首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
Dissolved organic matter (DOM) is outwelled from highly productive salt marshes, but its sources and fates are unclear. To examine common salt marsh plants as sources of coastal DOM, two dominant salt marsh vascular plants Spartina alterniflora and Juncus roemarianus, and two major coastal seagrasses Syringodium filiforme and Halodule wrightii, were collected from a Florida salt marsh and studied using laboratory incubation experiments. We investigated the leaching dynamics of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), and chromophoric dissolved organic matter (CDOM) from these plants, in conjunction with our field investigations of the sources and outwelling of DOM from Florida salt marshes. The leaching of DOM and CDOM from the plants was a rapid process, and leaching rates were 65–288 µM/g dry weight/day for DOC and 3.8–16 µM/g dry weight/day for TDN from different plants in the bacteria-inhibited incubations. DOC was proportional to TDN in the leachates, but the quantity of C and N leached was dependent on the species and growth stage of the plants. At the end of the 25-day experiments, 5.4–23 % and 10–45 % of solid phase C and N were released into DOC and TDN pools, respectively. Bacteria played an important role during the leaching process. The majority of DOC and TDN leached from marsh plants and seagrasses was labile and highly biodegradable with 56–90 % of the leached DOC and 44–72 % of the leached TDN being decomposed at the end of the experiments. The fluorescence measurements of CDOM indicate that organic matter leached from marsh plants and seagrasses contained mainly protein-like DOM which was degraded rapidly by bacteria. Our study suggests that leaching of DOM from salt marsh plants and seagrasses provide not only major sources of DOC, TDN, and CDOM that affect many biogeochemical processes, but also as important food sources to microbial communities in the marsh and adjacent coastal waters.  相似文献   

2.
Suspended particulate organic matter (POM) in headwater streams is an important source of food and energy to stream food webs. In order to determine the effects of watershed land use on the sources and characteristics of POM, we compared the lipid composition of POM (fatty acid, aliphatic alcohol and sterol) from streams influenced by different types of watershed land use. Eight first-order streams discharging to the York River Estuary (Virginia, USA) were sampled during baseflow conditions bi-monthly from February to November 2009, including streams draining forest-dominated, pasture-dominated, cropland-dominated, and urban land-dominated watersheds. Allochthonous vs. autochthonous lipids showed that POM in most of these streams was dominated by allochthonous sources (59.5 ± 14.2 vs. 39.6 ± 14.5 % for aliphatic alcohols and 52.9 ± 11.5 vs. 34.1 ± 10.3 % for sterols). The relative abundance of allochthonous vs. autochthonous lipid inputs to POM varied as a function of land use type. POM in streams draining forest-dominated watersheds contained a higher proportion of allochthonous lipids and a lower proportion of autochthonous lipids than the streams influenced by human land use. The contribution of bacterial fatty acids differed significantly among sampling times (P = 0.003), but not among land use types (P = 0.547). Stepwise linear regression model selected nitrate and temperature as the best predictors of variation in bacterial inputs to POM. Proxies used to assess the nutritional value of POM potentially available to stream consumers included C:N ratios, and the concentrations of total long-chain polyunsaturated fatty acids, eicosapentaenoic acid, arachidonic acid, and cholesterol. None of these nutritional proxies differed among sampling months (P ≥ 0.171), but the proxies showed that the nutritional value of POM in forest streams was lower than in urban streams. Collectively, these findings suggest that human land use in upstream watersheds alters the source composition and nutritional value of stream POM, which not only impacts food quality for stream biota, but also potentially changes the characteristics of OM reaching downstream ecosystems.  相似文献   

3.
The seasonal and spatial changes in dissolved organic carbon (DOC) in Lake Kasumigaura, a shallow, eutrophic lake, were analyzed and the lability of DOC was tested by long-term incubations. There was a nearly 1 mgCl–1 downstream increase in refractory DOC in the lake; at the center it fluctuated little seasonally. The characteristic UV-absorbance: DOC ratios were determined for samples from the influent rivers (pedogenic: used interchangeably with allochthonous) and outdoor experimental ponds (autochthonous) during incubations. These ratios were then used to calculate the proportion of total measured lake water DOC in each of four components: pedogenic-refractory (PR), pedogenic-labile (PL), autochthonous-refractory (AR) and autochthonous-labile (AL). PR was uniform (around 1.5 mgCl–1) or diminished very slightly over time. AR increased from nearly zero at the station closest to an influent river to 1 mgCl–1 at the lake center. PL declined downstream from 0.3 mgCl–1 to zero. AL was virtually constant at 0.8 mgCl–1 except at the station closest to the influent river. The constancy of the UV-absorbance: DOC ratio during the biodegradation process was confirmed for Lake Kasumigaura; hence a two-component model (pedogenic-autochthonous) could be applied here without consideration of DOC lability. However, this assumption is not always met for other water bodies, and therefore it should be checked before applying a two-component model elsewhere.  相似文献   

4.
Spectroscopic techniques and extracellular enzyme activity measurements were combined with assessments of bacterial secondary production (BSP) to elucidate flood-pulse-linked differences in carbon (C) sources and related microbial processes in a river-floodplain system near Vienna (Austria). Surface connection with the main channel significantly influenced the quantity and quality of dissolved organic matter (DOM) in floodplain backwaters. The highest values of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were observed during the peak of the flood, when DOC increased from 1.36 to 4.37 mg l?1 and CDOM from 2.94 to 14.32 m?1. The flood introduced DOC which consisted of more allochthonously-derived, aromatic compounds. Bacterial enzymatic activity, as a proxy to track the response to changes in DOM, indicated elevated utilization of imported allochthonous material. Based on the enzyme measurements, new parameters were calculated: metabolic effort and enzymatic indices (EEA 1 and EEA 2). During connection, bacterial glucosidase and protease activity were dominant, whereas during disconnected phases a switch to lignin degradation (phenol oxidase) occurred. The enzymatic activity analysis revealed that flooding mobilized reactive DOM, which then supported bacterial metabolism. No significant differences in overall BSP between the two phases were detected, indicating that heterogeneous sources of C sufficiently support BSP. The study demonstrates that floods are important for delivering DOM, which, despite its allochthonous origin, is reactive and can be effectively utilized by aquatic bacteria in this river-floodplain systems. The presence of active floodplains, characterized by hydrological connectivity with the main channel, creates the opportunity to process allochthonous DOC. This has potential consequences for carbon flux, enhancing C sequestration and mineralization processes in this river-floodplain system.  相似文献   

5.
The fluorescent properties of dissolved organic matter (DOM) enable comparisons of humic‐like (H‐L) and fulvic‐like (F‐L) fluorescence intensities with dissolved organic carbon (DOC) in aquatic systems. The fluorescence‐DOC relationship differed in gradient, i.e. the fluorescence per gram of carbon, and in the strength of the correlation coefficient. We compare the fluorescence intensity of the F‐L and H‐L fractions and DOC of freshwater DOM in north Shropshire, England, featuring a river, wetland, spring, pond and sewage DOM sources. Correlations between fluorescence and DOC varied between sample sites. Wetland water samples for the F‐L peak gave the best correlation, r = 0·756; the lowest correlation was from final treated sewage effluent, r = 0·167. The relationship between fluorescence and DOC of commercially available International Humic Substances Society standards were also examined and they generally showed a lower fluorescence per gram of carbon for the F‐L peak than the natural samples, whereas peat wetland DOM gave a greater fluorescence per gram of carbon than river DOM. Here, we propose the strength of the fluorescence–DOC correlation to be a useful tool when discriminating sources of DOM in fresh water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The bioavailability of predegraded dissolved organic matter (DOM) from a humic-rich, boreal river to estuarine bacteria from the Baltic Sea was studied in 39-day bioassays. The river waters had been exposed to various degrees of bacterial degradation by storing them between 0 and 465 days in dark prior to the bioassay. The resulting predegraded DOM was inoculated with estuarine bacteria and the subsequent changes in DOM quantity and quality measured. During the incubations, dissolved organic carbon (DOC) and oxygen concentrations decreased, indicating heterotrophic activity. Coloured DOM was degraded less than DOC, indicating a selective utilization of DOM, and humic-like fluorescence components increased during the incubations. The amount of DOC degraded was not affected by the length of DOM predegradation. The percentage of bioavailable DOC (%BDOC) was higher in experiment units with added inorganic nitrogen and phosphorus than without addition (on average 13.5 % and 9.0, respectively), but had no effect on the degradation of fresh, non-predegraded, DOC (%BDOC 12.0 %). Bacterial growth efficiency (BGE) was highest (65 ± 2 %) in the units with fresh DOM, and lowest in units with predegraded DOM and no added inorganic nutrients (11 ± 4 %). The addition of inorganic nutrients increased the BGE of predegraded DOM units by an average of 28 ± 4 %. There was no significant effect on BGE by length of predegradation after the initial drop (<3 months). This study suggests that both the length of predegradation and the inorganic nutrient status in the receiving estuary has consequences to carbon cycling and will determine the amount of terrestrial-derived DOC being ultimately assimilated into marine food webs.  相似文献   

7.
Dissolved organic carbon (DOC) is one of the most abundant fractions of organic matter in aquatic systems and plays an important role in the dynamics of aquatic environments, controlling both the penetration and the underwater light radiation climate. DOC can be photodegraded by light, thus facilitating biodegradation, especially in regions where the incidence of solar radiation is high, such as higher altitudes and lower latitudes. This study quantified the photodegradation of dissolved organic material in a natural tropical lake surrounded by native forests (Brazilian Atlantic Forest) through two experiments: i) the first experiment exposed concentrated autochthonous, allochthonous, and lake water to in situ solar radiation; ii) this experiment also exposed the same organic material to artificial UV radiation in an incubator under controlled conditions. The quality and quantity of dissolved organic carbon were measured using indices based on carbon absorbance and fluorescence spectrum. In the in situ experiment, it was observed that the DOC degradation profile of the concentrated allochthonous and autochthonous organic material were distinct from each other in the absorbance indices, and the lake water mostly resembled the latter one. On the other hand, we did not see evidence of any significant difference among treatments in the laboratory experiment. An increase in the SR index and a concomitant decrease in the fluorescence of humic compounds and SUVA254 over time were observed. In both experiments, the amount of degraded organic material over time was low and some possible explanations are discussed.  相似文献   

8.
The radiocarbon age and biodegradability of dissolved organic matter (DOM) from a northern peat-dominated river system was studied and the effects of land-use were compared. Samples were obtained from streams and ditches comprising sub-catchments of the Kiiminki River, Northern Finland. Sample sites included areas of natural mire, areas subjected to moderate disturbance (ditching to enhance forestry), and areas subjected to serious land use change (agriculture and peat excavation). The study employed a 55 day bioassay that measured the biodegradation potential of surface-water DOM. We identified release of modern (mean 6–13 year old) DOM from natural sites, and material aged up to 1,553 years from disturbed sites. The proportion of biodegradable DOC ranged from 4.1 to 17.9 %, and bacterial DOC removal was modelled using twin-pool and reactivity-continuum (beta distribution) approaches. Bacterial growth efficiency ranged from 0.11 to 0.26 between areas of different land use, and these relatively low values reflect the humic-rich DOM released from boreal peatland. Despite the range of land-use types studied, including intensive peatland excavation areas, there was no detectable relationship between the biological lability of DOM and its radiocarbon age.  相似文献   

9.
Two adjacent bays in a large oligotrophic lake (Georgian Bay, Lake Huron) were compared to determine how the inputs from relatively pristine, but moderately humic, tributaries may influence phytoplankton, nutrients and system metabolism. Dissolved organic carbon (DOC) concentrations decreased from 4 to 5 gC m?3 at inner sites to 2 gC m?3 or less at outer sites. The concentration gradient from inner to outer was greater in the bay with a major tributary, and optical properties (intensity and slope of light absorption spectrum) showed there was a loss of material with allochthonous characteristics along the gradient. Chlorophyll a (Chl a) and total phosphorus (TP) were also higher at inner (2–4 mg Chl a m?3 and 8–12 mgP m?3, respectively) than outer sites (≤1 mg Chl a m?3 and 4–5 mgP m?3). Chl a and TP, as well as particulate nutrient ratios (C:P, C:N, N:P), indicated significant eutrophication at inner sites, especially in the bay with the tributary, and there was a strong positive Chl a-phosphorus relationship. The stable oxygen isotope ratio (18O:16O) of dissolved oxygen indicated greater influence of biological oxygen fluxes at inner sites (where ratios were 2–3 ppt below atmospheric equilibrium) than at outer sites (where ratios were within 0.5 ppt of equilibrium). Community photosynthesis:respiration ratios inferred from 18O:16O varied positively with Chl a and inorganic nutrients, but negatively with DOC. Altered loading of allochthonous organic matter can be expected under changing climate and development scenarios and will have significant influence on optical properties and system metabolism through changes in DOC in this coastal system. The effects will nonetheless be strongly modulated by any accompanying change in inorganic nutrients.  相似文献   

10.
张怡晅  庞锐  任源鑫  程丹东 《湖泊科学》2022,34(5):1550-1561
城市非点源污染向水生生态系统中输入大量的溶解有机物(DOM),对生态系统健康产生重要影响. 有色可溶性有机物(CDOM)是广泛分布于自然水体中的一类成分和结构复杂、含有多种高活性化学官能团的大分子聚合物,是DOM的重要组分,对水生生态系统健康、能量流动及生物地球化学循环有重要影响. 光化学反应和微生物代谢过程被认为是控制水体CDOM转化、降解和循环的主要影响因素. 然而,对城市化如何影响CDOM组成以及光化学和微生物如何相互作用影响城市水体CDOM动态的理解是不足的. 因此,为评估光化学过程和微生物代谢对不同城市水体CDOM降解与转化的贡献,解析不同城市水体CDOM光化学/微生物降解作用机理,本研究在英国伯明翰选择3类具有典型DOM来源的水体样本,通过实验室9 d受控培养实验,对比分析光化学以及微生物影响下CDOM来源和组成的变化. 结果表明:(1)城市河流由于接受上游污水排放及较短的水力滞留时间,含有丰富的芳香性碳,其CDOM光化学活性明显高于湖泊,光化学降解率为16.60%;(2)城市湖泊CDOM受人类活动影响,自生源类荧光成分富集,生物活性高,在微生物培养过程中CDOM增加了62.16%,而相较于城市湖泊,非城市湖泊由于接受周围景观土壤输入的大量腐殖质类CDOM,光照对其降解转化作用较为明显; (3)光化学过程促进了陆源CDOM中大分子类腐殖质物质降解成为生物活性高的小分子化合物,刺激微生物代谢生成类蛋白质类有机物; 以类蛋白质组分为主导的CDOM在光照过程中被转化为难降解状态,生物活性降低,CDOM微生物代谢过程被抑制. 研究成果为城市水体不同CDOM来源及活性差异特征研究提供了新的思路,有助于城市河流的可持续开放与管理.  相似文献   

11.
Elevated dissolved organic carbon (DOC) has been detected in groundwater beneath irrigated sugarcane on the Burdekin coastal plain of tropical northeast Australia. The maximum value of 82 mg/L is to our knowledge the highest DOC reported for groundwater beneath irrigated cropping systems. More than half of the groundwater sampled in January 2004 (n = 46) exhibited DOC concentrations greater than 30 mg/L. DOC was progressively lower in October 2004 and January 2005, with a total decrease greater than 90% indicating varying load(s) to the aquifer. It was hypothesized that the elevated DOC found in this groundwater system is sourced at or near the soil surface and supplied to the aquifer via vertical recharge following above average rainfall. Possible sources of DOC include organic‐rich sugar mill by‐products applied as fertilizer and/or sugarcane sap released during harvest. CFC‐12 vertical flow rates supported the hypothesis that elevated DOC (>40 mg/L) in the groundwater results from recharge events in which annual precipitation exceeds 1500 mm/year (average = 960 mm/year). Occurrence of elevated DOC concentrations, absence of electron acceptors (O2 and NO3) and both Fe2+ and Mn2+ greater than 1 mg/L in shallow groundwater suggest that the DOC compounds are chemically labile. The consequence of high concentrations of labile DOC may be positive (e.g., denitrification) or negative (e.g., enhanced metal mobility and biofouling), and highlights the need to account for a wider range of water quality parameters when considering the impacts of land use on the ecology of receiving waters and/or suitability of groundwater for irrigated agriculture.  相似文献   

12.
Anthropogenic impacts can significantly alter stream nutrient and dissolved organic carbon (DOC) delivery and composition. Nutrient and DOC cycling in headwater streams, however, are linked via a variety of complex feedbacks that are, in part, influenced by DOC composition emphasizing the need to investigate coupled nutrient–DOC interactions. This study assessed differential incorporation and mineralization of 13C labeled glucose and vanillin by heterotrophic microbes within epilithic biofilm communities in four temperate headwater streams spanning a 100-fold range in total dissolved nitrogen and soluble reactive phosphorous concentrations. The substrates were traced via 13C analyses of DOC, dissolved inorganic carbon, bulk biofilm, and individual biofilm phospholipid fatty acids (PLFA) to assess total incorporation of the substrates and the distribution of substrate use within the heterotrophic community. Results indicate greater nutrient uptake by high nutrient streams with glucose additions relative to vanillin additions and support the hypothesis that nutrient retention in high nutrient streams is hampered by a lack of labile C sources. Vanillin-derived C uptake was only detectable in PLFA from the highest nutrient stream and was dominated by eukaryotic organisms, likely including fungi. This suggests biofilms in high nutrient streams are better adapted to access relatively slow turnover substrates perhaps due to their composition and overall structure. PLFA-based glucose use efficiencies were greatest in the lowest nutrient stream supporting the hypothesis that labile DOC sources are used more efficiently by heterotrophs in less impacted streams, while biofilms of high nutrient streams are better adapted to utilizing a wider array of DOC sources. This adaption is likely a result of exposure to the lower quality DOC pools in high-nutrient streams resulting from high DOC uptake supported, in part, by fast turnover autochthonous sources of DOC. Nutrient retention in nutrient-rich streams, however, is still likely limited by readily bioavailable DOC leading to lower nutrient retention and downstream nutrient enrichment.  相似文献   

13.
在博斯腾湖选取了13个点位,于2012年5、8、10月测定表层和底层水体中的颗粒有机碳、溶解有机碳、颗粒有机氮和叶绿素a含量.结果显示颗粒和溶解有机碳在表层水体中的浓度与底层相近.博斯腾湖水体中颗粒有机碳的季节变化十分明显,其平均浓度从春季(0.64 mg/L)到夏季(0.71 mg/L)变化不大,但在秋季变化十分显著(浓度达1.58 mg/L).其中西北湖区和湖心区颗粒有机碳的季节变化最明显,东部湖区颗粒有机碳的季节变化相对较小.博斯腾湖水体的颗粒有机碳在春、秋两季主要来自外源输入,在夏季受水体中浮游生物的影响较大.博斯腾湖水体中溶解有机碳也具有一定的季节变化,夏季浓度(平均为9.3 mg/L)略低于春、秋两季(平均为10.3 mg/L).溶解有机碳在河口区的季节变化最强,其夏季浓度明显偏低,主要是由于开都河河水的稀释作用.总体上,博斯腾湖水体中溶解有机碳浓度的变化主要受外部因素的影响.  相似文献   

14.
Dissolved organic carbon (DOC) originating in peatlands can be mineralized to carbon dioxide (CO2) and methane (CH4), two potent greenhouse gases. Knowledge of the dynamics of DOC export via run‐off is needed for a more robust quantification of C cycling in peatland ecosystems, a prerequisite for realistic predictions of future climate change. We studied dispersion pathways of DOC in a mountain‐top peat bog in the Czech Republic (Central Europe), using a dual isotope approach. Although δ13CDOC values made it possible to link exported DOC with its within‐bog source, δ18OH2O values of precipitation and run‐off helped to understand run‐off generation. Our 2‐year DOC–H2O isotope monitoring was complemented by a laboratory peat incubation study generating an experimental time series of δ13CDOC values. DOC concentrations in run‐off during high‐flow periods were 20–30 mg L?1. The top 2 cm of the peat profile, composed of decaying green moss, contained isotopically lighter C than deeper peat, and this isotopically light C was present in run‐off in high‐flow periods. In contrast, baseflow contained only 2–10 mg DOC L?1, and its more variable C isotope composition intermittently fingerprinted deeper peat. DOC in run‐off occasionally contained isotopically extremely light C whose source in solid peat substrate was not identified. Pre‐event water made up on average 60% of the water run‐off flux, whereas direct precipitation contributed 40%. Run‐off response to precipitation was relatively fast. A highly leached horizon was identified in shallow catotelm. This peat layer was likely affected by a lateral influx of precipitation. Within 36 days of laboratory incubation, isotopically heavy DOC that had been initially released from the peat was replaced by isotopically lighter DOC, whose δ13C values converged to the solid substrate and natural run‐off. We suggest that δ13C systematics can be useful in identification of vertically stratified within‐bog DOC sources for peatland run‐off.  相似文献   

15.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Dissolved organic matter (DOM) source and composition are critical drivers of its reactivity, impact microbial food webs and influence ecosystem functions. It is believed that DOM composition and abundance represent an integrated signal derived from the surrounding watershed. Recent studies have shown that land-use may have a long-term effect on DOM composition. Methods for characterizing DOM, such as those that measure the optical properties and size of the molecules, are increasingly recognized as valuable tools for assessing DOM sources, cycling, and reactivity. In this study we measured DOM optical properties and molecular weight determinations to evaluate whether the legacy of forest disturbance alters the amount and composition of stream DOM. Differences in DOM quantity and composition due to vegetation type and to a greater extent, wetland influence, were more pronounced than effects due to disturbance. Our results suggest that excitation-emission matrix fluorescence with parallel factor analysis is a more sensitive metric of disturbance than the other methods evaluated. Analyses showed that streams draining watersheds that have been clearcut had lower dissolved organic carbon (DOC) concentrations and higher microbially-derived and protein-like fluorescence features compared to reference streams. DOM optical properties in a watershed amended with calcium, were not significantly different than reference watersheds, but had higher concentrations of DOC. Collectively these results improve our understanding of how the legacy of forest disturbances and natural landscape characteristics affect the quantity and chemical composition of DOM in headwater streams, having implications for stream water quality and carbon cycling.  相似文献   

17.
18.
Waterborne carbon (C) export from terrestrial ecosystems is a potentially important flux for the net catchment C balance and links the biogeochemical C cycling of terrestrial ecosystems to their downstream aquatic ecosystems. We have monitored hydrology and stream chemistry over 3 years in ten nested catchments (0.6–15.1 km2) with variable peatland cover (0%–22%) and groundwater influence in subarctic Sweden. Total waterborne C export, including dissolved and particulate organic carbon (DOC and POC) and dissolved inorganic carbon (DIC), ranged between 2.8 and 7.3 g m–2 year–1, representing ~10%–30% of catchment net ecosystem exchange of CO2. Several characteristics of catchment waterborne C export were affected by interacting effects of peatland cover and groundwater influence, including magnitude and timing, partitioning into DOC, POC, and DIC and chemical composition of the exported DOC. Waterborne C export was greater during the wetter years, equivalent to an average change in export of ~2 g m–2 year–1 per 100 mm of precipitation. Wetter years led to a greater relative increase in DIC export than DOC export due to an inferred relative shift in dominance from shallow organic flow pathways to groundwater sources. Indices of DOC composition (SUVA254 and a250/a365) indicated that DOC aromaticity and average molecular weight increased with catchment peatland cover and decreased with increased groundwater influence. Our results provide examples on how waterborne C export and DOC composition might be affected by climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Prediction of Bulk Density of Soils in the Loess Plateau Region of China   总被引:4,自引:0,他引:4  
Soil bulk density (BD) is a key soil physical property that may affect the transport of water and solutes and is essential to estimate soil carbon/nutrients reserves. However, BD data are often lacking in soil databases due to the challenge of directly measuring BD, which is considered to be labor intensive, time consuming, and expensive especially for the lower layers of deep soils such as those of the Chinese Loess Plateau region. We determined the factors that were closely correlated with BD at the regional scale and developed a robust pedotransfer function (PTF) for BD by measuring BD and potentially related soil and environmental factors at 748 selected sites across the Loess Plateau of China (620,000 km2) at which we collected undisturbed and disturbed soil samples from two soil layers (0–5 and 20–25 cm). Regional BD values were normally distributed and demonstrated weak spatial variation (CV = 12 %). Pearson’s correlation and stepwise multiple linear regression analyses identified silt content, slope gradient (SG), soil organic carbon content (SOC), clay content, slope aspect (SA), and altitude as the factors that were closely correlated with BD and that explained 25.8, 6.3, 5.8, 1.4, 0.3, and 0.3 % of the BD variation, respectively. Based on these closely correlated variables, a reasonably robust PTF was developed for BD using multiple linear regression, which performed equally with the artificial neural network method in the current study. The inclusion of topographic factors significantly improved the predictive capability of the BD PTF and in which SG was an important input variable that could be used in place of SA and altitude without compromising its capability for predicting BD. Thus, the developed PTF with only four input variables (clay, silt, SOC, SG), including their common transformations and interactive terms, predicted BD with reasonable accuracy and is thus useful for most applications on the Loess Plateau of China. More attention should be given to the role of topography when developing PTFs for BD prediction. Testing of the developed PTF for use in other loess regions in the world is required.  相似文献   

20.
Spatial and temporal variability of hydrological responses affecting surface water dissolved organic carbon (DOC) concentrations are important for determining upscaling patterns of DOC export within larger catchments. Annual and intra‐annual variations in DOC concentrations and fluxes were assessed over 2 years at 12 sites (3·40–1837 km2) within the River Dee basin in NE Scotland. Mean annual DOC fluxes, primarily correlated with catchment soil coverage, ranged from 3·41 to 9·48 g m?2 yr?1. Periods of seasonal (summer–autumn and winter–spring) DOC concentrations (production) were delineated and related to discharge. Although antecedent temperature mainly determined the timing of switchover between periods of high DOC in the summer‐autumn and low DOC in winter‐spring, inter‐annual variability of export within the same season was largely dependent on its associated water flux. DOC fluxes ranged from 1·39 to 4·80 g m?2 season?1 during summer–autumn and 1·43 to 4·15 g m?2 season?1 in winter–spring.Relationships between DOC areal fluxes and catchment scale indicated that mainstem fluxes reflect the averaging of highly heterogeneous inputs from contrasting headwater catchments, leading to convergent DOC fluxes at catchment sizes of ca 100 km2. However, during summer–autumn periods, in contrast to winter–spring, longitudinal mainstem DOC fluxes continue to decrease, most likely because of increasing biological processes. This highlights the importance of considering seasonal as well as annual changes in DOC fluxes with catchment scale. This study increases our understanding of the temporal variability of DOC upscaling patterns reflecting cumulative changes across different catchment scales and aids modelling of carbon budgets at different stages of riverine systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号