首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wet ammonia (NH3) desulfurization process can be retrofitted to remove nitric oxide (NO) and sulfur dioxide (SO2) simultaneously by adding soluble cobalt(II) salt into the aqueous ammonia solution. Activated carbon is used as a catalyst to regenerate hexaminecobalt(II), Co(NH3), so that NO removal efficiency can be maintained at a high level for a long time. In this study, the catalytic performance of pitch‐based spherical activated carbon (PBSAC) in the simultaneous removal of NO and SO2 with this wet ammonia scrubbing process has been studied systematically. Experiments have been performed in a batch stirred cell to test the catalytic characteristics of PBSAC in the catalytic reduction of hexaminecobalt(III), Co(NH3). The experimental results show that PBSAC is a much better catalyst in the catalytic reduction of Co(NH3) than palm shell activated carbon (PSAC). The Co(NH3) reduction reaction rate increases with PBSAC when the PBSAC dose is below 7.5 g/L. The Co(NH3) reduction rate increases with its initial concentration. Best Co(NH3) conversion is gained at a pH range of 2.0–6.0. A high temperature is favorable to such reaction. The intrinsic activation energy of 51.00 kJ/mol for the Co(NH3) reduction catalyzed by PBSAC has been obtained. The experiments manifest that the simultaneous elimination of NO and SO2 by the hexaminecobalt solution coupled with catalytic regeneration of hexaminecobalt(II) can maintain a NO removal efficiency of 90% for a long time.  相似文献   

2.
In view of water pollutants becoming more complex, both anionic and cationic pollutants need to be removed. The multi‐pollutants simultaneous removal is paid more and more attention. Hence, development composite materials for treatment complex wastewater are the aim of this study. In this research, iron–nickel nanoparticles deposited onto aluminum oxide (α‐Al2O3) and carbon nanotubes (CNTs) to form nanocomposite materials Fe–Ni/Al2O3 and Fe–Ni/CNTs, respectively, were used as adsorbents. The adsorption capacities of Fe–Ni/Al2O3 and Fe–Ni/CNTs for AO7, HSeO, and Pb2+ were observed to be 5.46, 8.28, 27.02, and 25.6 mg/g, 15.29 and 17.12 mg/g, separately. The composite materials with negative charges were superior in adsorption of anionic pollutants. Using orthogonal experimental design and analysis of variance to co‐treat dye AO7, HSeO and Pb2+ in aqueous solutions, seven testing factors were included: (1) adsorbent types, (2) amount of iron, (3) solution pHs, (4) AO7 concentrations, (5) Pb2+ concentrations, (6) HSeO concentrations and (7) reaction time. The experimental results showed that the removal of complex pollutants AO7, HSeO, and Pb2+ on Fe–Ni/CNTs could reach up to 90% in the optimal treatment conditions. When using Fe–Ni/CNTs as the adsorbent, the sorption isothermals were well fitted in the Freundlich isotherm, and R2 could reach up to 0.98.  相似文献   

3.
Ag‐modified TiO2 nanotube arrays (Ag/TiO2 NAs) were prepared and employed as a photocatalyst for degradation of 17α‐ethinylestradiol (EE2) and inactivation of Escherichia coli. The as‐synthesized Ag/TiO2 NAs were characterized by field‐emission scanning electron microscope (FESEM), X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). It was found that metallic Ag nanoparticles were firmly deposited on the TiO2 NAs with the pore diameter of 100 nm and the length of 550 nm. Photocatalytic degradation of EE2 and inactivation of E. coli were enhanced effectively in an analogical trend using Ag/TiO2 NAs. In particular, Ag/TiO2 NAs exhibited the antimicrobial activity even in the absence of light. The Ag acted as a disinfection agent as well as the dopant of the modified TiO2 NAs photocatalysis by forming a Schottky barrier on the surface of TiO2 NAs. Inorganic ions suppressed the rates of photocatalytic degradation of EE2, with HCO having a more pronounced effect than NO or SO. Humic acid (HA) was found to increase the rate of EE2 degradation.  相似文献   

4.
Ultrafiltration (UF) can remove natural organic matter (NOM) effectively. Moreover, chlorine dioxide (ClO2) has been an alternative disinfectant as it forms fewer disinfection by‐products with NOM than chlorination does. Therefore, combining ClO2 with UF may improve conventional purification processes. In this study, feed water containing humic acid with 4.07 mg/L total organic carbon (TOC) was dosed directly with various amounts of ClO2 (0, 2, 5, 10, and 15 mg/L) before being filtered through a 5‐kDa UF membrane. With a low dose (2 mg/L ClO2), UF removed humic acid effectively, as TOC was not detected in the permeate, and the permeate flux increased to about 80% of the initial permeate flux by cross flow. Moreover, the concentrations of ClO, ClO, and trihalomethanes in the permeate were below the United States Environmental Protection Agency guidelines.  相似文献   

5.
To compare water quality in rivers of developed and developing countries, a study based on physicochemical parameters and dissolved metals levels was conducted. Water samples were collected from selected sites in Dhaka, Bangladesh; Hokkaido and Osaka, Japan; Erdenet, Mongolia and West Java, Indonesia. Analysis of least significant differences revealed that most water quality parameters were within comparable low levels in both developed and developing countries. The dissolved metals concentrations were found to be similar and below those of water standards except for manganese and cadmium at every sampling point, and lead in Erdenet, Mongolia. Some metals showed high enrichment factors in the rivers of Osaka, Japan and Erdenet, Mongolia, indicating accumulation possibility of metals in the river‐bed sediments. High concentrations of dissolved organic carbon, Escherichia coli and dissolved metals suggested greater water pollution in some rivers of developing countries than in the rivers of Japan. Principal component analysis showed strong correlations between “dissolved organic carbon and chemical oxygen demand” and “conductivity and total dissolved solids” at each sampling point, and E. coli, nitrate (NO), nitrite (NO), and pH levels were found to be higher in the rivers of Dhaka and Erdenet. In addition, there were high levels of Al and Zn in West Java, Pb in Erdenet, and Mn, Fe, and Cr in the rivers of Dhaka and Japan. Based on pressures and impacts, it is evident that dissolved metal, organic, and fecal pollution in the rivers of developing countries are in somewhat dreadful condition in comparison with the rivers of developed country.  相似文献   

6.
Contamination of water due to bromate is a severe health hazard. The aim of the present study was to remove bromate from water using a crosslinked polystyrene based strongly basic anion exchange resin De‐Acidite FF‐IP. Batch experiments were performed to study the influence of various experimental parameters such as effect of pH, contact time, temperature, and effect of competing anions on bromate removal by De‐Acidite FF‐IP resin. At optimum parameters, the removal rate of bromate was very fast and 90% removal took place in 5 min and equilibrium was established within 10 min. The presence of competitive anions reduced the bromate adsorption in the order of Cl? > F? > CO > SO > NO > PO. The practical utility of this resin has been demonstrated by removing bromate in some of the commercial bottled water from Saudi Arabia. The level of bromate was determined using a very sensitive, precise and rapid method based on ultra‐performance liquid chromatography‐tendem mass spectrometry (UPLC‐MS/MS).  相似文献   

7.
Evapotranspiration (ET) can cause diel fluctuations in the elevation of the water table and the stage in adjacent streams. The diel fluctuations of water levels change head gradients throughout the day, causing specific discharge through near‐stream sediment to fluctuate at the same time scale. In a previous study, we showed that specific discharge controls the residence time of groundwater in streambed sediment that, in turn, exerted the primary control on removal from groundwater passing through the streambed. In this study, we examine the magnitude of diel specific discharge patterns through the streambed driven by ET in the riparian zone with a transient numerical saturated–unsaturated groundwater flow model. On the basis of a first‐order kinetic model for removal, we predicted diel fluctuations in stream concentrations. Model results indicated that ET drove a diel pattern in specific discharge through the streambed and riparian zone (the removal zones). Because specific discharge is inversely proportional to groundwater travel time through the removal zones and travel time determines the extent of removal, diel changes in ET can result in a diel pattern in concentration in the stream. The model predictions generally matched observations made during summertime base‐flow conditions in a small coastal plain stream in Virginia. A more complicated pattern was observed following a seasonal drawdown period, where source components to the stream changed during the receding limb of the hydrograph and resulted in diel fluctuations being superimposed over a multi‐day trend in concentrations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The present study deals with the application of the hierarchical cluster analysis and non‐parametric tests in order to interpret the Gdańsk Beltway impact range. The data set represents concentration values for major inorganic ions (Na+, NH, K+, Mg2+, Ca2+, F, Cl, NO, and SO) as well as electrolytic conductivity and pH measured in various water samples [precipitation, throughfall water, road runoff, and surface water (drainage ditches, surface water reservoirs, and spring water)] collected in the vicinity of the beltway. Several similarity groups were discovered both in the objects and in the variables modes according to the water sample. In the majority of cases clear anthropogenic (fertilizers usage and transport, road salting in winter) and semi‐natural (sea salt aerosols, erosion of construction materials) impacts were discovered. Spatial variation was discovered for road runoff samples and samples collected from surface water reservoirs and springs. Surprisingly no clear seasonal variability was discovered for precipitation chemistry, while some evidences for existing of summer and winter specific chemical profile was discovered for road runoff samples. In general, limited range of the Gdańsk Beltway impact was proven.  相似文献   

9.
The nonlinearity of the seismic amplitude‐variation‐with‐offset response is investigated with physical modelling data. Nonlinearity in amplitude‐variation‐with‐offset becomes important in the presence of large relative changes in acoustic and elastic medium properties. A procedure for pre‐processing physical modelling reflection data is enacted on the reflection from a water‐plexiglas boundary. The resulting picked and processed amplitudes are compared with the exact solutions of the plane‐wave Zoeppritz equations, as well as approximations that are first, second, and third order in , , and . In the low angle range of 0°–20°, the third‐order plane‐wave approximation is sufficient to capture the nonlinearity of the amplitude‐variation‐with‐offset response of a liquid‐solid boundary with , , and ρ contrasts of 1485–2745 m/s, 0–1380 m/s, and 1.00–1.19 gm/cc respectively, to an accuracy value of roughly 1%. This is in contrast to the linear Aki–Richards approximation, which is in error by as much as 25% in the same angle range. Even‐order nonlinear corrective terms are observed to be primarily involved in correcting the angle dependence of , whereas the odd‐order nonlinear terms are involved in determining the absolute amplitude‐variation‐with‐offset magnitudes.  相似文献   

10.
Groundwater is a major source of water supply for domestic and irrigation uses in semiarid, remote but rapidly developing Kilasaifullah district part of Zhob River Basin, located at Pakistan–Afghanistan Border. Zhob River is among few major rivers of perennial nature in Balochistan, which flows from WSW to ENE and falls in Gomal River, a tributary of Indus River. Keeping in view the important geopolitical position and rapid development of the region, this study is primarily focused on groundwater chemistry for contamination sources as well as agriculture development. Water samples from open and tube wells are analyzed and calculated for electrical conductivity (EC), total dissolved solids (TDS), turbidity, pH, K+, Na+, Ca2+, Mg2+, HCO, Cl?, NO, SO, PO, sodium percent (Na%), sodium adsorption ratio (SAR), Kelly's index (KI), and heavy metals (Fe, Cu, Cr, Zn, Pb, and Mn). On the basis of the chemical constituents two zones within the study area are identified and possible causes of the contaminants are pointed out. Two recharge areas were responsible for the different chemical results in groundwater, e.g., zone A was recharged from NNW saline geological formations (Nisai, Khojak, Multana, Bostan formations, and Muslim Bagh ophiolites), which are concentrated with high sodium and chloride. On the other hand Zone B was sourced from SSW from carbonate rich rocks (Alozai, Loralai, Parh formations, and Muslim Bagh ophiolites). The groundwater is classified as C2–S1, C3–S1, C3–S2, C4–S2 on the basis of EC and SAR values which indicate that most of the water of both zones can be used for irrigation safely except the samples plotted in C3–S2 and C4–S2 categories which could be dangerous for soil and crops. Groundwater samples are plotted in good to permissible limits with some samples excellent to good and few samples belong to doubtful category based on sodium percent. Groundwater of zone A is unsuitable for irrigation use due to higher values of KI (more than one) but water of zone B are good for irrigation based on KI. In general, water of both zones is suitable for irrigation but care should be taken during the selection of crops which are sensitive to alkalinity or sodium hazards particularly in zone A.  相似文献   

11.
Source apportionment of particulate matter <10 µm in diameter (PM10), having considerable impacts on human health and the environment, is of high priority in air quality management. The present study, therefore, aimed at identifying the potential sources of PM10 in an arid area of Ahvaz located in southwest of Iran. For this purpose, we collected 24‐h PM10 samples by a high volume air sampler. The samples were then analyzed for their elemental (Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Se, Si, Sn, Sr, Li, Ti, V, Zn, Mo, and Sb) and ionic (NH, Cl?, NO, and SO) components using inductively coupled plasma optical emission spectrometry and ion chromatography instruments, respectively. Eight factors were identified by positive matrix factorization: crustal dust (41.5%), road dust (5.5%), motor vehicles (11.5%), marine aerosol (8.0%), secondary aerosol (9.5%), metallurgical plants (6.0%), petrochemical industries and fossil fuel combustion (13.0%), and vegetative burning (5.0%). Result of this study suggested that the natural sources contribute most to PM10 particles in the area, followed closely by the anthropogenic sources.  相似文献   

12.
Although changes in rainfall characteristics have been noted across the world, few studies have reported those in mountainous areas. This study was undertaken to clarify spatial and temporal variations in rainfall characteristics such as annual rainfall amount (Pr), mean daily rainfall intensity (η), and ratio of rain days (λ) in mountainous and lowland areas in Taiwan. To this aim, we examined spatial and year‐to‐year variations and marginal long‐term trends in Pr, η, and λ, based on rainfall data from 120 stations during the period 1978–2008. The period mean rainfall () at the lowland stations had strong relationships with the period mean daily rainfall intensity () and the period mean ratio of rain days () during those 31 years. Meanwhile, was only strongly related to at mountainous stations, indicating that influences on spatial variations in were different between lowland and mountainous stations. Year‐to‐year variations in Pr at each station were primarily determined from the variation in η at most stations for both lowland and mountainous stations. Long‐term trend analysis showed that Pr and η increased significantly at 10% and 31% of the total 120 stations, respectively, and λ decreased significantly at 6% of the total. The increases in Pr were mostly accompanied by increases in η. Although stations with significant η increases were slightly biased toward the western lowland area, increases or decreases in Pr and λ were not common. These results contribute to understanding the impacts of possible climate changes on terrestrial hydrological cycles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The present investigation aims to optimize dose and pattern of distillery effluent for sugarcane irrigation. The postmethanated distillery effluent (PMDE) was recorded to have significant amount of micro‐ (Na, Zn, Fe) and macro‐ (Ca, Mg, N‐NO3, P, K, S–SO) nutrients and so was utilized for sugarcane irrigation. Lysimetric studies were conducted to assess the impact of PMDE on sugarcane productivity with different concentrations (50 and 75%) and irrigation patterns (intermittent and pre‐sowing). The intermittent pattern of ferti‐irrigation with 50 and 75% effluent dose for sugarcane crop was found to enhance the growth and quality parameters of crop without impairing the groundwater quality. Results were more pronounced with 75% intermittent irrigation as the percent increase with respect to control for plant length, cane girth, cane weight, number of internodes per cane, dry matter accumulation, juice extraction, sucrose content, and available sugar were 28.0, 42.5, 14.6, 40.2, 54.4, 18.9, 44.9, 57.9, and 50.0%, respectively. It is suggested that PMDE can be used as an alternative of fresh water irrigation and also as a fertilizer for sugarcane, provided that the effluent quality and sugarcane quality is continuously monitored to avoid any contamination.  相似文献   

14.
D. Markovic  M. Koch 《水文研究》2015,29(7):1806-1816
Hydrological processes commonly exhibit long‐term persistence, also known as the ‘Hurst phenomenon’. Here, we examine long‐term precipitation and streamflow time series from the Elbe River Basin to quantify differences in the spectral properties and in the Hurst parameter estimates () of the individual hydrological cycle components. Precipitation‐runoff modelling is performed for the Elbe River sub‐catchment Striegis using the Soil and Water Assessment Tool (SWAT). For 38 daily 50 years long streamflow time series from the Elbe River Basin, baseflow separation and spectral analysis is performed. The results show a spectral shift towards low‐frequency scales (>2 years) from precipitation to baseflow, with a parallel increase of from 0.52 (precipitation) to 0.65 (baseflow). The SWAT model is able to reproduce both, the main low‐frequency mode (≈7 yr.) and the (0.62) of the observed Striegis River flow time series. The baseflow appears to be the main component which shapes the low‐frequency response and of streamflow in the Elbe River Basin to the input precipitation. This conclusion is further confirmed through PMWIN‐MODFLOW groundwater modelling of a hypothetic phreatic stream‐connected aquifer system that consists of various soils (sand, loamy sand and silt). A power shift towards lower frequencies and an increase of for the hydraulic heads is obtained, as the aquifer's lateral dimensions increase and its hydraulic conductivity decreases. The average of the groundwater heads is 0.80, 0.90 and 1.0 for sand, loamy sand and silt aquifers, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Quantifying biogeochemical cycles of nitrogen (N) and the associated fluxes to surface waters remains challenging, given the need to deal with spatial and temporal variability and to characterize complex and heterogeneous landscapes. We focused our study on catchments S14 and S15 located in the Adirondack Mountains of New York, USA, which have similar topographic and hydrologic characteristics but contrasting stream nitrate ( ) concentrations. We characterized the mechanisms by which reaches the streams during hydrological events in these catchments, aiming to reconcile our field data with our conceptual model of factors that regulate nutrient exports from forested catchments. Combined hydrometric, chemical and isotopic (δ ) data showed that the relative contributions of both soil and ground water sources were similar between the two catchments. Temporal patterns of stream chemistry were markedly different between S14 and S15, however, because the water sources in the two catchments have different solute concentrations. During late summer/fall, the largest source of in S14 was till groundwater, whereas shallow soil was the largest source in S15. concentrations in surface water decreased in S14, whereas they increased in S15 because an increasing proportion of stream flow was derived from shallow soil sources. During snowmelt, the largest sources of were in the near‐surface soil in both catchments. Concentrations of increased as stream discharge increased and usually peaked before peak discharge, when shallow soil water sources made the largest contribution to stream discharge. The timing of peaks in stream concentrations was affected by antecedent moisture conditions. By elucidating the factors that affect sources and transport of N, including differences in the soil nutrient cycling and hydrological characteristics of S14 and S15, this study contributes to the overall conceptualization of release from temperate forested catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This study examined ${\rm NH}_{{\rm 4}}^{{\rm + }} $ , ${\rm PO}_{{\rm 4}}^{{\rm 3}- } $ recovery and the concentration of residual ions from anaerobic effluent of the potato processing industry through magnesium ammonium phosphate (MAP) precipitation using a Box–Behnken design. The regression model was statistically significant in terms of ${\rm NH}_{{\rm 4}}^{{\rm + }} $ and ${\rm PO}_{{\rm 4}}^{{\rm 3}- } $ removal efficiency and residual ion concentrations. Optimum ${\rm NH}_{{\rm 4}}^{{\rm + }} $ and ${\rm PO}_{{\rm 4}}^{{\rm 3}- } $ removal was obtained at pH 9.50 and at Mg2+/${\rm NH}_{{\rm 4}}^{{\rm + }} $ /${\rm PO}_{{\rm 4}}^{{\rm 3}- } $ molar ratio of 1.8:1:1.8. Under these conditions, Mg, Ca, K, Fe, and Cl concentrations required for plant growth significantly decreased with MAP precipitation, which was supported by EDX analysis of dry MAP precipitate. The fertilizer effect of MAP on the growth of corn and tomato plants was compared with chemical fertilizers through pot trials. Nutrient element uptake levels of plants were examined in different fertilizer sources. While Mg, Fe, Cu, Mn, and Zn nutrient element uptake levels were sufficient in MAP pots, Ca uptake exceeded sufficient level. Average levels of N, P, K, Mg, Cu, and Mn of corn plant were higher in MAP than other pots. The average N, P, and Mg levels of tomato plant in MAP pots were higher than other pots. N/K ratio, which is important in tomato plants, was better optimized in MAP pots. Only Ni, Cr, and Pb heavy metals were found in plants.  相似文献   

17.
The impact assessment of molasses‐based distillery‐effluent irrigation on groundwater quality around village Gajraula in the district of Jyotiba Phule Nagar, Uttar Pradesh, India was studied by sampling groundwater on monthly intervals consecutively for summer, winter and monsoon seasons during 2006–2007 and water quality parameters, viz. pH, electrical conductivity (EC), chloride (Cl?), sulphate (SO), nitrate (NO), chemical oxygen demand (COD), total solids (TS), total dissolved solids (TDS), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), zinc (Zn2+), iron (Fe3+), and total coliforms (TC) were monitored. Results depicted that the values of all parameters decreased with increasing depth of water table. Sulphate, nitrate and potassium contents were maximal in agricultural site during monsoon while EC, Cl?, TS, TDS, Na+, Ca2+, Mg2+, Zn, and Fe were maximal in industrial sites during summer. Groundwater samples of residential site harboured maximum coliforms especially during monsoon, highlighting threat to groundwater. Significant positive correlation matrix between coliforms with nitrate, sulphate and potassium ions explained their survival on these nutrients. To overcome this, important measures emphasizing improvement in effluent treatment technology matching site‐specific characteristics are recommended for eco‐friendly ferti‐irrigation.  相似文献   

18.
A study was performed in two submerged, pilot‐scale biofilm bioreactors operated under different conditions to determine the relationship between the operating parameters and H2S emission. H2S was always detected in the exhaust air at concentrations varying from 1 to 353 ppmv. The specific aeration rate was the most influencing parameter, with As < 30 kg COD (dissolved oxygen concentrations <4 mg L?1) increasing noticeably the H2S production. The periodical removal of the accumulated sludge reduced H2S emissions by ~14%.  相似文献   

19.
Recent studies of soil loss by the integrated action of raindrop impact and wind transport have demonstrated the significance of this mechanism. This paper presents data obtained during wind‐tunnel experiments examining the ‘Raindrop Detachment and Wind‐driven Transport’ (RD‐WDT) process to investigate average sand particle trajectory and the spatial extent at which the process operates. In the experimental design, at the same time as the horizontal wind velocities of 6·4, 10, and 12 m s–1 passed through the tunnel, rainfall was simulated falling on very well sorted dune sand. The aspect and slope of the sand bed was varied to reproduce both windward (Ww) and leeward (Lw) slopes of 4º and 9º with respect to the prevailing wind direction. The average sand particle trajectories by the RD‐WDT process ( ) were estimated by a mass‐distribution function, which was integrated over a 7‐m uniform slope segment. The results showed that depended statistically upon the wind shear velocity (u*), and the effect of the slope gradient (θ) was insignificant on . This was different from that of the windless rain process ( ), ‘Raindrop Detachment and Splash‐driven Transport’ (RD‐ST), the spatial range of which relies strongly on θ. Additionally, was approximately 2·27 ± 2·2 times greater than the average path of a typical saltating sand particle of the rainless wind ( ), ‘Wind Erosion Saltation Transport’ (WE‐ST). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy‐calix[4]arene ( 3 ) has been prepared by the treatment of calix[4]arene with a secondary amine (4‐benzylpiperidine) and formaldehyde by means of Mannich reaction. The prepared Mannich base ( 3 ) has been grafted onto [3‐(2,3‐epoxypropoxy)‐propyl]‐trimethoxysilane‐modified Fe3O4 magnetite nanoparticles (EPPTMS‐MN) in order to obtain 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy calix[4]arene‐grafted EPPTMS‐MN (BP‐calix[4]arene‐grafted Fe3O4). All new compounds were characterized by a combination of FTIR and 1H‐NMR analyses. The morphology of the magnetic nanoparticles was examined by transmission electron microscopy. Moreover, the studies regarding the removal of arsenate and dichromate ions from the aqueous solutions were also carried out by using 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy‐calix[4]arene in liquid–liquid extraction and BP‐calix[4]arene‐grafted Fe3O4 ( 4 ) in solid–liquid extraction experiments. The extraction results indicated that 3 is protonated at proton‐switchable binding sites in acidic conditions. Hence, facilitating binding of arsenate and dichromate is resulted from both electrostatic interactions and hydrogen bonding. To understand the selectivity of 3 , the retention of dichromate anions in the presence of Cl, NO, and SO anions at pH 1.5 was also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号