首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The groundwater hydrochemical behaviour of the Langueyú creek basin (Argentina) has been evaluated through a systematic survey, followed by application of hydrological and chemometric multivariate techniques. Ten physicochemical parameters were determined in groundwater samples collected from 26 wells during four sampling campaigns (June 2010; October 2010; February 2011 and June 2011), originating a tridimensional experimental dataset X . Univariate statistical and graphical hydrochemical tools (contour maps and Piper diagrams) applied to individual campaigns, allowed to reach some preliminary conclusions. However, a best visualization of the aquifer behaviour was achieved by applying Principal Component Analysis (MA‐PCA) and N‐way PCA procedures, Parallel Factor Analysis and Tucker3. Results were consistent with two‐term models, being Tucker3 [2 2 1] the most adequate, explaining a large amount of the dataset variance (50.7%) with a low complexity. The first Tucker3 [1 1 1] interaction (38.2% of variance) is related with (i) calcium/magnesium versus sodium/potassium ion exchange processes; (ii) an increase of ionic concentration and (iii) a decrease of nitrate pollution, all processes along the direction of the groundwater flow. The second [2 2 1] interaction (12.5% of variance), accounts for the predominant role played by conductivity, bicarbonate and magnesium in the dataset. The seasonal variations are closely related to concentration/dilution phenomena originated by the variations of the phreatic levels, although this point will require additional sampling to establish a definitive hydrochemical model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Private wells in Cayuga and Orange counties in New York were sampled to determine the occurrence of pesticide contamination of groundwater in areas where significant pesticide use coincides with shallow or otherwise vulnerable groundwater. Well selection was based on local groundwater knowledge, risk modeling, aerial photo assessments, and pesticide application database mapping. Single timepoint samples from 40 wells in each county were subjected to 93‐compound chromatographic scans. All samples were nondetects (reporting limits ≤1 μg/L), thus no wells from either county exceeded any of 15 state groundwater standards or guidance values. More sensitive enzyme‐linked immunosorbent assays (ELISA) found two wells with quantifiable atrazine in each county (0.1–0.3 μg/L), one well with quantifiable diazinon (0.1 μg/L) in Orange County, and one well with quantifiable alachlor (0.2 μg/L) in Cayuga County. Trace detections (<0.1 μg/L) in Cayuga County included atrazine (five wells), metolachlor (six wells), and alachlor (one well), including three wells with multiple detections. All 12 Cayuga County wells with ELISA detections had either corn/grain or corn/forage rotations as primary surrounding land uses (although 20 other wells with the same land uses had no detections) and all quantified detections and most trace detections occurred in wells up to 9‐m deep. Orange County trace (<0.1 μg/L) ELISA detections (atrazine three wells, diazinon one well, and metolachlor five wells) and quantified detections were only generally associated with agricultural land uses. Finding acceptable drinking water quality in areas of vulnerable groundwater suggests that water quality in less vulnerable areas will also be good.  相似文献   

3.
Worldwide pesticide usage has increased dramatically during the last three decades, coinciding with changing practices and increasing by intensive agriculture. This widespread use of pesticides for agricultural and non‐agricultural purposes has resulted in the presence of their residues in various environmental matrices. The occurrence of pesticides and their metabolite transported in rivers, channels, lakes, sea, air, soils, groundwater, and even drinking water, proves the high risk of these chemicals to human health and the environment. Therefore, pesticide removal is of an increasing concern. In this study, a review of the published literature dealing with pesticides removal process is presented. Firstly, pesticide removal by conventional means is briefly considered. Secondly, the use of the low‐cost sorbent through biosorption process is discussed comprehensively. The effect of factors such as pH, contact time, sorbent dosage, initial pesticide concentration, and optimization of biosorption conditions is also discussed. Kinetic, thermodynamic, and mechanism studies are also given. This study shows that both microorganisms and other materials with biological origin like agricultural by‐products may be used to this end. There is a significant potential for pesticide uptake by the use of various pristine and especially modified biosorbents. In the case of living organisms used as removal agents, degradation may also play a role in the total removal observed.  相似文献   

4.
In the central part of the Bolivian Altiplano, the shallow groundwater presents electrical conductivities ranging from 0·1 to 20 mS/cm. In order to study the origin of this salinity pattern, a good knowledge is required of the geometry of the aquifer at depth. In this study, geophysics has been used to complement the sparse data available from drill holes. One hundred time‐domain electromagnetic (TDEM) soundings were carried out over an area of 1750 km2. About 20 geological logs were available close to some of the TDEM soundings. Three intermediate results were obtained from the combined data: (i) the relationship between the electrical conductivity of the groundwater and the formation resistivity, (ii) geoelectrical cross‐sections and (iii) geoelectrical maps at various depths. The limited data set shows a relationship between resistivity and the nature of the rock. From the cross‐sections, a conductive substratum with a resistivity of less than 1 Ω·m was identified at most of the sites at depths ranging from 50 to 350 m. This substratum could be a clay‐rich formation containing brines. Using derived relationships, maps of the nature of the formation (sandy, intermediate and clayey sediments) were established at depths of 10 and 50 m. Discrimination between sand and clays was impossible where groundwater conductivity is high (>3 mS/cm). In the central part of the area, where the groundwater conductivity is low, sandy sediments are likely to be present from the surface to a depth of more than 200 m. Clayey sediments are more likely to be present in the south‐east and probably constitute a hydraulic barrier to groundwater flow. In conclusion, the study demonstrates the efficiency of the TDEM sounding method to map conductive zones. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Groundwater is the main source of water in arid regions. Thus, groundwater pollution becomes a major issue due to the increasing contamination, which poses serious and harmful risk to the environment. Groundwater vulnerability maps can be used as a tool to help decision makers to protect groundwater resources from contamination. The vulnerability of the Mio-Plio-Quaternary shallow aquifer (Southeast Tunisia) has been assessed using a DRASTIC model based on Geographic Information System (GIS). The different parameters of the model were collected from several sources and converted into thematic maps using ArcGis©. Each DRASTIC parameter was assigned a weight and rating based on a range of information within the parameter. Groundwater vulnerability map shows a large area (48%) with high risk of pollution. It indicates that the Southern part of the aquifer and the wadi beds are the most susceptible to contamination. The measured nitrate concentration is coherent with the DRASTIC model results.  相似文献   

6.
A previously published regional groundwater‐flow model in north‐central Nebraska was sequentially linked with the recently developed soil‐water‐balance (SWB) model to analyze effects to groundwater‐flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater‐level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root‐mean‐squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB‐generated recharge, the RMS difference between simulated and estimated base‐flow target values for the groundwater‐flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater‐level and base‐flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.  相似文献   

7.
Nonpoint source pollution and hydromodification are the leading causes of impairment to our nation's rivers and streams. Roadside ditch networks, ubiquitous in both rural and urban landscapes, intercept and shunt substantial quantities of overland runoff and shallow groundwater to stream systems. By altering natural flowpaths, road ditches contribute not only to hydromodification but also potentially to nonpoint‐source (NPS) pollution by acting as hydrological links between agricultural fields and natural streams. Unfortunately, the impacts of these alterations on watershed hydrology and water quality are not well understood. Through a series of field measurements, including field surveys and discharge monitoring, this study examined the effect of road ditch networks on basin morphometry, field‐ and watershed‐scale hydrology, and pollutant transport in a 38 km2 agricultural watershed in south‐central NY. Salient findings include the following: (i) 94% of road ditches discharged to natural streams, effectively doubling the drainage density; (ii) on average, road ditches increased peak and total event flows in their receiving streams by 78% and 57%, respectively, but displayed significant variation across ditches; and (iii) ditches intercepted large quantities of surface and subsurface runoff from agricultural fields and therefore represent efficient conduits for the transport of agricultural NPS pollutants to sensitive receiving waterbodies. Our results provide useful information for hydrologists who wish to further understand how artificial drainage may be affecting watershed hydrology and for managers and engineers tasked with designing appropriate flood and NPS pollution control measures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head‐dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over‐ or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive‐use management tools.  相似文献   

10.
The conservative nature of chloride (Cl?) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin‐wide scale. The creation of Cl? isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin‐wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross‐formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl? within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects.  相似文献   

11.
A large weighing lysimeter was installed at Yucheng Comprehensive Experimental Station, north China, for evapotranspiration and soil‐water–groundwater exchange studies. Features of the lysimeter include the following: (i) mass resolution equivalent to 0·016 mm of water to accurately and simultaneously determine hourly evapotranspiration, surface evaporation and groundwater recharge; (ii) a surface area of 3·14 m2 and a soil profile depth of 5·0 m to permit normal plant development, soil‐water extraction, soil‐water–groundwater exchanges, and fluctuations of groundwater level; (iii) a special supply–drainage system to simulate field conditions of groundwater within the lysimeter; (iv) a soil mass of about 30 Mg, including both unsaturated and saturated loam. The soil consists mainly of mealy sand and light loam. Monitoring the vegetated lysimeter during the growing period of winter wheat, from October 1998 through to June 1999, indicated that during the period groundwater evaporation contributed 16·6% of total evapotranspiration for a water‐table depth from 1·6 m to 2·4 m below ground surface. Too much irrigation reduced the amount of upward water flow from the groundwater table, and caused deep percolation to the groundwater. Data from neutron probe and tensiometers suggest that soil‐water‐content profiles and soil‐water‐potential profiles were strongly affected by shallow groundwater. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Vulnerability maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydrogeological conditions and human impacts. The objective of this research is (1) to assess the groundwater vulnerability using DRASTIC method and (2) to improve the DRASTIC method for evaluation of groundwater contamination risk using AI methods, such as ANN, SFL, MFL, NF and SCMAI approaches. This optimization method is illustrated using a case study. For this purpose, DRASTIC model is developed using seven parameters. For validating the contamination risk assessment, a total of 243 groundwater samples were collected from different aquifer types of the study area to analyze \( {\text{NO}}_{ 3}^{ - } \) concentration. To develop AI and CMAI models, 243 data points are divided in two sets; training and validation based on cross validation approach. The calculated vulnerability indices from the DRASTIC method are corrected by the \( {\text{NO}}_{3}^{ - } \) data used in the training step. The input data of the AI models include seven parameters of DRASTIC method. However, the output is the corrected vulnerability index using \( {\text{NO}}_{3}^{ - } \) concentration data from the study area, which is called groundwater contamination risk. In other words, there is some target value (known output) which is estimated by some formula from DRASTIC vulnerability and \( {\text{NO}}_{3}^{ - } \) concentration values. After model training, the AI models are verified by the second \( {\text{NO}}_{3}^{ - } \) concentration dataset. The results revealed that NF and SFL produced acceptable performance while ANN and MFL had poor prediction. A supervised committee machine artificial intelligent (SCMAI), which combines the results of individual AI models using a supervised artificial neural network, was developed for better prediction of vulnerability. The performance of SCMAI was also compared to those of the simple averaging and weighted averaging committee machine intelligent (CMI) methods. As a result, the SCMAI model produced reliable estimates of groundwater contamination risk.  相似文献   

13.
Groundwater is the major water resource in Jordan and most of the groundwater basins are already exploited beyond their estimated safe yield. Azraq basin is one of the most important groundwater basins in Jordan, which supplies Amman with drinking water. However, due to overpumping from the shallow groundwater aquifers, the water level dropped dramatically and signs of salinization and depletion are starting to occur. The severe drawdown in the Azraq well‐field caused a reverse in the hydraulic gradient and consequently, the saltwater in the center of the basin (Qa‐Azraq) started to move in the direction of the well‐field. The salinization in the shallow aquifer (basalt/B5/B4) is believed to result from one of the following scenarios: (i) a reverse flow from Sabkha to the AWSA well field, (ii) an upward leakage from the middle aquifer system (B2/A7) and the combined B3 Aquitard‐B2/A7 aquifer, (iii) a dissolution process between the water and rock matrix due to lowering of the dynamic water levels during pumping which reached the mineralized formations underlying the Basalt. The salinization trend of some AWSA wells represented by the gradual increase of major ions is associated with rather constant stable isotopic contents. This indicates that these constituents originate from the main minerals existing in the matrix of the aquifers and thus this scenario is the most likely to occur.  相似文献   

14.
The DRASTIC technique is commonly used to assess groundwater vulnerability. The main disadvantage of the DRASTIC method is the difficulty associated with identifying appropriate ratings and weight assignments for each parameter. To mitigate this issue, ratings and weights can be approximated using different methods appropriate to the conditions of the study area. In this study, different linear (i.e., Wilcoxon test and statistical approaches) and nonlinear (Genetic algorithm [GA]) modifications for calibration of the DRASTIC framework using nitrate (NO3) concentrations were compared through the preparation of groundwater vulnerability maps of the Meshqin-Shahr plain, Iran. Twenty-two groundwater samples were collected from wells in the study area, and their respective NO3 concentrations were used to modify the ratings and weights of the DRASTIC parameters. The areas found to have the highest vulnerability were in the eastern, central, and western regions of the plain. Results showed that the modified DRASTIC frameworks performed well, compared to the unmodified DRASTIC. When measured NO3 concentrations were correlated with the vulnerability indices produced by each method, the unmodified DRASTIC method performed most poorly, and the Wilcoxon–GA–DRASTIC method proved optimal. Compared to the unmodified DRASTIC method with an R2 of 0.22, the Wilcoxon–GA–DRASTIC obtained a maximum R2 value of 0.78. Modification of DRASTIC parameter ratings was found to be more efficient than the modification of the weights in establishing an accurately calibrated DRASTIC framework. However, modification of parameter ratings and weights together increased the R2 value to the highest degree.  相似文献   

15.
Spatially distributed groundwater recharge was simulated for a segment of a semi‐arid valley using three different treatments of meteorological input data and potential evapotranspiration (PET). For the same area, timeframe, land cover characteristics and soil properties, groundwater recharge was estimate using (i) single‐station climate data with monthly PET calculated by the Thornthwaite method; (ii) single‐station climate data with daily PET calculated by the Penman–Monteith method; and (iii) daily gridded climate data with spatially distributed PET calculated using the Penman–Monteith method. For each treatment, the magnitude and distribution of actual evapotranspiration (AET) for summer months compared well with those estimated for a 5‐year crop study, suggesting that the near‐surface hydrological processes were replicated and that subsequent groundwater recharge rates are realistic. However, for winter months, calculated AET was near zero when using the Thornthwaite PET method. Mean annual groundwater recharge varied from ~3·2 to 10·0 mm when PET was calculated by the Thornthwaite method, and from ~1·8 to 7·5 mm when PET was calculated by the Penman–Monteith method. Comparisons of bivariate plots of seasonal recharge rates estimated from single‐station versus gridded surface climate reveal that there is greater variability between the different methods for spring months, which is the season of greatest recharge. Furthermore, these seasonal differences are shown to provide different results when compared to the depth to water table, which could lead to different results of evaporative extinction depth. These findings illustrate potential consequences of using different approaches for representing spatial meteorological input data, which could provide conflicting predictions when modelling the influence of climate change on groundwater recharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Alaa A. Masoud 《水文研究》2013,27(20):2987-3002
Eighteen groundwater well sites located in Kafr Al‐Zayat (Egypt) were sampled monthly from January 2009 to November 2011 for microbial content, Mn+2, Fe+2, total dissolved solids (TDS), total hardness, NO3?, and turbidity. The data were analyzed combining the integrated use of factor and cluster analyses as well as the geostatistical semi‐variogram modeling. The prime objectives were to assess the groundwater suitability for drinking, to document the factors governing the spatio‐tempral variability, and to recognize distinctive groundwater quality patterns to help enable effective sustainability and proactive management of the limited resource. The groundwater microbial, Mn+2, Fe+2, TDS, and total hardness contents violated the drinking water local standards while the turbidity and the nitrate content complied with them. Factor analysis indicated that the microbial content is the most influential factor raising the variability potential followed, in decreasing order, by Mn2+, Fe2+, TDS, NO3?, turbidity, and finally the total hardness. Turbidity resulting from urban and agricultural runoff was strongly associated with most of the quality parameters. Quality parameters fluctuate sporadically without concrete pattern in space and time while their variability scores peak in November every year. Three spatially distinctive quality patterns were recognized that were consistent with and affected by the cumulative effects of the local topography, depth to water table, thickness of the silty clay (cap layer), surface water, and groundwater flow direction and hence the recharge from contaminated surface canals and agricultural drains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Various types of models are being used to evaluate pesticide transport and transformation in the unsaturated zone. Model predictions can be used, for example, to develop alternative agricultural management strategies for pesticide use. However, intensive data requirements for transient models sometimes deter their use. Site-specific measurements are preferred, but existing data bases can be used as a source of required model parameters, especially weather and soil characteristics. These existing data bases make possible the use of models to predict leaching potential in a wide variety of environments.  相似文献   

18.
This paper aims to contribute to understanding the importance of four factors on the determination of sustainable yields: (i) aquifer properties; (ii) temporal distribution of recharge; (iii) temporal distribution of groundwater pumping; and (iv) spatial distribution of pumping wells. It is important to comprehend how the present‐day and future vulnerability of groundwater systems to pumping activities depend on these critical factors and what the risks are of considering sustainable yield as a fixed percentage of mean annual recharge (MAR). A numerical model of the Querença–Silves aquifer in Portugal is used to develop hypothetical scenarios with which these factors are studied. Results demonstrate the aquifer properties, particularly the storage coefficient, have an important role in determining the resilience of an aquifer and therefore to which degree it is dependent on the spatial and temporal distribution of abstraction and recharge, as well as the occurrence of extreme events. Sustainable yields are determined for the developed scenarios based on specific criteria rather than a fraction of MAR. Under simplified current recharge and abstraction conditions, the sustainable yield was determined at approximately 73% of MAR or 76 million m3. When considering a concentration of rainfall in time, as predicted by climate scenarios for the region, sustainable yield could drop to ca 70% of MAR. However, a more even distribution of pumping volumes throughout the year could increase this value. The location of the pumping wells is seen to affect the distribution of hydraulic heads in the aquifer, albeit without significant changes in sustainable yield. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Intense agricultural and industrial activities in any area are likely to make groundwater vulnerable with respect to its quality. In one such area which is a part of Sabarmati river basin of Gujarat, factors influencing the groundwater hydrochemistry in pre‐ and post‐monsoon season were evaluated. Groundwater samples were collected from 5 km × 5 km grids on the basis of spectral signature of vegetation and soil, observed on satellite image. Integration of Conventional graphical plots, Piper plot, saturation index values (estimated using PHREEQC) and GIS was helpful not only to create the database for analysis of spatial variation in respective water quality parameters but also to decipher the hydrogeochemical process occurring in such a large area. USSL diagram and % sodium were used to characterise the suitability of groundwater for irrigation. It was observed that leaching of wastes disposed from anthropogenic activities and agrichemicals is the major factor influencing the groundwater quality, in addition to the natural processes such as weathering, dissolution and ion exchange. Sea water relics are also impacting the groundwater quality. Control of indiscriminate and unplanned exploitation of groundwater, application of fertilizers and disposal of industrial wastes in the affected areas can possibly ensure groundwater protection from further pollution and depletion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The catchment-scale groundwater vulnerability assessment that delineates zones representing different levels of groundwater susceptibility to contaminants from diffuse agricultural sources has become an important element in groundwater pollution prevention for the implementation of the EU Water Framework Directive (WFD). This paper evaluates the DRASTIC method using an ArcGIS platform for assessing groundwater vulnerability in the Upper Bann catchment, Northern Ireland. Groundwater vulnerability maps of both general pollutants and pesticides in the study area were generated by using data on the factors depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity, as defined in DRASTIC. The mountain areas in the study area have “high” (in 4.5% of the study area) or “moderate” (in 25.5%) vulnerability for general pollutants due to high rainfall, net recharge and soil permeability. However, by considering the diffuse agricultural sources, the mountain areas are actually at low groundwater pollution risk. The results of overlaying the maps of land use and the groundwater vulnerability are closer to the reality. This study shows that the DRASTIC method is helpful for guiding the prevention practices of groundwater pollution at the catchment scale in the UK.

Citation Yang, Y. S. & Wang, L. (2010 Yang, Y. S. and Wang, L. 2010. A review of modelling tools for implementation of the EU Water Framework Directive in handling diffuse water pollution. Water Resour. Manage., 24: 18191843.  [Google Scholar]) Catchment scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method: a case study. Hydrol. Sci. J. 55(7), 1206–1216.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号