首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Dynamic interaction between river morphodynamics and vegetation affects river channel patterns and populations of riparian species. A range of numerical models exists to investigate the interaction between vegetation and morphodynamics. However, many of these models oversimplify either the morphodynamics or the vegetation dynamics, which hampers the development of predictive models for river management. We have developed a model coupling advanced morphodynamics and dynamic vegetation, which is innovative because it includes dynamic ecological processes and progressing vegetation characteristics as opposed to commonly used static vegetation without growth and mortality. Our objective is to understand and quantify the effects of vegetation‐type dependent settling, growth and mortality on the river pattern and morphodynamics of a meandering river. We compared several dynamic vegetation scenarios with different functional trait sets to reference scenarios without vegetation and with static vegetation without growth and mortality. We find distinct differences in morphodynamics and river morphology. The default dynamic vegetation scenario, based on two Salicaceae species, shows an active meandering behaviour, while the static vegetation scenario develops into a static, vegetation‐dominated state. The diverse vegetation patterns in the dynamic scenario reduce lateral migration, increase meander migration rate and create a smoother floodplain compared to the static scenario. Dynamic vegetation results in typical vegetation patterns, vegetation age distribution and river patterns as observed in the field. We show a quantitative interaction between vegetation and morphodynamics, where increasing vegetation cover decreases sediment transport rates. Furthermore, differences in vegetation colonization, density and survival create distinct patterns in river morphology, showing that vegetation properties and dynamics drive the formation of different river morphologies. Our model demonstrates the high sensitivity of channel morphodynamics to various species traits, an understanding which is required for floodplain and stream restoration and more realistic modelling of long‐term river development. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Artificially straight river channels tend to be unstable, and ultimately develop into river meanders through bank erosion and point‐bar deposition. In this paper account is taken of the effects of riparian and floodplain vegetation on bank strength, floodplain flow resistance, shear stress partitioning, and bedload transport. This is incorporated into an existing 2D hydrodynamic‐morphological model. By applying the new model to an initially straight and single‐threaded channel, the way that its planform and cross‐sectional geometry evolve for different hydraulic and floodplain vegetation conditions is demonstrated. The results show the formation and upstream migration of gravel bars, confluence scouring and the development of meandering and braiding channel patterns. In cases where the channel becomes unstable, the instability grows out of bar formation. The resulting braiding patterns are similar to analytical results. The formation of a transition configuration requires a strong influence from vegetation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A modelling framework for the quick estimate of flood inundation and the resultant damages is developed in this paper. The model, called the flood economic impact analysis system (FEIAS), can be applied to a river reach of any hydrogeological river basin. For the development of the integrated modelling framework, three models were employed: (1) a modelling scheme based on the Hydrological Simulation Program FORTRAN model that was developed for any geomorphological river basin, (2) a river flow/floodplain model, and (3) a flood loss estimation model. The first sub‐model of the flood economic impact analysis system simulates the hydrological processes for extended periods of time, and its output is used as input to a second component, the river/floodplain model. The hydraulic model MIKE 11 (quasi‐2D) is the river/floodplain model employed in this study. The simulated flood parameters from the hydraulic model MIKE 11 (quasi‐2D) are passed, at the end of each time step, to a third component, the flood loss model for the estimation of flood damage. In the present work, emphasis was given to the seasonal variation of Manning's coefficient (n), which is an important parameter for the determination of the flood inundation in hydraulic modelling. High values of Manning's coefficient for a channel indicate high flow resistance. The riparian vegetation can have a large impact on channel resistance. The modelling framework developed in this paper was used to investigate the role of riparian vegetation in reducing flood damage. Moreover, it was used to investigate the influence of cutting riparian vegetation scenarios on the flow characteristics. The proposed framework was applied to the downstream part of the Koiliaris River basin in Crete, Greece, and was tested and validated with historical data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Fluvial biomorphodynamics in actively meandering rivers entail interactions between hydromorphodynamics and pioneering tree species that have eco-engineering effects. Here we study spatiotemporal patterns of vegetation patches smaller than 150 m2 in a 4 km reach of the river Allier in France in order to unravel causes for tree persistence and mortality and identify spatial trends across the river valley. To this end we analysed aerial photographs by object-based image analysis over a period of 56 years and tracked individual patches through time. Furthermore the cover and surface age of the study reach were classified. The large-scale shifts of channels, bars and vegetation are consistent with the meandering process and chute cutoffs. However, the spatiotemporal patterns of the vegetation patches are surprising in that they are ubiquitous and have ages up to decades on the highly dynamic meander belt, but hardly expand into larger vegetation patches. Patches disappear exponentially as a function of their age, and faster so in the last decades. Causes are amalgamation into the riparian forest flanking the meander belt and mortality likely due to desiccation or erosion. Patches have a higher probability of survival when further away from the active channel and closer to high vegetation patches and valley boundary. The window of opportunity of vegetation settlement widens towards the valley boundaries and in floodplain lows of former channels and chutes. These results imply a gradual cross-valley gradient of riparian vegetation settling, survival and succession. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

6.
Climate change is expected to alter temperatures and precipitation patterns, affecting river flows and hence riparian corridors. In this context we have explored the potential evolution of riparian corridors under a dryness gradient of flow regimes associated with climate change in a Mediterranean river. We have applied an advanced bio‐hydromorphodynamic model incorporating interactions between hydro‐morphodynamics and vegetation. Five scenarios, representing drier conditions and more extreme events, and an additional reference scenario without climate change, have been designed and extended until the year 2100. The vegetation model assesses colonization, growth and mortality of Salicaceae species. We analysed the lower course of the Curueño River, a free flowing gravel bed river (NW Spain), as a representative case study of the Mediterranean region. Modelling results reveal that climate change will affect both channel morphology and riparian vegetation in terms of cover, age distribution and mortality. Reciprocal interactions between flow conditions and riparian species as bio‐engineers are predicted to promote channel narrowing, which becomes more pronounced as dryness increases. Reductions in seedling cover and increases in sapling and mature forest cover are predicted for all climate change scenarios compared with the reference scenario, and the suitable area for vegetation development declines and shifts towards lower floodplain elevations. Climate change also leads to younger vegetation becoming more subject to uprooting and flooding. The predicted reduction in suitable establishment areas and the narrowing of vegetated belts threatens the persistence of the current riparian community. This study highlights the usefulness of advanced bio‐hydromorphodynamic modelling for assessing climate change effects on fluvial landscapes. It also illustrates the need to consider climate change in river management to identify appropriate adaptation measures for riparian ecosystems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
1 INTRODUCTION The construction of more than 75,000 dams and reservoirs on rivers in the United States (Graf, 1999) has resulted in alteration of the hydrology, geometry, and sediment flow in many of the river channels downstream of dams. Additionally, hydrologic and geomorphic impacts lead to changes in the physical habitat affecting both the flora and fauna of the riparian and aquatic environments. Legislation for protection of endangered species as well as heightened interest in ma…  相似文献   

8.
We quantified how rates of stream channel migration in a montane meadow vary as a function of the riparian vegetation community. The South Fork of the Kern River at Monache Meadow, located in California's southern Sierra Nevada range, supports two distinct types of vegetation: a dry meadow community dominated by sagebrush and non‐native grasses (xeric scrub and meadow), and a wet meadow community dominated by rushes and sedges (hydric graminoids). We measured rates of lateral stream migration for dry versus wet meadow reaches from aerial photographs spanning a 40‐year period (1955–1995). While stream migration rates averaged only 0·24 ± 0·02 m a?1 in the wet meadow, the dry meadow channel migrated an average of 1·4 ± 0·3 m a?1. We used a linear model of meander migration to calculate coefficients that characterize bank migration potential, or bank erodibility, independent of channel curvature. These calculations demonstrate that, at Monache Meadow, banks without wet meadow vegetation are roughly ten times more susceptible to erosion than banks with wet meadow vegetation. Where stream bank heights consistently exceed 1 m, low water availability creates riparian habitats dominated by dry meadow vegetation. Thus, channel incision may reduce bank stability not only by increasing bank height, but also by converting banks from wet meadow to dry meadow vegetation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Active meandering rivers are capable of reworking and removing large quantities of valuable land. Therefore, understanding the characteristics of meandering rivers and predicting future meander behaviour can be of great value for local authorities. In this study, we apply a topographic steering meander model to the Geul River (southern Netherlands), using field data to calibrate the model. The present channel characteristics of the Geul River were mapped in the field. Cut‐banks were classified as erosive, unstable or stable. The model outcomes were compared with these field data. Several model runs were carried out, using different sets of parameter values. After studying the results and using the field data, we introduced the concept of a variable channel width in the simulation model. In reality, the river has different channel widths varying from 8 to more than 15 m. These widths are a linear function of local curvature. The model runs using a variable channel width show that the model is capable of predicting locations of lateral migration in conformity with observed active lateral migration and erosive banks. With both models, the sediment reworking time of the floodplain can be calculated. Floodplain reworking times of 200–300 years were calculated. In combination with the lateral migration rate, this reworking time is an important element in catchment sediment budget calculations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
After more than 300 years of river management, scientific knowledge of European river systems has evolved with limited empirical knowledge of truly natural systems. In particular, little is known of the mechanisms supporting the evolution and maintenance of islands and secondary channels. The dynamic, gravel‐bed Fiume Tagliamento, Italy, provides an opportunity to acquire baseline data from a river where the level of direct engineering intervention along the main stem is remarkably small. Against a background of a strong alpine to mediterranean climatic and hydrological gradient, this paper explores relationships between topography, sediment and vegetation at eight sites along the active zone of the Tagliamento. A conceptual model of island development is proposed which integrates the interactions between large woody debris and vegetation, geomorphic features, sediment calibre and hydrological regime. Islands may develop on bare gravel sites or be dissected from the floodplain by channel avulsion. Depositional and erosional processes result in different island types and developmental stages. Differences in the apparent trajectories of island development are identified for each of the eight study sites along the river. The management implications of the model and associated observations of the role of riparian vegetation in island development are considered. In particular, the potential impacts of woody debris removal, riparian tree management, regulation of river flow and sediment regimes, and changes in riparian tree species' distribution are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Measurements from a fixed‐bed, Froude‐scaled hydraulic model of a stream in northeastern Vermont demonstrate the importance of forested riparian vegetation effects on near‐bank turbulence during overbank flows. Sections of the prototype stream, a tributary to Sleepers River, have increased in channel width within the last 40 years in response to passive reforestation of its riparian zone. Previous research found that reaches of small streams with forested riparian zones are commonly wider than adjacent reaches with non‐forested, or grassy, vegetation; however, driving mechanisms for this morphologic difference are not fully explained. Flume experiments were performed with a 1:5 scale, simplified model of half a channel and its floodplain, mimicking the typical non‐forested channel size. Two types of riparian vegetation were placed on the constructed floodplain: non‐forested, with synthetic grass carpeting; and forested, where rigid, randomly distributed, wooden dowels were added. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 41 locations within the channel and floodplain at near‐bed and 0·6‐depth elevations. Observations of velocity components and calculations of turbulent kinetic energy (TKE), Reynolds shear stress and boundary shear stress showed significant differences between forested and non‐forested runs. Generally, forested runs exhibited a narrow band of high turbulence between the floodplain and main channel, where TKE was roughly two times greater than TKE in non‐forested runs. Compared to non‐forested runs, the hydraulic characteristics of forested runs appear to create an environment with higher erosion potential. Given that sediment entrainment and transport can be amplified in flows with high turbulence intensity and given that mature forested stream reaches are wider than comparable non‐forested reaches, our results demonstrated a possible driving mechanism for channel widening during overbank flow events in stream reaches with recently reforested riparian zones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Slow earth sliding is pervasive along the concave side of Red River meanders that impinge on Lake Agassiz glaciolacustrine deposits. These failures form elongated, low‐angled (c. 6 to 10°) landslide zones along the valleysides. Silty overbank deposits that accumulated during the 1999 spring freshet extend continuously along the landslide zones over hundreds of metres and aggraded the lower slopes over a distance 50 to 80 m from the channel margin. The aggradation is not obviously related to meander curvature or location within a meander. Along seven slope profiles surveyed in 1999 near Letellier, Manitoba, the deposits locally are up to 21 cm thick and generally thin with increasing distance from, and height above, the river. Local deposit thickness relates to distance from the channel, duration of inundation of the landslide surface, mesotopography, and variations in vegetation cover. Immediately adjacent to the river, accumulated overbank deposits are up to 4 m thick. The 1999 overbank deposits also were present along the moderately sloped (c. 23 to 27°) concave banks eroding into the floodplain, but the deposits are thinner (locally up to c. 7 cm thick) and cover a narrower area (10 to 30 m wide) than the deposits within the landslide zones. Concave overbank deposition is part of a sediment reworking process that consists of overbank aggradation on the landslide zones, subsequent gradual downslope displacement from earth sliding, and eventually reworking by the river at the toe of the landslide. The presence of the deposits dampens the outward migration of the meanders and contributes to a low rate of contemporary lateral channel migration. Concave overbank sedimentation occurs along most Red River meanders between at least Emerson and St. Adolphe, Manitoba. © Her Majesty the Queen in right of Canada.  相似文献   

15.
A sustained dynamic inflow perturbation and bar–floodplain conversion are considered crucial to dynamic meandering. Past experiments, one-dimensional modelling and linear theory have demonstrated that the initiation and persistence of dynamic meandering require a periodic transverse motion of the inflow. However, it remains unknown whether the period of the inflow perturbation affects self-formed meander dynamics. Here, we numerically study the effect of the inflow perturbation period on the development and meander dynamics of a chute-cutoff-dominated river, which requires two-dimensional modelling with vegetation forming floodplain on bars. We extended the morphodynamic model Nays2D with growth and mortality rules of vegetation to allow for meandering. We tested the effect of a transversely migrating inflow boundary by varying the perturbation period between runs over an order of magnitude around typical modelled meander periods. Following the cutoff cascade after initial meander formation from a straight channel, all runs with sufficient vegetation show series of growing meanders terminated by chute cutoffs. This generates an intricate channel belt topography with point bar complexes truncated by chutes, oxbow lakes, and scroll-bar-related vegetation age patterns. The sinuosity, braiding index and meander period, which emerge from the inherent biomorphological feedback loops, are unrelated to the inflow perturbation period, although the spin-up to dynamic equilibrium takes a longer time and distance for weak and absent inflow perturbations. This explains why, in previous experimental studies, dynamic meandering was only accomplished with a sustained upstream perturbation in flumes that were short relative to the meander wavelength. Our modelling of self-formed meander patterns is evidence that scroll-bar-dominated and chute-cutoff-dominated meanders develop from downstream convecting instabilities. This insight extends to many more fluvial, estuarine and coastal systems in morphological models and experiments, which require sustained dynamic perturbations to form complex patterns and develop natural dynamics. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

16.
In the last few centuries humans have modified rivers, and rivers have responded with noticeable changes in sedimentary dynamics. The objective of this study is to assess these responses of the sedimentary dynamics. Therefore, we calculated a sediment budget for eroded and deposited sediment volumes in a ~12‐km long floodplain section of the largest semi‐natural embanked but still dynamic lower Rhine distributary, for ~50‐years time slices between ad 1631 and present. This is the period during which embanked floodplains were formed by downstream migration of meander bends between confining dykes. Our sediment budget involves a detailed reconstruction of vertical and lateral accretion rates and erosion rates of floodplain sediment. To do so, we developed a series of historical geomorphological maps, and lithogenetic cross‐sections. Based on the maps and cross‐sections, we divided the floodplain into building blocks representing channel bed and overbank sediment bodies. Chronostratigraphy within the blocks was estimated by interpretation of heavy metal profiles and from optically stimulated luminescence (OSL) dating results. Sediment budgets were hence calculated as a change of volume of each building block between time steps. The amount of lateral accretion initially increased, as a result of island and sand bar formation following embankment. From the eighteenth century onwards, there was a decrease of lateral processes in time, which is a result of straightening of the river by human activities, and a reduction of water and sediment supply due to the construction of a new upstream bifurcation. With straightening of the river, the floodplain area grew. Artificial fixation of the channel banks after ad 1872 prevented lateral activity. From then on, overbank deposition became the main process, leading to a continuous increase of floodplain elevation, and inherent decrease of flooding frequency and sediment accumulation rate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Channel avulsion occurred on the Thomson River in Victoria, Australia, in 1952 along a 12 km length of the valley. A comparison of the old and new channels reveals considerable differences in channel characteristics. The old channel was perched above the floodplain on an alluvial ridge such that when bankfull capacity was exceeded, floodwaters concentrated on the lowest part of the floodplain some distance away. This is where the new channel formed. It is an incised channel with larger capacity and longer meander wavelength than the old channel and is also shorter and steeper. The new channel is subject to larger floodflows and a more variable flood regime than the old course because of the differences in the channel/floodplain relationship and channel capacity. The resulting concentration of stream power along the new course is responsible for the contrast in channel characteristics and for the more rapid meander migration. This example shows that river metamorphosis can occur without major environmental changes. Measures of channel geometry such as gradient, sinuosity, and meander wavelength therefore cannot be used in palaeohydrological work to infer climatic or other environmental changes without independent supporting evidence. Differences in channel geometry can arise simply from changes in the relationship between the channel and its loodplain.  相似文献   

18.
Dryland rivers are recognized for limited research and high uncertainties with respect to understanding biogeomorphic processes. This study uses aerial photography, sediment analysis, palynology indicators and hydraulic modelling to investigate the role of riparian vegetation in influencing the response of systems to disturbance, the trajectory of channel evolution and the potential for management. The study focuses on cleared and uncleared sites in the Yerritup catchment, along the south coast of Western Australia, that occur along a transect with a consistent stream gradient and landscape topographic setting. Downstream reaches show no gross botanical change, but gradual sediment deposition across the floodplain of up to 40 cm based on palynological and sedimentary indicators. Channel response in the cleared section by incision, widening and floodplain degradation began rapidly after land clearing, but is driven by large flood events. Degradation of riparian vegetation has significantly increased the sensitivity of the system. The cleared reaches have transformed from a low‐capacity channel, under‐adjusted to the prevailing flow regime, to the large present channel that is now over‐adjusted to the predominantly low to moderate seasonal (occasional flood) flow regime. Modelling of pre‐settlement erosive potential reveals that the entire system was naturally sensitive to change, and was primed to erode once riparian vegetation was removed. The trajectory of channel evolution and the role of riparian vegetation is examined in relation to undisturbed reaches in the system and an appreciation of the historical range of variability in geomorphic response. Analysis of the patterns of contemporary vegetation growth identify the potential to re‐establish vegetation where it is elevated from saline baseflow. However, the system is assessed as being close to a threshold where restoration is no longer possible and remediation options become more limited as eco‐hydraulic and hydrochemical changes continue. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The evolution of meander bends and formation of cutoffs, including a series of cutoffs developed simultaneously in a number of bends, have been investigated by many researchers. However, relatively little is known about factors that lead to the development of multiple cutoffs that are formed subsequently at one location. The present study aims to determine the influence of meander bend development on multiple chute cutoff formation in a single bend. The research is based on the sedimentary record of meander migration and cutoffs preserved in a lowland river floodplain (the lower Obra River, Poland). Analysis of changes in meander geometry was conducted to describe the influence of their migration on cutoff formation and in other rivers where multiple cutoffs occurred. The results showed that multiple cutoffs in the lower Obra River have occurred during the last 3000 years, owing to the interaction of upstream and downstream controls: migration of meander bends in opposing directions accompanied by an increase of flood frequency and sediment supply. The flow and sediment supply has been further altered since the nineteenth century due to anthropogenic impacts: an artificial cutoff of the downstream bend and elevation of channel levées. Similar mechanisms driving the formation of multiple cutoff have been found in other river courses, despite significantly higher energy of the compared rivers. Moreover, development of a confined‐shape bend (caused by artificial barrier or autogenic bend behaviour) may also favour the formation of multiple cutoffs. However, counter migration of meanders enhanced by increased flood frequency and sediment supply are primary triggers for such events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The Geul River, located in the south‐eastern part of The Netherlands, is a meandering river with a planform shape characterized by large loops consisting of multiple bends. We evaluate the effect(s) of groundwater flow on the shapes of meanders as a possible explanation for the multi‐bend loops, using a combined meandering–groundwater computer model. In the model seeping groundwater enhances bank erodibility. Based on the simulation results, we present a conceptual, generalized model for groundwater–meandering interaction, based on wavelength selection and fixation effects. Wavelength selection occurs because of the positive feedback between growing meander bends and groundwater flow patterns and velocities. The promoted wavelengths have the same spatial scale as the groundwater flow system in the aquifer underlying the floodplain. In the case of the Geul River these wavelengths are of the order of 100 m. Since groundwater flow velocities are largest close to the recharging hill‐slopes, the seepage‐enhanced bank erodibilities are at a maximum near the floodplain limits. At these locations the difference in erodibility between banks facing the floodplain and those facing the hill slopes is large, so it is difficult for the river to migrate away from the floodplain limits. This causes long stretches of the river to be aligned along the floodplain limits, which we term a fixation effect. This mechanism best explains the multi‐bend loops of the Geul River. The general interaction between groundwater flow and meandering is site specific since it depends on climatic, fluvial and hydrogeological parameters. The Geul is characterized by a wide floodplain and steep hill‐slopes, and it is underlain by coarse‐grained deposits with good aquifer properties, favoring an important groundwater system. Since this kind of river frequently occurs, our results could apply to many other river systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号