首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Civil engineering structures are often subjected to multidirectional actions such as earthquake ground motion, which lead to complex structural responses. The contributions from the latter multidirectional actions to the response are highly coupled, leading to a MIMO system identification problem. Compared with single‐input, multiple‐output (SIMO) system identification, MIMO problems are more computationally complex and error prone. In this paper, a new system identification strategy is proposed for civil engineering structures with multiple inputs that induce strong coupling in the response. The proposed solution comprises converting the MIMO problem into separate SIMO problems, decoupling the outputs by extracting the contribution from the respective input signals to the outputs. To this end, a QR factorization‐based decoupling method is employed, and its performance is examined. Three factors, which affect the accuracy of the decoupling result, including memory length, input correlation, and system damping, are investigated. Additionally, a system identification method that combines the autoregressive model with exogenous input (ARX) and the Eigensystem Realization Algorithm (ERA) is proposed. The associated extended modal amplitude coherence and modal phase collinearity are used to delineate the structural and noise modes in the fitted ARX model. The efficacy of the ARX‐ERA method is then demonstrated through identification of the modal properties of a highway overcrossing bridge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a feasibility study of multidegrees‐of‐freedom effective force testing (MDOF‐EFT). The study is intended to facilitate the development of a force feedback controller and investigation of performance as well as robustness of MDOF‐EFT. First, the dynamics of MDOF‐EFT systems are analytically investigated. Analytical transfer functions of the control plant, the valve‐to‐force relations, showed that the plant is dynamically coupled and the natural frequencies of test structures are the transmission zeros of the plant. Using a set of model parameters from a previous study, a case study that includes controller design, numerical simulations and robust stability assessment is performed. A decoupling loop shaping (DLS) controller consisting of a pseudo inverse of the plant and second‐order loop shaping controllers is adopted as the force feedback controller. It is shown that the DLS controller provides a stable control system while successfully decoupling the control loops and compensating the control‐structure interaction. Numerical simulations demonstrate that the DLS controller enables tracking of static and dynamic forces for multiple actuators. Robust stability of MDOF‐EFT with the DLS controller is assessed using Monte Carlo simulation. The stochastic simulation results show that the DLS controller is stable and robust, providing sufficient stability margins for uncertain models with maximum 50% errors in the estimated system parameters. This paper demonstrates that MDOF‐EFT is feasible with the DLS controller and can be implemented in experimental laboratories. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A reliability‐based output feedback control methodology is presented for controlling the dynamic response of systems that are represented by linear state‐space models. The design criterion is based on a robust failure probability for the system. This criterion provides robustness for the controlled system by considering a probability distribution over a set of possible system models with a stochastic model of the excitation so that robust performance is expected. The control command signal can be calculated using incomplete response measurements at previous time steps without requiring state estimation. Examples of robust structural control using an active mass driver on a shear building model and on a benchmark structure are presented to illustrate the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Conventional shake tables employ linear controllers such as proportional‐integral‐derivative or loop shaping to regulate the movement. However, it is difficult to tune a linear controller to achieve accurate and robust tracking of different reference signals under payloads. The challenges are mainly due to the nonlinearity in hydraulic actuator dynamics and specimen behavior. Moreover, tracking a high‐frequency reference signal using a linear controller tends to cause actuator saturation and instability. In this paper, a hierarchical control strategy is proposed to develop a high‐performance shake table. A unidirectional shake table is constructed at the University of British Columbia to implement and evaluate the proposed control framework, which consists of a high‐level controller and one or multiple low‐level controller(s). The high‐level controller utilizes the sliding mode control (SMC) technique to provide robustness to compensate for model nonlinearity and uncertainties experienced in experimental tests. The performance of the proposed controller is compared with a state‐of‐the‐art loop‐shaping displacement‐based controller. The experimental results show that the proposed hierarchical shake table control system with SMC can provide superior displacement, velocity and acceleration tracking performance and improved robustness against modeling uncertainty and nonlinearities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
顾莉  李秋兰  华祖林  洪波 《湖泊科学》2013,25(3):347-351
太湖流域湖泊污染严重,非常有必要建立相应的水质基准以便于湖泊水体的保护与修复.根据太湖流域12个受人类影响较小的湖库及太湖早期的总磷、总碱度、平均水深等数据建立了MEI(morphoedaphic index)模型,通过对模型中总磷与总碱度、平均水深因子的相关关系进行分析,并结合太湖流域湖库水深较浅的特征,提出了确定太湖流域湖库水体中总磷参照浓度的改进MEI模型.将该模型应用于太湖,得到太湖总磷参照浓度为0.025 mg/L.研究结果旨在丰富我国水体营养物基准的确定方法,并为太湖流域水体富营养化的控制提供理论依据,同时为长江中下游类似湖库水质基准的建立提供技术支撑.  相似文献   

6.
Concentration–discharge relationships have been widely used as clues to the hydrochemical processes that control runoff chemistry. Here we examine concentration–discharge relationships for solutes produced primarily by mineral weathering in 59 geochemically diverse US catchments. We show that these catchments exhibit nearly chemostatic behaviour; their stream concentrations of weathering products such as Ca, Mg, Na, and Si typically vary by factors of only 3 to 20 while discharge varies by several orders of magnitude. Similar patterns are observed at the inter‐annual time scale. This behaviour implies that solute concentrations in stream water are not determined by simple dilution of a fixed solute flux by a variable flux of water, and that rates of solute production and/or mobilization must be nearly proportional to water fluxes, both on storm and inter‐annual timescales. We compared these catchments' concentration–discharge relationships to the predictions of several simple hydrological and geochemical models. Most of these models can be forced to approximately fit the observed concentration–discharge relationships, but often only by assuming unrealistic or internally inconsistent parameter values. We propose a new model that also fits the data and may be more robust. We suggest possible tests of the new model for future studies. The relative stability of concentration under widely varying discharge may help make aquatic environments habitable. It also implies that fluxes of weathering solutes in streams, and thus fluxes of alkalinity to the oceans, are determined primarily by water fluxes. Thus, hydrology may be a major driver of the ocean‐alkalinity feedback regulating climate change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
土木工程结构鲁棒控制的发展   总被引:1,自引:0,他引:1  
评述了结构控制的发展,指出发展结构鲁棒控制策略的重要性。重点评述了结构双重调谐质量阻尼器(DTMD)和多重双重调谐质量阻尼器(MDTMD)的控制策略,提出了需进一步发展主动双重调谐质量阻尼器(ADTMD)和主动多重双重调谐质量阻尼器(AMDTMD)控制策略、此外,评述了结构鲁棒控制的设计准则与高层建筑和大跨桥梁在风与地震作用下的统一自适应主动鲁棒控制策略。  相似文献   

9.
Real‐time hybrid simulation (RTHS) has increasingly been recognized as a powerful methodology to evaluate structural components and systems under realistic operating conditions. It is a cost effective approach compared with large scale shake table testing. Furthermore, it can maximally preserve rate dependency and nonlinear characteristics of physically tested (non)structural components. Although conceptually very attractive, challenges do exist that require comprehensive validation before RTHS should be employed to assess complicated physical phenomena. One of the most important issues that governs the stability and accuracy of an RTHS is the ability to achieve synchronization of boundary conditions between the computational and physical substructures. The objective of this study is to propose and validate an H loop shaping design for actuator motion control in RTHS. Controller performance is evaluated in the laboratory using a worst‐case substructure proportioning scheme. A modular, one‐bay, one‐story steel moment resisting frame specimen is tested experimentally. Its deformation is kept within the linear range for ready comparison with the reference closed‐form solution. Both system analysis and experimental results show that the proposed H strategy can significantly improve both the stability limit and test accuracy compared with several existing strategies. Another key feature of the proposed strategy is its robust performance in terms of unmodeled dynamics and uncertainties, which inevitably exist in any physical system. This feature is essential to enhance test quality for specimens with nonlinear dynamic behavior, thus ensuring the validity of the proposed approach for more complex RTHS implementations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This paper provides a new methodological framework to generate empirical ground shaking scenarios, designed for engineering applications and civil protection planning. The methodology is useful both to reconstruct the ground motion pattern of past events and to generate future shaking scenarios, in regions where strong‐motion datasets from multiple events and multiple stations are available. The proposed methodology combines (1) an ad‐hoc nonergodic ground motion model (GMM) with (2) a spatial correlation model for the source region‐, site‐, and path‐systematic residual terms, and (3) a model of the remaining aleatory error to take into account for directivity effects. The associated variability is a function of the type of scenario generated (bedrock or site, past or future event) and it is minimal for source areas where several events have occurred and for sites where recordings are available. In order to develop the region‐specific fully nonergodic GMM and to compute robust estimation of the residual terms, the approach is calibrated on a highly dense dataset compiled for the area of central Italy. Example tests demonstrate the validity of the approach, which allows to simulate acceleration response spectra at unsampled sites, as well as to capture peculiar physical features of ground motion patterns in the region. The proposed approach could be usefully adopted for data‐driven simulations of ground shaking maps, as alternative or complementary tool to physic‐based and stochastic‐based approaches.  相似文献   

11.
A robust state estimation scheme is proposed for anaerobic digestion (AD) processes to estimate key variables under the most uncertain scenarios (namely, uncertainties on the process inputs and unknown reaction and specific growth rates). This scheme combines the use of the IWA Anaerobic Digestion Model No. 1 (ADM1), the interval observer theory and a minimum number of measurements to reconstruct the unmeasured process variables within guaranteed lower and upper bounds in which they evolve. The performance of this robust estimation scheme is evaluated via numerical simulations that are carried out under actual operating conditions. It is shown that under some structural and operational conditions, the proposed robust interval observer (RIO) has the property of remaining stable in the face of uncertain process inputs, badly known kinetics and load disturbances. It is also shown that the RIO is indeed a powerful tool for the estimation of biomass (composed of seven different species) from a minimum number of measurements in a system with a total of 32 variables from which 24 correspond to state variables.  相似文献   

12.
A semi‐active fuzzy control strategy for seismic response reduction using a magnetorheological (MR) damper is presented. When a control method based on fuzzy set theory for a structure with a MR damper is used for vibration reduction of a structure, it has an inherent robustness, and easiness to treat the uncertainties of input data from the ground motion and structural vibration sensors, and the ability to handle the non‐linear behavior of the structure because there is no longer the need for an exact mathematical model of the structure. For a clipped‐optimal control algorithm, the command voltage of a MR damper is set at either zero or the maximum level. However, a semi‐active fuzzy control system has benefit to produce the required voltage to be input to the damper so that a desirable damper force can be produced and thus decrease the control force to reduce the structural response. Moreover, the proposed control strategy is fail‐safe in that the bounded‐input, bounded‐output stability of the controlled structure is guaranteed. The results of the numerical simulations show that the proposed semi‐active control system consisting of a fuzzy controller and a MR damper can be beneficial in reducing seismic responses of structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Floor isolation system (FIS) achieving very small floor accelerations has been used to ensure human comfortability or protect important equipments in buildings. Tuned mass damper (TMD) with large mass ratios has been demonstrated to be robust with respect to the changes in structural properties. This paper presents the concept of a TMD floor vibration control system, which takes advantages of both the FIS and TMD. Such a system is called ‘TMD floor system’ herein. The TMD floor system (TMDFS) in which building floors serve as TMDs can achieve large mass ratio without additional masses. Furthermore, multiple TMD floors installed in a building can control multimode vibrations. Then, an optimal design process, where the objective function is set as the maximum magnitude of the frequency response functions of inter‐storey drifts, is proposed to determine the TMD floor parameters. Additionally, the multimode approach is applied to determine the optimal locations of TMD floors if not all of the floors in a building can serve as TMDs. In addition to the numerical simulations, a scaled model shaking table experiment is also conducted. Both the numerical and experimental results show that the absolute accelerations of the TMD floors are smaller than those of the main structural storeys, which indicates the TMDFS maintains the merit of FIS while greatly reducing seismic responses of main structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six-degrees-of-freedom are controlled at the interface between substructures.  相似文献   

15.
Anaerobic digestion (AD) is an effective way to convert animal manures into profitable by‐products while simultaneously reducing the pollution of water, air, and soil caused by these wastes. Conventional high‐rate anaerobic reactors cannot effectively process animal manures with high solids‐containing wastes. The two‐phase configuration for AD has several advantages over conventional one‐phase processes, e. g., increased stability of the process, smaller size and cost efficient process configurations. In the present study, the experiments were carried out in a two‐phase system composed of an acidogenic reactor and a methanogenic reactor, and in a one‐phase system composed of only a methanogenic reactor. The reactors were operated as unmixed (without an external mixing aid), unsophisticated, and daily‐fed mode. It was found that the two‐phase configuration was more efficient than the one‐phase system. The biogas production in the two‐phase system at a hydraulic retention time (HRT) of 8.6 days (only methanogenic phase) was calculated to be 42% higher at an organic loading rate (OLR) of 3.5 g VS/L·day than that of the one‐phase with a HRT of 20 days. This translates into significant performance improvement and reduced volume requirement. This finding represents a further step in the achievement of wider use of simple anaerobic reactor configurations for waste treatment in rural areas.  相似文献   

16.
Shake tables provide a direct means by which to evaluate structural performance under earthquake excitation. Because the entire structure is mounted on the base plate and subjected to the ground motion in real time, dynamic effects and rate‐dependent behavior can be accurately represented. Shake table control is not straightforward as the desired signal is an acceleration record, while most actuators operate in displacement feedback for stability. At the same time, the payload is typically large relative to the capacity of the actuator, leading to pronounced control‐structure interaction. Through this interaction, the dynamics of the specimen influence the dynamics of the shake table, which can be problematic when specimens change behavior because of damage or other nonlinearities. Moreover, shake tables are themselves inherently nonlinear, making it difficult to accurately recreate a desired acceleration record over a broad range of amplitudes and frequencies. A model‐based multi‐metric shake table control strategy is proposed to improve tracking of the desired acceleration of a uniaxial shake table, remaining robust to nonlinearities including changes in specimen condition. The proposed strategy is verified for the shake table testing of both linear and nonlinear structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The paper deals with gray box identification of flexible structures and active vibration suppression from a robust control perspective. First, the linearized mathematical model of an N‐storey flexible structure is presented. Next, the generalized mathematical model is particularized for the investigated three‐storey flexible structure. The considered flexible structure is identified based on black box and gray box identification methods and the model's parametric uncertainties are deduced. Furthermore, control constraints are presented for the design problem, in case of velocity as well as acceleration feedback, from a robust control perspective. Finally, the effectiveness of the control system is tested through experiments, when the input disturbance is assumed to be a sinusoidal one as well as a historical earthquake record (1940 El Centro record). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
This paper proposes a hybrid control strategy combining passive and semi‐active control systems for seismic protection of cable‐stayed bridges. The efficacy of this control strategy is verified by examining the ASCE first‐generation benchmark problem for a seismically excited cable‐stayed bridge, which employs a three‐dimensional linearized evaluation bridge model as a testbed structure. Herein, conventional lead–rubber bearings are introduced as base isolation devices, and semi‐active dampers (e.g., variable orifice damper, controllable fluid damper, etc.) are considered as supplemental damping devices. For the semi‐active dampers, a clipped‐optimal control algorithm, shown to perform well in previous studies involving controllable dampers, is considered. Because the semi‐active damper is a controllable energy‐dissipation device that cannot add mechanical energy to the structural system, the proposed hybrid control strategy is fail‐safe in that the bounded‐input, bounded‐output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective in protecting seismically excited cable‐stayed bridges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Real‐time hybrid simulation (RTHS) is an effective and versatile tool for the examination of complex structural systems with rate dependent behaviors. To meet the objectives of such a test, appropriate consideration must be given to the partitioning of the system into physical and computational portions (i.e., the configuration of the RTHS). Predictive stability and performance indicators (PSI and PPI) were initially established for use with only single degree‐of‐freedom systems. These indicators allow researchers to plan a RTHS, to quantitatively examine the impact of partitioning choices on stability and performance, and to assess the sensitivity of an RTHS configuration to de‐synchronization at the interface. In this study, PSI is extended to any linear multi‐degree‐of‐freedom (MDOF) system. The PSI is obtained analytically and it is independent of the transfer system and controller dynamics, providing a relatively easy and extremely useful method to examine many partitioning choices. A novel matrix method is adopted to convert a delay differential equation to a generalized eigenvalue problem using a set of vectorization mappings, and then to analytically solve the delay differential equations in a computationally efficient way. Through two illustrative examples, the PSI is demonstrated and validated. Validation of the MDOF PSI also includes comparisons to a MDOF dynamic model that includes realistic models of the hydraulic actuators and the control‐structure interaction effects. Results demonstrate that the proposed PSI can be used as an effective design tool for conducting successful RTHS. Copyright © 2016 John Wiley & Sons, Ltd  相似文献   

20.
For the purpose of estimating the earthquake response, particularly the story drift demand, of reinforced concrete (R/C) buildings with proportional hysteretic dampers, an equivalent single‐degree‐of‐freedom (SDOF) system model is proposed. Especially in the inelastic range, the hysteretic behavior of an R/C main frame strongly differs from that of hysteretic dampers due to strength and stiffness degradation in R/C members. Thus, the proposed model, unlike commonly used single‐spring SDOF system models, differentiates the restoring force characteristics of R/C main frame and hysteretic dampers to explicitly take into account the hysteretic behavior of dampers. To confirm the validity of the proposed model, earthquake responses of a series of frame models and their corresponding equivalent SDOF system models were compared. 5‐ and 10‐story frame models were studied as representative of low‐ and mid‐rise building structures, and different mechanical properties of dampers—yield strength and yield deformation—were included to observe their influence on the effectiveness of the proposed model. The results of the analyses demonstrated a good correspondence between estimated story drift demands using the proposed SDOF system model and those of frame models. Moreover, the proposed model: (i) led to better estimates than those given by a single‐spring SDOF system model, (ii) was capable of estimating the input energy demand and (iii) was capable of estimating the total hysteretic energy and the participation of dampers into the total hysteretic energy dissipation, in most cases. Results, therefore, suggest that the proposed model can be useful in structural design practice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号