首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of rainfall patterns on runoff and rainfall-induced erosion   总被引:3,自引:0,他引:3  
Rainfall-induced erosion involves the detachment of soil particles by raindrop impact and their transport by the combined action of the shallow surface runoff and raindrop impact.Although temporal variation in rainfall intensity(pattern)during natural rainstorms is a common phenomenon,the available information is inadequate to understand its effects on runoff and rainfall-induced erosion processes.To address this issue,four simulated rainfall patterns(constant,increasing,decreasing,and increasing-decreasing)with the same total kinetic energy were designed.Two soil types(sandy and sandy loam)were subjected to simulated rainfall using 15 cm×30 cm long detachment trays under infiltration conditions.For each simulation,runoff and sediment concentration were sampled at regular intervals.No obvious difference was observed in runoff across the two soil types,but there were significant differences in soil losses among the different rainfall patterns and stages.For varying-intensity rainfall patterns,the dominant sediment transport mechanism was not only influenced by raindrop detachment but also was affected by raindrop-induced shallow flow transport.Moreover,the efficiency of equations that predict the interrill erosion rate increased when the integrated raindrop impact and surface runoff rate were applied.Although the processes of interrill erosion are complex,the findings in this study may provide useful insight for developing models that predict the effects of rainfall pattern on runoff and erosion.  相似文献   

2.
Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water‐table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October–March) and summer (April–September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21–24% of annual rainfall, with more evaporation taking place during summer than winter. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Turbidity monitoring and rainfall and runoff simulation experiments were conducted at a newly constructed unsealed road stream crossing to determine the quantity and sources of sediment entering the stream. Continuous measurements of turbidity and estimation of total suspended solids (TSS) concentration upstream and downstream of the stream culvert were taken over a 5 month period. There was a statistically significant difference in turbidity and TSS downstream of the crossing during baseflow conditions, but the quality of the water column remained good during non‐rain periods. Rainfall events comprised around 20% of the observation period and led to decreases in water quality downstream of the crossing. Water quality could be considered as degraded for 10% of the observations. This was during a period when the rainfall was 65% of the long‐term average. Calculated suspended sediment loads were 0·78 t upstream and 2·77 t downstream, an increase of 3·5. It was estimated that at least 2–3 t of bedload material was also added to the stream during the crossing construction and from subsequent erosion. This material is a deposit on the cobble stream bed, and is most likely to degrade aquatic ecosystem values. Rainfall and runoff simulation revealed the principal sediment sources to be a fillslope that contributed coarse bedload material through rill erosion and unprotected toe scour, and the unmetalled road verge that provided fines. Although the quality of water column was good for the majority of the observations, the new Australian and New Zealand Water Quality Guidelines for Fresh and Marine Waters suggest this site exceeded ‘trigger levels’ that would warrant further investigation for both the water column and the bed deposits. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Yu X  Li H  Pan K  Yan Y  Wang WX 《Marine pollution bulletin》2012,64(8):1699-1704
Surface sediments and sediment cores collected from the Pearl River Estuary (PRE) were analyzed for total mercury (THg) concentrations and speciation using a sequential extraction method. The mobility of Hg in sediments was also assessed using a series of single extraction methods. The surface sediments from the PRE showed slightly elevated levels of Hg, with concentrations ranging from 109 to 453 ng/g. The vertical profile of THg in sediment cores indicated an accelerated input of Hg over the past decades. The organo-chelated and strong-complexed Hg species were the dominant Hg species in the sediments, while the more mobile phases of Hg made up less than 0.5% of THg. Less than 10% of the Hg in the sediments was extracted by single extraction, depending on the extractant employed. Significant relationships were found between the total organic carbon and THg, geochemical speciation, and extractability, indicating the important role of organic matter in controlling the distribution, mobility, and bioavailability of Hg in sediments.  相似文献   

5.
A study investigated the effect of truck‐traffic intensity and road water‐content on the quality of runoff water from unsealed forest roads. Three sections of a gravel‐surfaced forest road were instrumented and exposed to low and high levels of truck traffic during wet winter conditions and dry summer conditions between July 2001 and December 2002. Rainfall, runoff, road moisture, and traffic were measured continuously, and suspended and bedload sediments were integrated measurements over 2‐week site‐service intervals. The median suspended sediment concentration from the three road segments under low truck‐traffic conditions (less than nine return truck passes prior to a storm) was 269 mg l?1, increasing 2·7‐fold to a median of 725 mg l?1 under high truck‐traffic conditions (greater than or equal to nine return truck passes prior to a storm). These concentrations, and increases due to traffic, are substantially less than most previously reported values. When these data are expressed as modified universal soil loss equation (MUSLE) erodibility values K, accounting for differences in rainfall energy, site characteristics and runoff, high traffic resulted in a road surface that was four times more erodible than the same road under low traffic conditions. Using multiple regression, traffic explained 36% of the variation in MUSLE erodibility, whereas road water content was not significant in the model. There was little difference in the erodibility of the road when trafficked in low water‐content compared with high water‐content conditions (MUSLE K values of 0·0084 versus 0·0080 respectively). This study shows that, for a good quality well‐maintained gravel forest road, the level of truck traffic affects the sediment concentration of water discharging from the road, whereas the water content of the road at the time of that traffic does not (note that traffic is not allowed during runoff events in Victoria). These conclusions are conditional upon the road being adequately maintained so that trafficking does not compromise the lateral drainage of the road profile. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Many researchers have studied the influence of rainfall patterns on soil water movement processes using rainfall simulation experiments. However, less attention has been paid to the influence under natural condition. In this paper, rainfall, soil water content (SWC), and soil temperature at 10‐, 20‐, 30‐, 40‐, and 50‐cm depths were simultaneously monitored at 1‐min intervals to measure the variation in SWC (SWCv) in response to rainfall under different rainfall patterns. First, we classified rainfall events into four patterns. During the study period, the main pattern was the advanced rainfall pattern (38% of all rainfall events), whereas the delayed, central, and uniform rainfall patterns had similar frequencies of about 20%. During natural rainfall, rainwater rapidly passed through the top soil layers (10–40 cm) and was accumulated in the bottom layer (50 cm). When a high rainfall pulse occurred, the water storage balance was disturbed, resulting in the drainage of initial soil water from the top layers into the deeper layers. Therefore, the critical function of the top layers and the bottom layers was infiltration and storage, respectively. The source of water stored in the bottom layer was not only rainfall but also the initial soil water in the upper soil layers. Changes in soil temperature at each soil depth were comonitored with SWCv to determine the movement characteristics of soil water under different rainfall patterns. Under the delayed rainfall pattern, preferential flows preferred to occur. Under the other rainfall patterns, matrix flow was the main form of soil water movement. Rainfall amount was a better indicator than rainfall intensity for SWCv in the bottom layer under the delayed rainfall pattern. These results provide insights into the responses of SWCv under different rainfall patterns in northern China.  相似文献   

7.
This study explored the hydrological impacts of urbanization, rainfall pattern and magnitude in a developing catchment. The Stormwater Management Model was parameterized, calibrated and validated in three development phases, which had the same catchment area (12.3 ha) but different land use intensities. The model calibration and validation by using sub‐hourly hydro‐meteorological data demonstrated a good performance of the model in predicting stormwater runoff in the different development phases. Based on the results, a threshold between minor and major rainfall events was identified and conservatively determined to be about 17.5 mm in depth. Direct runoff for minor storm events has a linear relationship with rainfall; however, events with a rainfall depth greater than the threshold yield a rainfall–runoff regression line with a clearly steeper slope. The difference in urban runoff generation between minor and major rainfall events diminishes with the increase of imperviousness. Urbanization leads to an increase in the production of stormwater runoff, but during infrequent major storms, the runoff contribution from pervious surfaces reduces the runoff changes owing to urbanization. Rainfall pattern exerts an important effect on urban runoff, which is reflected in pervious runoff. With the same magnitude, prolonged rainfall events with unvarying low intensity yield the smallest peak flow and the smallest total runoff, yet rainfall events with high peak intensity produce the largest runoff volume. These results demonstrate the different roles of impervious and pervious surfaces in runoff generation, and how runoff responds to rainstorms in urban catchments depends on hyetograph and event magnitude. Furthermore, the study provides a scientific basis of the design guideline sustainable urban drainage systems, which are still arbitrary in many countries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   

9.
ABSTRACT

High-frequency monitoring was conducted to quantify the frequency and controlling factors of preferential flow (PF) in a monsoon-influenced sub-humid mountainous catchment (6.48 km2) of Northern China. Rainfall was measured using nine bucket raingauges. Soil moisture probes were set up at 12 sites to observe the PF. Overall, 129 rainfall events were identified during the years 2014–2016. The average PF occurrence was 41%, which increased to 71% during heavy rainfall events (>20 mm) revealing a strong influence of the amount and intensity of rainfall. The study also revealed that the PF increased with antecedent soil moisture. Soil moisture was much higher on flat sites compared to sloping sites, providing evidence that the topography has a strong influence on rainfall infiltration and runoff which, subsequently, influence soil moisture variation and the occurrence of PF. Our findings provide valuable insights into the hydrological processes for studies in regions with similar environmental conditions.  相似文献   

10.
V. P. Singh 《水文研究》2002,16(12):2441-2477
Kinematic wave solutions are derived for transport of a conservative non‐point‐source pollutant during a rainfall‐runoff event over an infiltrating plane for two cases: (i) finite‐period mixing and (ii) soil‐mixing zone. Rainfall is assumed to be steady, uniform and finite in duration, and it is assumed to have zero concentration of pollutants. Infiltration is assumed constant in time and space. Prior to the start of rainfall, the pollutant is distributed uniformly over the plane. In the first case, when rainfall occurs, the mixing of pollutant in the runoff water occurs in a finite period of time. In the second case, the chemical concentration is assumed to be a linearly decreasing function of rainfall intensity and overland flow. The solute concentration and discharge are found to depend on the flow characteristics as well as the solute concentration parameters. The characteristics of solute concentration and discharge graphs seem to be similar to those reported in the literature and observed in laboratory experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Using data collected at the Mero catchment during three hydrological years (2005/06–2007/08), an analysis of rainfall–runoff relationships was performed at annual, seasonal, monthly, and event scales. At annual scale, the catchment showed low runoff coefficients (23–35%), due to high water storage capacity soils as well as high runoff inter‐annual variability. Rainfall variability was the main responsible for the differences in the inter‐annual runoff. At seasonal and monthly scales, there was no simple relationship between rainfall and runoff. Seasonal dynamics of rainfall and potential evapotranspiration in conjunction with different rainfall distribution during the study years could be the key factors explaining the complex relationship between rainfall and runoff at monthly and seasonal scale. At the event scale, the results revealed that the hydrological response was highly dependent on initial conditions and, to a lesser extent, on rainfall amount. The shapes of the different hydrographs, regardless of the magnitude, presented similar characteristics: a moderate rise and a prolonged recession, suggesting that subsurface flow was the dominant process in direct runoff. Moreover, all rainfall–runoff events had a higher proportion of baseflow than of direct runoff. A cluster‐type analysis discriminated three types of events differentiated mainly by rainfall amount and antecedent rainfall conditions. The study highlights the role of the antecedent rainfall and the need for caution in extrapolating relationships between rainfall amount and hydrological response of the catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Many environmental pollution issues from highway runoff increasingly become a serious concern, which has been revealed by many previous studies. However, very less information is available on the distribution characteristics of pollutants and their mutual influence in highway runoff. In this paper, the partitioning of pollutant and particle size distribution were investigated based on the initial road runoff of 47 rainfall events from July 2007 to May 2009 on the Lukou section of the Nanjing Airport Expressway, China. This study is emphasizing on the analysis of the mutual impact of pollutant distribution and the relationship between particle size and pollutant distribution. The impact of rainfall characteristics, water temperature, and pH values in runoff samples on the pollutant distribution was also studied. Result shows that partitioning of different pollutants was varying significantly. Volume of particles in different sizes was different, with the highest volume of particles of 21–75 µm size. The distribution of COD highly affected the distribution of TN, and somewhat promoted the distribution of Pb in particles. TP, Pb, and Cd promoted distribution of each other's in particles. There was better competition among Zn, Cu, and Cd, when heavy metals combined with particles. The particles ranged between 21 and 75 µm size had an obvious impact on the distribution of COD, Pb, and TN in the particulate matter. TP in the particulate matter mainly distributed in particles ranged in 151–300 µm size. Rainfall duration significantly affected the Pb in particulate matter. The distribution of Zn in the particulate matter mostly was affected by pH values.  相似文献   

13.
This study applied sample entropy (SampEn) to rainfall and runoff time series to investigate the complexity of different temporal scales. Rainfall and runoff time series with intervals of 1, 10, 30, 90, and 365 days for the Wu-Tu upstream watershed were used. Thereafter, SampEn was computed for the five rainfall and runoff time series. The results show that for the various temporal scales, comparisons of the complexity between the rainfall and runoff time series based on the SampEn are inconsistent. Calculating the dynamic SampEn further elucidated variations of the complexity in the rainfall and runoff time series. In addition, the results show that SampEn measures of the rainfall and runoff time series are typically higher than the approximate entropy measures of the rainfall and runoff time series for a specific temporal scale. The complexity increases when the sample size increases for a specific temporal scale. Furthermore, temporal scales with low complexity and high predictability are obtained from the variations of SampEn for the rainfall and runoff time series with different temporal scales, thereby providing a reference for determining the appropriate temporal scale for rainfall and runoff time series forecasting.  相似文献   

14.
Based on observations of runoff plots and field investigations of gully cross-sections, impacts of various soil and water conservation measures on runoff and sediment yield are analyzed for different rainfall conditions. The results show that antecedent rainfall and rainfall intensity are the main factors affecting the runoff and soil erosion processes. Rainfall events with antecedent rainfall can produce high runoff and sediment yield. Large differences in the characteristics of two rainfall events will result in greater variations of total runoff and sediment yield from the same runoff plot. Under the same soil control measure and rainfall condition, soil and water conservation measures can reduce the impacts of antecedent rainfall and rainfall intensity on runoff and soil erosion. Among various measures, level terrace seems to be the greatest for soil conservation purposes. Combining with engineering measures,Vegetation measures is also effective in controlling runoff and soil erosion. In the initial stage of vegetation enclosure measures, engineering measure is necessary to improve the environment for ecological recovery. Gully head protection can control gully erosion effectively, but the effectiveness of gully head protection would be reduced when rainfall intensity increases. Therefore, the design of a gully head protection structure must be based on local hydrological conditions.  相似文献   

15.
Rainfall and runoff were monitored simultaneously for one year from a residential road, a car park, nine sections of road draining to individual gullies, two house roofs, two garage roofs, and three types of factory roof. The sites, which included an automatic weather station, were in Redbourn, Hertfordshire on Flood Studies Report Soil Type 1. The 2906 quality controlled ‘station-storms’ represented 193 rain storms and involved 57.2 per cent of the annual rainfall. 1732 storms were of less than 1.4mm of rain, whilst 77 had over 10mm. The percentage runoff averaged 11.4 per cent for roads and 56.9 per cent for roofs (28.3 per cent and 90.4 per cent respectively for rainfalls >5mm). Percentage runoff from the roads was cyclic with a peak during the summer months but there was a marked variation in monthly percentage runoff within and between sites. Regression analysis to explain percentage runoff was undertaken with various subsets of data for: each site; roads; and roofs. The regression analysis considered all storms; >1 percent runoff events; >5mm rainfalls; and events with > = 4 mm rain and > = 5 per cent runoff. The variable values in percentage runoff could not be explained satisfactorily with statistical methods. Only eight of the 72 equations explained more than 57 per cent of the variance. The most important explanatory variables for roads were short term rainfall intensity and rainfall amount, the former was the most important for roofs. ‘Seasonal’ variables had a positive relation ship for roads which shows that the percentage runoff from roads is higher in summer than winter. The antecedent variables showed that percentage runoff from roads and roofs is increased by antecedent rainfall. Seasonal factors and evaporation were unimportant for the percentage runoff from roofs. Depression storage, assessed by examining rainfalls that did and did not produce runoff, showed a diversity of monthly values. The depression storages derived by the regression intercept method were usually smaller. There were no relationships between depression storage and catchment or roof slope. The mean values for roofs and roads respectively were 0.52 mm and 1.23 mm for the classification method and 0.42 mm and 0.6mm with the regression approach. Peak runoff from the roads showed an attenuation to 12.8 per cent for 1 minute rainfall intensities and 24.2 per cent for 5 minute intensities. For roofs the attenuation averaged 36.8 per cent for 1 minute intensities and 92.6 for 5 minute intensities. Regression for peak runoff coefficients from roofs and roads explained negligible amounts of the variance except when events with 1 minute rainfall intensities of over 30 mm hr?1 over the roads were analysed. Total rainfall was an important explanatory variable as was the slope of the road. There was evidence that peak coefficients for roads are greater during the summer.  相似文献   

16.
Abstract

Rainfall is the most important input parameter for water resource planning and hydrological studies because flood risk assessment, rainfall harvesting and runoff estimation depend on the rainfall distribution within a region. Due to practical and economic factors, it is not possible to site rainfall stations everywhere, so representative rainfall stations are sited at specific locations. Rainfall distribution is then estimated from such stations. In this study, rainfall distribution in the southwestern region of Saudi Arabia was estimated using kriging, co-kriging and inverse distance weighted (IDW) methods. Historical records of rainfall from 47 stations for the period 1965–2010 and the altitude of these stations were used. The study shows that co-kriging is a better interpolator than the kriging and IDW methods, with a better correlation between actual and estimated monthly average rainfall for the region.  相似文献   

17.
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Rainfall simulation was used to examine runoff generation and sediment transport on roads, paths and three types of agricultural fields in Pang Khum Experimental Watershed (PKEW), in mountainous northern Thailand. Because interception of subsurface flow by the road prism is rare in PKEW, work focused on Horton overland flow (HOF). Under dry antecedent soil moisture conditions, roads generated HOF in c. 1 min and have event runoff coefficients (ROCs) of 80 per cent, during 45 min, c. 105 mm h−1 simulations. Runoff generation on agricultural fields required greater rainfall depths to initiate HOF; these surfaces had total ROCs ranging from 0 to 20 per cent. Footpaths are capable of generating erosion‐producing overland flow within agricultural surfaces where HOF generation is otherwise rare. Paths had saturated hydraulic conductivity (Ks) values 80–120 mm h−1 lower than those of adjacent agricultural surfaces. Sediment production on roads exceeded that of footpaths and agricultural lands by more than eight times (1·23 versus < 0·15 g J−1). Typically, high road runoff volumes (owing to low Ks, c. 15 mm h−1) transported relatively high sediment loads. Initial road sediment concentrations exceeded 100 g l−1, but decayed with time as loose surface material was removed. Compared with the loose surface layer, the compacted, underlying road surface was resistant to detachment forces. Sediment concentration values for the road simulations were slightly higher than data obtained from a 165 m road section during a comparable natural event. Initial simulation concentration values were substantially higher, but were nearly equivalent to those of the natural event after 20 min simulation time. Higher sediment concentration in the simulations was related to differences in the availability of loose surface material, which was more abundant during the dry‐season simulations than during the rainy season natural event. Sediment production on PKEW roads is sensitive to surface preparation processes affecting the supply of surface sediment, including vehicle detachment, maintenance activities, and mass wasting. The simulation data represent a foundation from which to begin parameterizing a physically based runoff/erosion model to study erosional impacts of roads in the study area. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The Xinanjiang model, which is a conceptual rainfall‐runoff model and has been successfully and widely applied in humid and semi‐humid regions in China, is coupled by the physically based kinematic wave method based on a digital drainage network. The kinematic wave Xinanjiang model (KWXAJ) uses topography and land use data to simulate runoff and overland flow routing. For the modelling, the catchment is subdivided into numerous hillslopes and consists of a raster grid of flow vectors that define the water flow directions. The Xinanjiang model simulates the runoff yield in each grid cell, and the kinematic wave approach is then applied to a ranked raster network. The grid‐based rainfall‐runoff model was applied to simulate basin‐scale water discharge from an 805‐km2 catchment of the Huaihe River, China. Rainfall and discharge records were available for the years 1984, 1985, 1987, 1998 and 1999. Eight flood events were used to calibrate the model's parameters and three other flood events were used to validate the grid‐based rainfall‐runoff model. A Manning's roughness via a linear flood depth relationship was suggested in this paper for improving flood forecasting. The calibration and validation results show that this model works well. A sensitivity analysis was further performed to evaluate the variation of topography (hillslopes) and land use parameters on catchment discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Regolith surface characteristics and response were examined over a three‐year period in a badland area in a Mediterranean middle‐mountain zone near Vallcebre (Eastern Pyrenees). Preliminary work carried out in this area indicated clear seasonal patterns of regolith properties driven by frost heaving in winter and crusting and erosion in the rest of the year. Rainfall simulations were performed with a small portable nozzle simulator in order to study seasonal changes in runoff generation, erosion rates and raindrop effect on bulk density changes. The results showed large seasonal variations in runoff and erosion responses. In?ltration rates after runoff start were correlated with precipitation depth before runoff start; runoff generation was therefore related to regolith saturation only to a very limited extent. Erosion rates were more controlled by runoff rates than by the weakness of regolith against raindrop splash, and sediment grain size increased with concentration. The combined role of antecedent regolith moisture and bulk density explained most of the seasonal variability in in?ltration, bulk density changes during rainfall and erosion rates, but some seasonal differences in sediment detachability were not explained by these variables and may be attributed to changes in roughness. Overall, runoff and erosion responses were relatively stable during spring and autumn, whereas wide variations in in?ltration rates and sediment detachment occurred in winter and summer respectively. Experiments conducted in a single season would have produced poorly representative, if not erroneous, results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号