首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A study was made of the United States Bureau of Mines electrooxidation process for the recovery of molybdenum from molybdenite. The investigation sought to determine the effect of solution parameters on by-product chlorate formation and the resulting loss in current efficiency. The minimization of the chlorate production during the electrolytic oxidation of molybdenite would contribute to making the process economically attractive.The study showed that chlorate production could be minimized during electrooxidation by operating at low temperatures, low pH's, a large excess of molybdenite and low current densities. Anodes having a high oxygen overvoltage were found to favorably reduce chlorate production.The rate of dissolution of molybdenite under these conditions was also investigated. It was determined that the generation of hypochlorite was the rate controlling step. The rate of dissolution of molybdenite was found to be zero order. The zero-order rate constant equalled the rate of production of hypochlorite divided by the hypochlorite/molybdenite stoichiometric ratio.  相似文献   

2.
Chlorate is one of the disinfection byproducts that are formed when chlorine/chlorine dioxide is used as a primary disinfectant. This study investigated the removal of chlorate by photochemical degradation using an advanced reduction process, which is a treatment method that combines a reducing agent with an activating method to generate reducing radicals. The effectiveness of combinations of reducing agents and three UV light sources having a peak output at 254, 365, and 312 nm were evaluated for chlorate removal. Dithionite irradiated by broad-band UVB lamp having the peak energy at 312 nm showed the highest chlorate removal. In pursuit of finding the optimum advanced reduction process conditions, the environmental process variables including pH, reducing agent dose, and light intensity were investigated. Dithionite/UV-B advanced reduction process was effective in weakly acidic conditions (pH < 5), and chlorate removal occurred in two steps. The first was an initial rapid decrease in chlorate concentration that occurred before initiating UV irradiation and was attributed to reaction with dithionite decomposition products. The second step was a slow decrease during UV irradiation that is caused by radicals produced by photolysis of the products of dithionite decomposition. The major product of chlorate destruction was chloride, with negligible amounts of chlorite produced.  相似文献   

3.
This study evaluates bioleaching treatments to remove copper from the Sarcheshmeh (Iran) molybdenite concentrate using a native strain of Acidithiobacillus ferrooxidans. Copper content of the concentrate was 0.83 wt.% as chalcopyrite. The tests showed selective dissolution of copper (chalcopyrite) from molybdenite concentrate. Up to 65% of copper content of molybdenite concentrate was removed via bioleaching with a native strain of A. ferrooxidans in less than 15 days. Ferrous sulfate, sulfur or pyrite was added to culture medium to enhance the activity of bacteria. Sulfur was the preferred additional source of energy for removing copper from molybdenite via bioleaching with A. ferrooxidans. In addition, 9K or Norris medium was also used as the culture medium in the experiments. The experiments showed that application of Norris medium would be better than that of 9K medium in order to remove copper from molybdenite via bioleaching. These results were backed up due to the fact that the cost of Norris medium was also less than that of 9K medium.  相似文献   

4.
江西城门山铜矿铼-锇同位素年龄研究   总被引:33,自引:3,他引:33  
吴良士  邹晓秋 《矿床地质》1997,16(4):376-381
城门山铜矿中,侵入到花岗闪长岩中的石英斑岩,其Re-Os法同位素测年结果为140×106a,进而确定了该区二次岩浆侵入活动时间相隔约10×106a,在这期间内,岩浆由中酸性演变为酸性;与其相应的成矿作用则从夕卡岩型铜、硫矿化演变为细脉浸染型铜、金矿化,构成了一个演化序列。在细脉浸染型辉钼矿化作用中,石英细脉中辉钼矿比石英斑岩中浸染状辉钼矿形成略早,二者在空间上呈正消长,而整个成矿过程大约经历了4×106~3×106a。  相似文献   

5.
Reproducibility of Re-Os molybdenite ages depends on sample size and homogeneity, suggesting that Re and Os are decoupled within individual molybdenite crystals and do not remain spatially linked over time. In order to investigate the Re-Os systematics of molybdenite at the subgrain (micron) scale, we report LA-ICP-MS Re-Os ages for an Archean molybdenite crystal from Aittojärvi, Finland, analyzed in situ in a white aplite matrix. A related Aittojärvi molybdenite (A996D), in the form of a very fine-grained mineral separate, is used as one of our in-house NTIMS standards, and thus its age of 2760 ± 9 Ma is well established. Measurements of (187Re + 187Os)/185Re on micron scale spots along 200 μm traverses across the crystal yield a wide range of ages demonstrating that, in this case, microsampling of molybdenite does not produce geologically meaningful ages. Experimentation with mineral separations and sample size over a 7-yr period predicted that this would be the outcome. We suggest that 187Os is more likely to be the mobile species, based on its charge and ionic radius, and that 187Os becomes decoupled from parent 187Re with time on the micron and larger scale. Incompatible charge and ionic radius for Os ions formed during reduction of molybdenite-forming fluids may explain the widely observed absence of common (initial) Os in molybdenite. Geologically accurate ages for molybdenite can only be obtained for fully homogenized crystals (or crystal aggregates) so that any post-crystallization 187Re-187Os decoupling is overcome.A growing number of geologically accurate ID-NTIMS 187Re-187Os ages for homogenized molybdenite suggest that postcrystallization mobility of radiogenic 187Os must be limited to within the molybdenite mineral phase. We suggest that radiogenic 187Os may be stored in micron scale dislocations, kink bands, and delamination cracks produced by deformation, and that the unusual structure and deformation response of molybdenite results in an increased chemical stability in this mineral. Migration of 187Os into adjacent silicate phases is highly unlikely, but other contacting sulfides may take in Os. In an example from a Proterozoic skarn deposit at Pitkäranta (western Russia), we demonstrate minor loss of radiogenic 187Os from molybdenite and a corresponding gain in adjacent chalcopyrite such that the molybdenite age is not perceptibly disturbed, whereas the resulting chalcopyrite ages are impossibly old. Therefore, it is unadvisable to perform Re-Os analytical work on any sulfide in contact or intimate association with molybdenite. In addition to large errors in the age, if the isochron method is employed, initial 187Os/188Os ratios could be erroneously high, leading to seriously errant genetic interpretations.  相似文献   

6.
The effect of dextrin on molybdenite surface properties has been investigated experimentally through measurements of zeta potentials, adsorption densities, contact angles, Hallimond tube flotation and oil flotation response. These studies indicate that the adsorption of dextrin on molybdenite occurs through physical interaction with the surface, possibly due to hydrophobic bonding. The hydrophobic bonding mechanism is in accord with the magnitude of the adsorption free energy, which was estimated to be—5.4 kcal per mole of dextrin monomers. Dextrin was found to be a very effective depressant for the air flotation of molybdenite in the absence of a collector, whereas it does not effectively depress molybdenite in an oil flotation process using iso-octane. This has been discussed qualitatively from the contributions of electrical double layer repulsion, van der Waals' attraction, and hydration effects.  相似文献   

7.
The present contribution reports a moving iron (Fe), zinc (Zn)–doped tin oxide/titanium (SnO2/Ti) anode-based system designed and operated for the electro-oxidation of methyl orange dye effluent. Electrochemical oxidation of the dye was carried out at a current density of 1.8 A/dm2 for 120 min. Similar experiments were repeated with pure SnO2-based static and moving anode-based systems and the Fe, Zn-doped SnO2 static anode-based electro-oxidation system. Post oxidation, the surface of the electrodes was critically examined by scanning electron microscopy. Dye samples were analysed at regular intervals during the electro-oxidation process by chemical oxygen demand and colour removal measurements and characterized by UV–Vis spectroscopy and Fourier transform infrared spectroscopy at the end of the oxidation process. The obtained results elucidate the superiority of Fe, Zn-doped SnO2/Ti moving anode-based system for methyl orange dye effluent electro-oxidation. The moving anode prevents passive layer formation and decreases polarization resistance. Doping of Fe and Zn provides the anode-enhanced mechanical strength and electrocatalytic activity. The combined effects of axial anode movement and doping are responsible for improved performance of the moving anode system reported in this contribution.  相似文献   

8.
关于辉钼矿中Re含量示踪来源的讨论   总被引:10,自引:3,他引:7  
对近年来国内已发表的744个辉钼矿Re-Os同位素测年数据进行了汇总,发现所有样品辉钼矿中的Re含量具有混合分布的特征.按照岩性和共生矿物种类对所有数据进行了分类统计分析,结果显示辉钼矿中Re含量(质量分数,下同)与岩性和共生矿物种类存在密切的关系:长英质脉和花岗岩中辉钼矿的Re含量最低,几何平均值分别为7.41×10...  相似文献   

9.
Re-Os法能够直接厘定内生金属矿床成矿时代,但是封闭Carius管法化学流程复杂,且有一定的危险性。本文建立了一种简便快速测定辉钼矿Re-Os年龄及其Re含量的方法。用3 mL浓硝酸在10 mL比色管中溶解5~15 mg辉钼矿样品,将溶液中的钼酸沉淀分离后稀释定容,直接采用质谱测量187和185质量数比值(M187/M185)。利用辉钼矿Re-Os年龄标准物质JDC和HLP的M187/M185值与其年龄的正相关线性关系计算未知辉钼矿样品的Re-Os年龄,并通过185Re计数利用相对法计算Re含量。本方法应用于测量13.26~2130 Ma的辉钼矿,Re-Os年龄的测定值与推荐值的相对偏差多数在0.36%~7.42%之间,由于放射性积累较多,长年龄样品测量的准确度较高。与传统Carius管法相比,该方法不需要加入稀释剂,省去了封闭和打开Carius管环节以及Re-Os分离纯化流程,适合于辉钼矿Re-Os年龄的初步分析。  相似文献   

10.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

11.
An atomic level study of rhenium and radiogenic osmium in molybdenite   总被引:1,自引:0,他引:1  
Local atomic structures of Re and radiogenic Os in molybdenite from the Onganja mine, Namibia, were examined using X-ray absorption fine structure (XAFS). Rhenium LIII-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) show that the oxidation state of Re, the interatomic distances between Re and the neighboring atoms, and the coordination number of Re to S are very similar to those of Mo in molybdenite. The results confirm that Re is present as Re(IV) in the Mo site in molybdenite.Measurement of LIII-edge XANES and EXAFS of a minor concentration (8.55 ppm) of radiogenic Os was accomplished in fluorescence mode by removing the interfering X-rays from Re and other elements using a crystal analyzer system. The data indicate that the oxidation state of radiogenic Os is Os(III) and Os(IV) and clearly different from Os(II) in natural sulfide minerals, such as OsS2 (erlichmanite). XANES data also suggest that radiogenic Os does not form a secondary Os phase, such as OsS2 or Os metal, in molybdenite.EXAFS of radiogenic Os was successfully simulated assuming that Os is present in the Mo site in molybdenite. The data are consistent with the XANES data; Os does not form Os phases in molybdenite. The EXAFS simulation showed that the interatomic distance between Os and S is 2.27 Å, which is 0.12 Å smaller than the distances of Re-S and Mo-S (2.39 Å) in molybdenite. Similar valences and ionic sizes of Re and Mo in molybdenite support the fact that large amounts of Re can be incorporated into the Mo site as has been observed in previous studies, whereas the different properties of Os compared to Mo and Re suggested here support much lower abundance of common Os in molybdenite. This makes molybdenite an ideal mineral for the Re-Os geochronometer as shown in many studies. However, the shorter distance between radiogenic Os and S compared to those of Re-S and Mo-S in molybdenite suggests that the radiogenic Os has a smaller ionic size than Re(IV) and Mo(IV). Furthermore, Os may be partly present as Os(III). Smaller and lower charge Os can diffuse faster than larger and higher charge Re in molybdenite at a given set of conditions. Hence, our study provides an atomic-level explanation for the high mobility of Os compared to Re, which has been suggested by earlier workers using laser ablation ICP-MS.  相似文献   

12.
The Baishan molybdenum deposit is located in the central part of the Eastern Tianshan-Beishan tectonic belt, NW China. The deposit is hosted in early Carboniferous Gandun Formation biotite-rich hornfels and is genetically related to unexposed granodiorite porphyry beneath the orebodies. The molybdenite occurs in three different types from early to late stage: Molybdenite - Fe-Cu-sulfides - K-feldspar - quartz veins (Group 1); Molybdenite - Fe-Cu-sulfides - quartz veins (Group 2); and disseminated molybdenite in the wall rock (Group 3). Rhenium concentrations in the molybdenite grains range from 108 to 277 ppm in Group 1, 69–121 ppm in Group 2 and 46–135 ppm in Group 3. The Re concentrations of molybdenite in the Baishan Mo deposit decrease from early to late and from the center to periphery, and molybdenite types vary from the 2H1 poly-type in Groups 1 and 2 to the 2H1 + 3R2H1 poly-type in Group 3, based on X-ray diffraction results. The Re-enriched molybdenite probably formed from an oxidized magmatic fluid that separated from a highly oxidized and H2O- and volatile-enriched adakitic intrusion generated in the lower crust.  相似文献   

13.
We present a detailed study of Re-Os age determinations for eight natural molybdenite samples of like polytype (2H), spanning a range of age, natural grain size and deposit type. The focus of the study is to critically evaluate the effects of sampling, sample preparation and aliquant size on the accuracy and reproducibility of Re-Os ages for these molybdenite samples. We find that for some molybdenite samples, analysis of small sample aliquants (<20 mg) may not yield accurate or reproducible Re-Os ages, whereas analysis of larger aliquants from the same mineral separate do yield reproducible Re-Os dates. Such an observation is best explained if Re and 187Os are internally decoupled within molybdenite grains. This finding is supported from spot analyses by laser ablation MC-ICP-MS analyses presented here and is consistent with previously published observations.The degree of decoupling between Re and 187Os appears to increase both as a function of increasing grain size, and increasing age of molybdenite. From detailed dating of individual molybdenite mineral separates, we provide approximate minimum aliquant amounts required for reproducible Re-Os age dating, as a function of molybdenite age and grain size. Geologically younger, naturally fine-grained molybdenite samples appear to show little Re and 187Os decoupling, and reproducible ages can be determined from some samples with as little as 1 mg of aliquant. Geologically old, and coarse-grained molybdenite samples may require as much as 40 mg of aliquant from a much larger mineral separate to overcome Re and 187Os decoupling. The mechanism(s) of Re and 187Os decoupling within molybdenite is not constrained by this results of this study, but the observation that the degree of decoupling increases with grain size (distance) and age (time/geologic history) may suggest primary diffusive control. Assuming that Re and 187Os decoupling in molybdenite results primarily from diffusion of 187Os, apparent diffusion coefficients are calculated (D = x2/t). Estimates of D for Os made in this way range from 2.8 × 10−26 to 2.1 × 10−21 m2/s, which are broadly similar to experimentally derived diffusion coefficients for Os in Fe-sulfide minerals and for Re in molybdenite at temperatures <500°C.  相似文献   

14.
核废料处置库缓冲层除要具备良好的隔离防渗外,还需要有卓越的导热性能。为此,论文以钠基膨润土为基础,混入高导热率天然石墨,配置兼具防渗-导热功能的缓冲材料。按照相同的石墨掺入率(20%,质量比),把最大粒径为50目、100目、200目和325目的石墨分别掺入膨润土,形成均匀的石墨-膨润土混合物。开展膨润土-石墨混合物自由膨胀率、恒体积膨胀力和渗透等水-力特性试验,探讨石墨粒径对膨润土-石墨混合物水-力性能的影响。结果表明,相同石墨掺入率下,最大粒径100~200目的石墨和膨润土混合,可以形成更好的缓冲材料,其渗透系数最小,而膨胀力最大。究其原因,应与石墨-膨润土的接触方式相关。石墨呈扁平状结构,粒径较大时,石墨和膨润土被压实后,容易在扁平结构末端形成未被充填的孔隙;而石墨粒径较小时,石墨和膨润土颗粒接触面积增大,石墨属于憎水性材料,膨润土-石墨界面处提供了更多渗漏通道。研究结论为配置核废料处置库缓冲层材料提供了科学参考。  相似文献   

15.
辉钼矿Re-Os同位素定年方法的改进与应用   总被引:13,自引:9,他引:4  
公认的Re-Os同位素定年代表物辉钼矿,目前已在金属硫化物矿床年代学研究领域获得了广泛的应用。本研究采用浓HNO3分解辉钼矿样品,大大地简化了Re和Os的化学制备过程,并根据辉钼矿中正常Os含量水平相对放射成因187Os可以忽略的特点,以正常Os标准为稀释剂,实现了仪器测量过程中Os同位素质量分馏的在线校正,改善了分析数据的质量。该方法经辉钼矿国家标准物质进行验证,获得了满意的Re、Os含量及Re-Os年龄数据,并且在南岭地区与连阳复式岩体相关的姓坪夕卡岩型钼矿床成矿年龄研究中获得了成功应用。在实际应用中,为了获得有意义的能反映真实地质事件的年龄数据,辉钼矿样品不仅要有足够的取样量,而且还要保证粒度细、混合均匀。  相似文献   

16.
The Re–Os (rhenium–osmium) chronometer applied to molybdenite (MoS2) is now demonstrated to be remarkably robust, surviving intense deformation and high‐grade thermal metamorphism. Successful dating of molybdenite is dependent on proper preparation of the mineral separate and analysis of a critical quantity of molybdenite, unique to each sample, such that recognized spatial decoupling of 187Re parent and 187Os daughter within individual molybdenite crystals is overcome. Highly precise, accurate and reproducible age results are derived through isotope dilution and negative thermal ion mass spectrometry (ID‐NTIMS). Spatial decoupling of parent–daughter precludes use of the laser ablation ICP‐MS microanalytical technique for Re–Os dating of molybdenite. The use of a reference or control sample is necessary to establish laboratory credibility and for interlaboratory comparisons. The Rb–Sr, K–Ar and 40Ar/39Ar chronometers are susceptible to chemical and thermal disturbance, particularly in terranes that have experienced subsequent episodes of hydrothermal/magmatic activity, and therefore should not be used as a basis for establishing accuracy in Re–Os dating of molybdenite, as has been done in the past. Re–Os ages for molybdenite are almost always in agreement with observed geological relationships and, when available, with zircon and titanite U–Pb ages. For terranes experiencing multiple episodes of metamorphism and deformation, molybdenite is not complicated by overgrowths as is common for some minerals used in U–Pb dating (e.g. zircon, monazite, xenotime), nor are Re and Os mobilized beyond the margins of individual crystals during solid‐state recrystallization. Moreover, inheritance of older molybdenite cores, incorporation of common Os, and radiogenic Os loss are exceedingly rare, whereas inheritance, common Pb and Pb loss are common complications in U–Pb dating techniques. Therefore, molybdenite ages may serve as point‐in‐time markers for age comparisons.  相似文献   

17.
内蒙古八大关斑岩型铜钼矿床成岩成矿年代学研究   总被引:4,自引:1,他引:3  
八大关斑岩铜钼矿床是中国内蒙大兴安岭地区典型的斑岩型铜钼矿床之一。对矿区Ⅱ号岩体不同位置的2件岩石样品采用高精度的LA_ICP_MS锆石U_Pb测年,获得的锆石U_Pb年龄分别为(230.6±2.8)Ma和(230.5±4.4)Ma,两者在误差范围内非常一致,由此确认花岗闪长斑岩体的形成年龄约为230 Ma;对矿区7件辉钼矿样品采用Re_Os同位素测年,获得的Re_Os等时线年龄为(228.7±3.1)Ma,指示了八大关铜钼矿床辉钼矿的沉淀时间约为228.7 Ma。结合矿区岩相学、矿物学特征,辉钼矿呈浸染状分布于花岗闪长斑岩体内,且辉钼矿与黄铜矿密切共生,以及上述2种精确方法获得的年龄在误差范围内的一致性,说明花岗闪长斑岩即为成矿岩体,成岩与成矿大致同时或成矿略晚于成岩,表明八大关铜钼矿床形成于中三叠世,属于印支期成矿。  相似文献   

18.
Summary Re–Os molybdenite ages from the exocontact of the Hnilec granite-greisen body provide temporal constraints for tin, tungsten and molybdenite mineralisation in the Gemeric Superunit, Slovakia. Two molybdenite separates were taken from a representative sample of the Sn–W–Mo mineralisation at Hnilec and their Re–Os ages of 262.2 ± 0.9 and 263.8 ± 0.8 Ma (2-sigma) are in excellent agreement. The obtained Re–Os molybdenite ages are similar to recent but less precise electron microprobe monazite (276 ± 13 Ma) and U–Pb single zircon (250 ± 18 Ma) ages from the Hnilec granite intrusion, supporting a granite-related greisen origin for the Sn–W–Mo mineralisation. Our precise Re–Os molybdenite ages resolve the long time controversy over the timing of high-temperature mineralisation in the Gemeric Superunit. These Permian ages eliminate suggestions of an Alpine age. The sulphur isotope composition of the studied molybdenite is δ34S(CDT) = 1.71 ± 0.2‰ and is consistent with a magmatic sulphur source. Field observations indicate the lack of a broad contact aureole in the vicinity of the Hnilec granite body. Shallow level granite emplacement in schistose host rocks was accompanied by alteration and formation of tin-tungsten greisen in the upper part of the granite and exocontact molybdenite mineralisation, both commonly lacking in other granite bodies within the Gemeric Superunit.  相似文献   

19.
The garnet-biotite-sillimanite anatectic xenoliths in the Neogene dacite dome of El Joyazo (also called Cerro de Hoyazo, SE Spain) contain four types of graphite (I to IV), distinguished on the basis of grain size and texture. Structural characterization of graphite by Laser Raman spectroscopy (LRS) shows systematic differences in the degree of ordering among the four types: only type III is fully consistent with the granulite-facies conditions reached by the xenoliths during partial melting, the others indicate metamorphic temperatures covering amphibolite-facies conditions, with only a few examples of granulite-grade crystallinity. All graphite crystallized before or during the anatectic event, indicating that a large fraction of the graphite did not equilibrate at peak temperatures. The mm-scale coexistence of different types and degrees of ordering in the graphite suggests different origins, i.e. of biogenic derivation and “fluid-deposited”, and is explained in terms of fluid-melt-graphite interaction during the anatectic event. Disequilibrium behaviour during high-temperature metamorphism and anatexis is typical of types I, II and particularly of IV, and is attributed to sluggish kinetics of solid-state graphitization, mainly owing to the limited time of the process and carbon saturation of the intergranular fluid. The coexisting, well-ordered type III graphite is the product of melting in the presence of a graphite-saturated fluid, a process that would account for the deposition of new graphite. The LRS results, together with petrologic observations, suggest that it is possible that high melt fractions can be generated by fluid-present melting of a metasedimentary protolith also in a closed system. Although this contradicts the commonly accepted hypothesis that, due to limited rock porosities, extensive fluid-present melting is precluded unless infiltration occurs, it is a possible end-member model in anatectic settings characterized by rapid heating rates and low-grade source rocks. Received: 14 July 1998 / Accepted: 16 November 1998  相似文献   

20.
金属铼(Re)是支撑航空航天等高科技产业高质量发展的重要原材料,具不可替代性。研究表明,世界上绝大部分的Re都赋存在斑岩型矿床的辉钼矿之中,且Re含量在矿床、矿石、矿物颗粒等不同尺度上均存在较大差异,但目前学术界对导致这些差异的影响因素尚不清楚。本文通过对全球斑岩型Cu(Mo)、Mo(Cu)矿床中Mo品位、辉钼矿的微量元素组成和Re-Os年龄、成矿岩体的化学组成、Sr-Nd同位素等数据的汇总,深入探讨了影响该类矿床辉钼矿中Re含量变化的主要因素。结果显示,Re含量与矿床中钼的平均品位呈负相关,地幔物质的加入可能是形成高Re辉钼矿的基础。本研究证实,辉钼矿Re含量与其成矿时代不具耦合关系,并且Re的含量与辉钼矿沉淀的位置、以及辉钼矿多型之间亦无明显相关性,而可能与成矿岩体的成分、岩浆分异程度、成矿流体的性质、热液蚀变及表生作用过程有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号