleven-year cycle has been questioned (Eddy, 1976). In the course of any sunspot cycle we find a pattern of the aurorae in place and time characteristic of sunspot cycles of the particular amplitude-class. These patterns since c. 1710 can be linked to the precise dates of the Zürich turning-points by a set of empirical rules. A sunspot rule is based on the Gnevyshev gap, the gap in large sunspots near the smoothed maximum. These rules are here applied to the period c. 1510–1710 to give improved determination of earlier turning-points, and approximately confirm the dates given for the seventeenth century by Wolfer and for most of the later sixteenth century by Link (1978). Some turning-points for the fifteenth century and revised sunspot numbers for the period 1700–48 are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号