首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The aim of this study was to assess the level of heavy metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contamination and enrichment in the surface sediments of the Seyhan River, which is the receiving water body of both treated and untreated municipal and industrial effluents as well as agricultural drainage waters generated within Adana, Turkey. Sediment and water samples were taken from six previously determined stations covering the downstream of the Seyhan dam during both wet and dry seasons and the samples were then analyzed for the heavy metals of concern. When both dry and wet seasons were considered, metal concentrations varied significantly within a broad range with Al, 7210–33 967 mg kg?1 dw; Cr, 46–122 mg kg?1 dw; Cu, 6–57 mg kg?1 dw; Fe, 10 294–26 556 mg kg?1 dw; Mn, 144–638 mg kg?1 dw; Ni, 82–215 mg kg?1 dw; Pb, 11–75 mg kg?1 dw; Zn, 34–146 mg kg?1 dw in the sediments while Cd was at non‐detectable levels for all stations. For both seasons combined, the enrichment factor (EF) and the geo‐accumulation index (Igeo) for the sediments in terms of the specified metals ranged from 0.56 to 10.36 and ?2.92 to 1.56, respectively, throughout the lower Seyhan River. The sediment quality guidelines (SQG) of US‐EPA suggested the sediments of the Seyhan River demonstrated “unpolluted to moderate pollution” of Cu, Pb, and Zn, “moderate to very strong pollution” of Cr and Ni. The water quality data, on the other hand, indicated very low levels of these metals suggesting that the metal content in the surface sediments were most probably originating from fine sediments transported along the river route instead of water/wastewater discharges with high metal content.  相似文献   

2.
Dust, as a source of trace metal elements, affects the health of society. The spatial and temporal concentrations of dust‐bound trace metals (Cd, Pb, Ni, Zn, Cu, and Mn) in Kuhdasht watershed (456 km2), Lorestan Province, Iran, is investigated. Dust is collected using glass traps placed in ten research stations in the region. The spatial and temporal distribution of dust trace metals are plotted using ARC‐GIS. The highest and the lowest concentrations of Zn (9751150 mg kg?1), Pb (46.352.9 mg kg?1), and Cd (2.443.30 mg kg?1) are obtained in winter, of Ni (98110 mg kg?1) and Cu in autumn (16.053.5 mg kg?1), and of Mn in summer (385505 mg kg?1). The spatial concentrations of dust‐bound trace metals indicate all, except Cu, show a decreasing trend from the mountains toward the plains, similar to that of soil and of dust, except for Zn, which shows higher concentrations in dust than in soil. The potential sources of dust‐bound trace metals and their rate of contamination are also investigated using the enrichment and contamination factors. The major sources of Cd and Zn in the dust of watershed are due to anthropogenic activities or from activities outside the borders.  相似文献   

3.
Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log‐linear fashion. The bioconcentration factor for these elements decreases log‐linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals.  相似文献   

4.
Phytoremediation of Cd‐contaminated soil using hyperaccumulators has become a new promising technique. Lonicera japonica Thunb. has been reported as a new Cd‐hyperaccumulator. In this study, the effect of Cd stress duration on growth, photosynthesis and mineral nutrition of L. japonica was investigated. At 30 days after Cd stress, there was not any visual leaf symptoms in L. japonica, and an obvious stimulating effect of 10 mg kg?1 Cd on net photosynthesis rate (PN) was well correlated to photosynthetic pigment contents and mineral nutrition (Mg and Fe) concentrations. With Cd stress time extended, no significant differences of shoots and total biomass and PN compared with the control was observed, indicating that L. japonica could develop effective tolerance mechanisms to avoid Cd‐induced damage to photosynthesis and growth. The photosynthetic performance remained functional through stomatal and non‐stomatal adjustments, and mineral nutrition responses. The improved growth based on shoots and total biomass and PN by 10 mg kg?1 Cd, as suggested by hormesis, may be beneficial to enhance the potential for phytoremediation, because it typically faced the low Cd concentrations in actual Cd‐contaminated soils. The study results indicated that L. japonica could be used for phytoremediation contaminated soils by Cd.  相似文献   

5.
Ten native plants species that grow in three tailings dams from Ag, Pb, Cu and Zn mine in Queretaro, Mexico were studied. Total concentrations in tailings were 183–14,660 mg/kg As, 45–308 mg/kg Cd, 327–1754 mg/kg Pb, 149–459 mg/kg Cu and 448–505 mg/kg Zn. In the three tailings dams, the solubility of these elements is low. Tailings in dam 1 are acid generating while tailings in dams 2 and 3 are not acid-generating potential. Plants species that accumulate arsenic and heavy metals was identified; Nicotina glauca generally presented the highest concentrations (92 mg/kg As, 106 mg/kg Cd, 189 mg/kg Pb, 95 mg/kg Cu and 1985 mg/kg Zn). Other species that accumulate these elements are Flaveria pubescens, Tecoma stans, Prosopis Sp, Casuarina Sp and Maurandia antirrhiniflora. Two species were found that accumulates a large amount of metals in the root, Cenchrus ciliaris and Opuntia lasiacantha. Concentrations in soils in which plants grow were 488–5990 mg/kg As, 5–129 mg/kg Cd, 169–3638 mg/kg Pb, 159–1254 mg/kg Cu and 1431–13,488 mg/kg Zn. The Accumulation Factor (AF) determined for plants was less than 1, with exception of N. glauca for Cd. The correlation between arsenic and heavy metals found in soils and plants was low. Knowledge of plant characteristics allows it use in planning the reforestation of tailings dams in controlled manner. This will reduce the risk of potentially toxic elements are integrated into the food chain of animal species.  相似文献   

6.
The effects of Cu, Cd, Zn and Cr on the survival and feeding behaviour of the sandy shore scavenging gastropod Nassarius festivus were compared. The 96-h LC50 for Cu, Cd, Zn and Cr were 0.36, 1.52, 1.76 and 36.9 mg l−1, respectively. Four sublethal concentrations of each metal plus a control were prepared and the snails were exposed to experimental solutions for 96 h. Feeding behaviour was studied after the snails were starved for five days. As compared with the control, the number of individuals feeding was significantly reduced by exposure to 0.05 mg l−1 Cu, 0.2 mg l−1 Zn, 0.5 mg l−1 Cd and 5 mg l−1 Cr. The time spent feeding was greater for individuals exposed to greater concentrations of Zn and Cd but no effect was found for Cu and Cr. Chemoreception of food was studied by placing the snails at a fixed distance of 15 cm from the bait. The success rate of reaching the bait was less for individuals exposed to Cr but no effect was found for Zn, Cu or Cd. The time required for an individual to reach the bait decreased as the concentration of Zn increased. In contrast, a longer time was required for individuals exposed to Cr whereas the effect of Cd and Cu was insignificant. The potential of using feeding behaviour and chemoreception in contaminant evaluations is discussed.  相似文献   

7.
The effects of plant species richness (SR; i.e., 1, 2, 4, 8, and 16 species per plot) on substrate nitrate and ammonium retention and ecosystem productivity in a full‐scale constructed wetland (CW) with high nitrogen (N) input were studied. Substrate nitrate (0.1–16.4 mg kg?1) and ammonium concentrations (1.3–9.2 mg kg?1) in this study were higher than those in other comparable biodiversity experiments. Substrate nitrate concentration significantly increased while ammonium concentration significantly decreased with the increase of plant SR (p = 0.008 and 0.040, respectively). The response of ecosystem productivity to increasing SR was unimodal with four species per plot achieving the greatest productivity. Transgressive overyielding, which was compared to the most productive of corresponding monocultures, did not occur in most polycultures. We conclude that substrate N retention was enhanced by plant SR even with high N input, and plant SR could be managed to improve the efficiency of N removals in CWs for wastewater treatment.  相似文献   

8.
以泥鳅(Misgurnus anguillicaudatus)、铜锈环棱螺(Bellamya aeruginosa)、河蚬(Corbicula fluminea)为受试生物,以死亡率、渗血率、体质量变化、行动迟钝率、挖洞率为测试指标,探究沉积物中Zn和Cd对底栖生物的21 d慢性毒性效应,并对鄱阳湖Zn和Cd的沉积物基准值进行了验证.结果表明,沉积物中Cd对底栖生物的毒性效应强于Zn,沉积物中Zn、Cd对泥鳅、铜锈环棱螺、河蚬的LC50(半数致死浓度)分别为644和61 mg/kg、751和54 mg/kg、652和81 mg/kg,EC50(半数效应浓度)值分别为526和49 mg/kg、589和35 mg/kg、474和45 mg/kg.经验证,沉积物Zn和Cd的TEL(临界效应浓度)、PEL(必然效应浓度)值比较合理,具有一定适用性,即当Zn、Cd的加标含量低于TEL值时,QTEL<1,不具有毒性;当加标含量高于PEL值时,QPEL>1,毒性明显.  相似文献   

9.
《Marine pollution bulletin》2012,64(5-12):523-527
Concentrations of trace metals (Zn, Cr, Cu, V, Cd and Pb), total organic carbon (TOC), black carbon (BC) and their granulometry were examined in 25 surface sediment samples from the northern Bering Sea, Chukchi Sea and adjacent areas. Trace metal concentrations in the sediments varied from 21.06–168.21 mg kg−1 for Zn, 8.91–46.94 mg kg−1 for Cr, 2.69–49.39 mg kg−1 for Cu, 32.46–185.54 mg kg−1 for V, 0.09–0.92 mg kg−1 for Cd, and 0.95–15.25 mg kg−1 for Pb. The geoaccumulation index (Igeo) indicated that trace metal contamination (Zn and Cd) existed in some stations of the study area. The distribution of grain size plays an important role in influencing the distribution of trace metals (Zn, Cr, Cu, V, and Pb) in sediments from the Chukchi Sea and adjacent areas.  相似文献   

10.
Chemical speciation of vanadium is important to understand the true nature of this element in the environment as well as its biochemical pathways. Sample pretreatment, preparation, and chemical speciation methods were applied for vanadium in coal bottom ash here. Two‐stage microwave acid digestion was used to preparation of samples. Determination of vanadium was performed using inductively coupled plasma‐optical emission spectrometry (ICP‐OES). Speciation of vanadium was carried out using a seven‐step sequential extraction procedure of the coal bottom ash each releasing species of vanadium: Water soluble, exchangeable, carbonate, reducible, oxidizable, sulfide, and residual fractions. Total vanadium concentration in the coal bottom ash is 701 mg kg?1 d.w. The most abundant form of vanadium in coal bottom ash is residual fraction of vanadium (196 mg kg?1 d.w.). Relative abundances of the remaining vanadium fractions in coal bottom ash are as follows: Reducible (176 mg kg?1 d.w.) > sulfide (176 mg kg?1 d.w.) > carbonate (85 mg kg?1 d.w.) > oxidizable (50 mg kg?1 d.w.) > water soluble (10.6 mg kg?1 d.w.) > exchangeable (9.0 mg kg?1 d.w.).  相似文献   

11.
The geochemical characteristics and the spatial distribution of the fluoride were studied in the soils of Indo‐Gangetic plains using multivariate analysis. The fluoride (F) distribution in soil profiles and surface soil (0–15 cm) samples were studied. It was found that total fluoride (TF) in the profiles ranged from 248 to 786 mg kg?1 with a mean of 515.1 mg kg?1 whereas CaCl2 extractable soluble fluoride (FCa) was found to be in the range of 1.68 to 99.1 mg F kg?1 soil. On the other hand, in surface soils, the TF and FCa ranged from 118 to 436 mg kg?1 with a mean of 251.2 mg kg?1 and 1.01 to 5.05 mg kg?1 with a mean of 2.12 mg kg?1, respectively, in the study area. The principal component analysis revealed that the natural weathering of fluoride bearing rock and minerals, various ion‐exchange and dissolution processes in the soil, alkalinity, sodium adsorption ratio, calcium (Ca), magnesium (Mg), and clay contents of the soil are responsible for high fluoride occurrence in the area. The fluoride contamination index developed by using these factors could explain more than 76% variance of F contamination due to FCa in soils. The interpolated kriged map of FCa in surface soil indicated a distinct loop of 1.0–2.0, 2.0–3.0, 3.0–4.0, and >4.0 mg kg?1.  相似文献   

12.
To reduce the potential risks of cadmium (Cd) and lead (Pb) entering the human food chain in vegetables, two pot experiments (Exp. 1 and Exp. 2) were carried out to screen for Cd and Pb pollution‐safe cultivars (PSCs) of Chinese flowering cabbage (Brassica parachinensis L.). The three Cd treatments in Exp. 1 (0.114, 0.667, and 1.127 mg kg?1) showed that Chinese flowering cabbage could easily take up Cd from polluted soils, and there were wide variations in Cd accumulation among different cultivars. The Cd accumulation trait at cultivar level was rather stable under different soil Cd treatments. In Exp. 2, seven cultivars that had been shown in Exp. 1 to be typical high or low accumulators of Cd were selected and six Cd + Pb joint exposure treatments were applied to them. The results showed that there were similar trends of accumulation between Cd and Pb for the tested cultivars, but Pb accumulation by the species was much poorer than that of Cd. It was worth noting that an increase in soil Pb levels significantly (p < 0.01) depressed shoot Cd accumulation. Six cultivars were selected as Cd + Pb PSCs. This study showed that it is feasible to apply a PSC strategy in Chinese flowering cabbage cultivation, to cope with the Cd and Pb contamination commonly found in agricultural soils.  相似文献   

13.
The usually high concentrations of Zn, Pb, Cd, and Cu in the most recently accreted portions of ferromanganese nodules from the western Baltic Sea are thought to reflect increased metal input due to anthropogenic mobilization. If so, the point of increase represents a time horizon within the structure of the nodule. Similar trace metal distributions of radiometrically dated sediments from the same area suggest that the ferromanganese nodules have grown in thickness between 0.02 and 0.16 mm yr?1. From this growth rate anthropogenic Zn flux to the nodule surface was calculated to be 80 mg m?2 yr?1.  相似文献   

14.
The accumulation of crimidin in total samples and in some organs of five fish species was studied under experimental conditions. The species were Cyprinus carpio, Carassius carassius, Tinca tinca, Scardinus erythrophthalmus and Leucaspius delineatus. Fish were exposed to concentrations of 10 mg · l?l and 50 mg · l?1. During short-term experiments water and fish samples were taken at intervals of t = 0, 6, 12, 24, 48 and 72 hours, during the long-term experiment sampling was performed weekly for six weeks. Total samples were analysed for C. carassius, T. tinca, S. erythrophthalmus and L. delineatus. Samples of individual organs and tissues were taken as follows: C. carpio – gills, digestive tract, muscular tissue, kidneys, gonads; C. carassius – gills, digestive tract, muscular tissue, ovaries, testes. Crimidin was determined by gas chromatography. In samples from the short-term experiments at a concentration of 10 mg · l?1 in the water the amount was roughly 101–10 mg · kg?1, at a concentration of 50 mg · l?1 in the water roughly 101 mg · kg?1. In most cases the accumulation coefficient was lower than 1.0. The accumulation capacity of individual fish species did not differ greatly. Of the internal organs only the kidneys had a high accumulation capacity, otherwise the highest values were found in muscular tissue and the gills. After one – three weeks the amount of crimidin in most organs falls, and after transfer to clean water there is a general sharp decline. Thus crimidin is not firmly bound in the body.  相似文献   

15.
Water quality data collected on a fortnightly or monthly basis are inadequate for assessment and modelling of many water quality problems as storm event samples are underrepresented or missed. This paper examines the stormflow dynamics of heavy metals (Pb, Cu, Cd and Zn) in the Nant‐y‐Fendrod stream, South Wales, which has been affected by 250 years of metal smelting, followed by 35 years of landscape rehabilitation measures. For storm events of contrasting (very dry and very wet) antecedent conditions in May 2000 and February 2001, respectively, temporal changes in streamwater heavy metal concentrations above and below an in‐line flood detention lake are analysed. At the upstream site, peaks in total metal concentration were recorded on the rising limb for Pb (0·150 mg l?1) and Cu (0·038 mg l?1) but on the falling limb for Zn (1·660 mg l?1) and Cd (0·006 mg l?1) in the summer 2000 storm event, yielding clockwise and anticlockwise hysteretic loops respectively. In contrast, metal concentrations, although high throughout the winter storm event, were diluted somewhat during the storm peak itself. The Pb and Cu appear to be supplied by quickflow processes and transported in close association with fine sediment, whereas Zn and Cd are delivered to the channel and lake by slower subsurface seepage in dissolved form. In the winter 2001 event, antecedent soil moisture and shallow groundwater levels were anomalously high and seepage sources of dissolved metals dominated. Downstream of the lake, Pb and Cu levels and suspended sediment were high in the summer storm, but low in the winter storm, suggesting retention with deposition of fine sediment in the lake during the latter. In the winter storm, Zn and Cd levels were higher downstream than upstream of the lake, perhaps because of additional seepage inputs from the surrounding slopes, which failed to have an impact during summer. An understanding of the complex interplay of antecedent soil moisture and the dynamics of subsurface seepage pathways in relation to the three‐dimensional distribution of sources is important in modelling heavy metal fluxes and levels in contaminated urban catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
17.
This article describes laboratory batch sorption and column transport experiments that were conducted using heterogeneous alluvial sediments with a wide physical characteristic from wells, located between Lake Mogan and Lake Eymir, Gölbaşı, Ankara. The batch sorption experiment was conducted in two separate systems, that is, single and multicomponents. Single batch experiment was performed to determine equilibrium condition between the heavy metal ions and the soil adsorption sites. The sorption isotherms data from multibatch experiments were used to calculate the sorption parameters. Single batch experiment indicated that equilibrium was attained within 9 days from the start of the sorption test. As a result of multicomponents batch experiments, for Zn and Mn, the sorption process was well described by the Freundlich or Langmuir isotherm model, whereas sorption of Cu was better described by the linear isotherm model. The Kd of Cu were found to be highest in soil 1 (32550.350 L kg−1) and lowest in soil 5 (18170.76 L kg−1). The maximum and minimum sorption capacity values for Zn were found to be in soil 1 (10985.148 mg kg−1) and in soil 2 (8597.14 mg kg−1) units, respectively. [Correction added after online publication 15 July, 2010: In the preceding sentence, the words “minimum” and “maximum” were initially switched.] Similarly, soil 1 (7587.391 mg kg−1) and soil 5 (4908.695 mg kg−1) units provided the maximum and minimum values for Mn. In the column experiments, flow and tracer transport was studied under saturated conditions using conservative tracer to determine the transport parameters. Transport parameter values were obtained by curve-fitting using the nonlinear least-squares optimization code CXTFIT. Results of the column experiments indicated that the dispersivity values obtained for soil samples were in the range of 0.024 to 1.13 cm.  相似文献   

18.
In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0–7.0, initial metal concentration 0.0–300 mg/L and contact time 0–120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r2 < 0.99). The biosorption kinetic data were fitted well with the pseudo‐second‐order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions.  相似文献   

19.
Pot experiments were conducted in glasshouse under controlled conditions. The effect of copper in alluvial soil on the growth and yield of Triticum aestivum L. (wheat) was worked out. Copper was applied in soil at 5–100 mg L?1, along with iron supplement. Inhibitory response of copper was significant (p < 0.05) confirmed by the plant growth parameters viz., plant height, fresh and dry weight, moisture content, pigment contents, protein, sugar contents followed by increased catalase and peroxidase activity in the harvest at 30, 60, and 90 days, of treatment, respectively. The plants grown on copper treated soil along with 5 mg L?1 Cu and iron application showed significant effects (p < 0.05) regarding the increase in plant biomass, plant height (shoot only), pigment contents, protein, sugar contents, grain yield followed by decreased catalase and peroxidase activity in wheat after 30, 60, and 90 days of treatment, respectively. The accumulation of metal in plant tissues was found in order of Fe > Cu coupled by less translocation in grain as compared to the whole plant.  相似文献   

20.
Copper is more toxic to all life stages of the copepod Tisbe than cadmium. The most sensitive life stage of Tisbe to both copper and cadmium is the one-day-old nauplius. The resistance of larval stages of Tisbe increases with age (one-day-old nauplii 48h lc50=0.3142 mg Cu l?1. and 0.5384 mg Cd l?1, 0.3415 mg Cu l?1. and 0.645 mg Cd l?1. for five-days-old nauplii and 0.5289 mg Cu l?1. and 0.9061 mg Cd l?1. for ten-days-old nauplii. The two reproductive stages of Tisbe tested (females with ovigerous bands and females bearing the first ovigerous sac) demonstrated an increased sensitivity to metals and proved more sensitive than the ten-days-old copepodids (only females with ovigerous bands had a similar sensitivity to copper with the ten-days-old copepodids).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号