首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 937 毫秒
1.
本文建立了一个简单有效的稳态风沙流中沙粒体积浓度的数学模型,包括3个部分:稳态风沙流的风速廓线描述、跃移沙粒轨迹的计算、床面沙粒起跳速度分布的描述。利用已知实验的风速廓线作为气流速度场输入参数,跃移沙粒轨迹的计算主要考虑重力和拖曳力,基于体积观点的床面起跳沙粒的水平速度和垂直速度概率密度分布函数分别采用正态分布和指数分布函数来描述。根据稳态风沙流中运动沙粒的动态平衡特征可推导计算沙粒体积浓度。计算的沙粒体积浓度与风洞实验结果基本一致,说明本模型有较好的预测能力。  相似文献   

2.
蒋缠文  董治宝  王晓艳 《中国沙漠》2016,36(5):1230-1237
风沙研究者非常重视对输沙通量随高度变化特征的研究,并为寻找可靠的测量手段付出了不懈的努力。基于高速摄影技术获得的沙粒平均水平速度与沙粒数的垂直剖面,推导了较低风速下环境风洞内输沙通量的垂直剖面。结果表明:沙粒平均水平速度随高度呈幂函数增加,颗粒浓度随高度的算数平方根呈指数衰减。由颗粒平均水平速度剖面与浓度剖面的乘积可获得输沙通量剖面。所获得的输沙通量随高度变化曲线在距床面1~3 mm处均有一个明显的拐点,拐点上方输沙通量随高度呈指数衰减。在床面与拐点之间输沙通量没有明显的变化趋势,这可能是由于气流中颗粒间的碰撞以及颗粒与床面碰撞的影响。平均跃移高度和相对衰减系数是描述输沙通量随高度变化的两个重要参数,两者有着很好的相关性,表明了随着风速增加和沙粒粒径减小跃移颗粒可以达到更大的高度,随着风速减小与粒径增大,输沙通量迅速衰减。  相似文献   

3.
稳态风沙流中瞬态输沙特征   总被引:1,自引:0,他引:1  
风沙流中沙粒运动在来流风速不变时也会表现出非稳态特征。在风洞内利用粒子图像测速系统(PIV)测量了风沙运动的时间序列,并基于PIV测量技术提出风沙流中沙粒平均直径、数密度、平均水平速度和输沙通量等参数在某一时刻的计算方法,其中输沙通量的计算考虑沙粒大小垂向分布的影响。结果表明:来流风速不变时,沙粒平均直径、数密度、平均水平速度和输沙通量随时间具有明显的波动性;沙粒平均直径和平均水平速度的标准偏差一般随高度增加而增加,沙粒数密度和输沙通量标准偏差随高度增大而减小;这些参数的相对标准偏差均随高度增加而增大。  相似文献   

4.
影响拜格诺结的若干因素分析   总被引:7,自引:4,他引:3  
给出了全面描述风沙耦合作用下沙粒跃移运动的理论模型,利用数值方法对风沙耦合作用以及空气上升力、Magnus力、静电力等因素对沙粒跃移运动和风速廓线的影响进行了研究,从而揭示出拜格诺结(Bagnold's Kink)高度与其对应的风速及沙粒跃移高度的关系。  相似文献   

5.
风沙流中跃移沙粒冲击速度和角度联合概率分布风洞实验   总被引:1,自引:1,他引:0  
近地表跃移沙粒速度和角度概率分布是连接风沙运动宏观研究和微观研究的桥梁,对沙粒跃移轨迹和输沙率分布有很大影响。但是,目前跃移沙粒冲击速度概率分布和角度概率分布之间的关系还不明确。使用相位多普勒粒子分析仪(PDPA)测量了风洞沙床面1 mm高度处的跃移沙粒速度,通过分析各冲击速度对应的冲击角度的概率分布研究了沙粒冲击速度和角度的联合概率分布。结果表明:沙粒冲击速度概率分布可用对数正态函数描述,冲击角度概率分布可用指数函数描述;各冲击速度对应的冲击角度都符合指数函数分布,且其衰减速度随冲击速度增加而加快。这表明,冲击速度概率分布和冲击角度概率分布之间具有很强的相关性。最后分别给出了沙粒冲击速度和角度的独立假设概率分布和条件联合概率分布。  相似文献   

6.
风沙跃移运动发展过程的离散动力学模拟   总被引:14,自引:6,他引:8  
采用类似分子动力学的离散方法对二维风沙跃移过程运用高性能并行计算进行理论模拟。在本模拟模型中,考虑了沙粒与床面的碰撞、跃移沙粒与气流的相互作用等基本力学过程组成的复杂系统。通过并行运算技术使计算沙粒数达到72000的巨量计算得以实现。初步结果显示:自然跃移运动的基本特征如风沙流层内输沙率廓线可以较为成功的得以模拟。  相似文献   

7.
戈壁风沙流若干特征研究   总被引:15,自引:10,他引:15  
邹学勇  董光荣 《中国沙漠》1995,15(4):368-373
本文从理论推导入手,阐述了戈壁风沙流中沙粒起跃角度、跃移高度和风沙流结构、强度、能量分布状况等特征,指出与流沙地表风沙流的显著差异,并得到风洞实验验证。  相似文献   

8.
曹晞雍  谢莉 《中国沙漠》2011,30(3):593-596
 拖曳力系数是计算风沙流中沙粒受空气阻力的重要参数。考虑实际风沙流中沙粒浓度及沙粒形状,利用FLUENT软件首先计算了不同风速下距地表不同高度处两沙粒的拖曳力系数,给出了影响沙粒拖曳力系数的间距范围,然后计算了真实风沙流中不同高度沙粒拖曳力系数。结果表明,给定风速下拖曳力系数随距地面高度的增加先减小后增加,并将沙粒拖曳力系数拟合成距床面高度的函数,该函数与风速有关。  相似文献   

9.
跃移质作为风沙流的主体,其近地表垂直分布规律是风沙物理学的重要研究内容,对防沙工程具有重要的指导意义。受研究条件与观测仪器限制,戈壁特别是极端大风区近地表风沙流结构特性研究较为薄弱。利用多梯度风蚀传感器与阶梯式集沙仪对兰新高铁烟墩风区戈壁近地表风沙流跃移质的垂直分布特性进行了观测研究。结果表明:兰新高铁烟墩风区戈壁沙粒发生跃移运动的2 m高临界风速达12 m·s-1;戈壁近地表风沙流具有明显的阵性特征,沙粒跃移发生的时间比例在50%以下,与平均风速成正相关关系,与风速脉动强度无显著相关关系;2 m高阵风7级风速下,戈壁跃移沙粒主要集中于地表50 cm范围内,近地表风沙流结构呈"象鼻效应",跃移质最大质量通量出现在地表2.5~5 cm高度处,沙粒最大跃移高度可达2 m,且沙粒跃移高度随2 m高风速的增加呈指数规律递增。因此,兰新高铁烟墩风区2 m高阻沙栅栏不足以完全阻截戈壁风沙流,是造成烟墩风区兰新高铁轨道积沙的重要原因之一。  相似文献   

10.
风沙流中不同粒径组沙粒的输沙量垂向分布实验研究   总被引:14,自引:0,他引:14  
冯大军  倪晋仁  李振山 《地理学报》2007,62(11):1194-1203
在非均匀沙床面上, 风沙流中不同粒径组沙粒的输沙量垂向分布, 是非均匀风沙运动研究的重点。研究首先通过风洞实验, 收集了风洞中垂线垂向输沙量分布沙样, 然后对集沙沙样进行了沙粒粒度分析实验, 实验分析结果得出了不同粒径组沙粒的输沙量垂向分布规律, 基于稳定平衡风沙跃移运动模型和本文实验结果, 最后数值模拟研究了不同粒径组沙粒输沙量垂向分布, 与沙粒起跳速度和角度之间的关系。本文研究结果得出, 在非均匀风沙流中, 粗粒径组沙粒垂向输沙量上部符合指数递减分布但近床面区偏离指数分布, 呈现为偏大型分布, 粗粒径组对应的沙粒起跳速度和角度分布均为指数函数; 细粒径组沙粒垂向输沙量在整 个高度上均符合指数递减规律, 细粒径组沙粒对应的起跳速度分布为指数函数, 起跳角度分布为高斯函数。沙粒的平均起跳速度, 在0.4u*~2.2u* 之间变化, 随着气流风速(u*) 和沙粒粒径的增加而减小。  相似文献   

11.
Sand velocity in aeolian sand transport was measured using the laser Doppler technique of PDPA (Phase Doppler Particle Analyzer) in a wind tunnel. The sand velocity profile, probability distribution of particle velocity, particle velocity fluctuation and particle turbulence were analyzed in detail. The experimental results verified that the sand horizontal velocity profile can be expressed by a logarithmic function above 0.01 m, while a deviation occurs below 0.01 m. The mean vertical velocity of grains generally ranges from − 0.2 m/s to 0.2 m/s, and is downward at the lower height, upward at the higher height. The probability distributions of the horizontal velocity of ascending and descending particles have a typical peak and are right-skewed at a height of 4 mm in the lower part of saltation layer. The vertical profile of the horizontal RMS velocity fluctuation of particles shows a single peak. The horizontal RMS velocity fluctuation of sand particles is generally larger than the vertical RMS velocity fluctuation. The RMS velocity fluctuations of grains in both horizontal and vertical directions increase with wind velocity. The particle turbulence intensity decreases with height. The present investigation is helpful in understanding the sand movement mechanism in windblown sand transport and also provides a reference for the study of blowing sand velocity.  相似文献   

12.
基于起跳初速度分布的沙颗粒浓度廓线的数值模拟   总被引:1,自引:1,他引:0  
黄新成  刘博  王旭峰  熊英 《中国沙漠》2015,35(3):534-541
跃移层内沙颗粒浓度分布是风沙两相流相互作用的结果,准确的沙颗粒浓度分布有助于弄清风沙互馈机制及沙颗粒间相互作用机制。由于沙颗粒浓度分布与沙颗粒起跳初速度分布以及气流运动密切相关,本文基于特定的沙颗粒起跳初速度分布函数,通过构建的沙颗粒在气流中运动的物理模型,并利用四阶精度的Adams-Bashforth-Moulton方法对所构建运动模型进行求解,统计分析稳定状态下两相流中沙颗粒运动轨迹的分布,分析其浓度廓线的垂向分布规律。计算结果表明跃移层内沙颗粒浓度分布廓线与高程呈负指数或伽马分布关系;高度一定时沙颗粒浓度廓线随摩阻风速的增大而减小,随颗粒直径的增大而增大。  相似文献   

13.
Velocity profile of a sand cloud blowing over a gravel surface   总被引:2,自引:0,他引:2  
Particle dynamic analyzer (PDA) measurement technology was used to study the turbulent characteristics and the variation with height of the mean horizontal (in the downwind direction) and vertical (in the upward direction) particle velocity of a sand cloud blowing over a gravel surface. The results show that the mean horizontal particle velocity of the cloud increases with height, while the mean vertical velocity decreases with height. The variation of the mean horizontal velocity with height is, to some extent, similar to the wind profile that increases logarithmically with height in the turbulent boundary layer. The variation of the mean vertical velocity with height is much more complex than that of the mean horizontal velocity. The increase of the resultant mean velocity with height can be expressed by a modified power function. Particle turbulence in the downwind direction decreases with height, while that in the vertical direction is complex. For fine sands (0.2–0.3 mm and 0.3–0.4 mm), there is a tendency for the particle turbulence to increase with height. In the very near-surface layer (<4 mm), the movement of blown sand particles is very complex due to the rebound of particles on the bed and the interparticle collisions in the air. Wind starts to accelerate particle movement about 4 mm from the surface. The initial rebound on the bed and the interparticle collisions in the air have a profound effect on particle movement below that height, where particle concentration is very high and wind velocity is very low.  相似文献   

14.
The velocity of saltating particles is an important parameter in studying the aeolian sand movement. We used Particle Image Velocimetry to measure the variation with height of the mean particle velocity of a saltating cloud over a loose sand surface in a wind tunnel. The results suggest that both the horizontal and vertical particle velocities fit the Gaussian distribution well, and that the mean particle velocity of a saltating cloud varies with wind velocity, particle size and the height above bed. The mean horizontal velocity is mainly the result of acceleration by the wind and increases with an increase in friction wind velocity but decreases with an increase in grain size because greater wind velocity causes more acceleration and finer particles are more easily accelerated at a given wind velocity. It also increases with an increase in height by a power function, in agreement with previous results obtained by other methods such as the high-speed multi-flash photographic method and Particle Dynamics Analyzer (PDA), reflecting, first, the increase in wind velocity with height through the boundary layer, and second, the longer trajectory-particle path length increases with height and affords a longer time for acceleration by the wind. An empirical model relating the mean horizontal particle velocity and height, friction wind velocity as well as particle size is developed. The ratio of the mean horizontal particle velocity to the clean wind velocity at the same height increases with height but decreases with grain size. The magnitude of mean vertical velocity is much less (one or two orders less) compared with the mean horizontal velocity. The average movement in the vertical direction of a saltating cloud is upward (the mean vertical velocity is positive). Although the upward velocity of a saltating particle should decrease with height due to gravity the mean vertical (upward) velocity (the average of both ascending and descending particles) generally shows a tendency to increase with height. It seems that at higher elevations the data are more and more dominated by the ‘high-flyers’. The underlying mechanism for the mean vertical velocity distribution patterns needs to be clarified by further study.  相似文献   

15.
Detailed wind tunnel tests were carried out to establish the mean downwind velocity and transport rate of different-sized loose dry sand at different free-stream wind velocities and heights, as well as to investigate the vertical variation in the concentration of blowing sand in a cloud. Particle dynamic analyzer (PDA) technology was used to measure the vertical variation in mean downwind velocity of a sand cloud in a wind tunnel. The results reveal that within the near-surface layer, the decay of blown sand flux with height can be expressed using an exponential function. In general, the mean downwind velocity increases with height and free-stream wind velocity, but decreases with grain size. The vertical variation in mean downwind velocity can be expressed by a power function. The concentration profile of sand within the saltation layer, calculated according to its flux profile and mean downwind profile, can be expressed using the exponential function: cz=ae−bz, where cz is the blown sand concentration at height z, and a and bare parameters changing regularly with wind velocity and sand size. The concentration profiles are converted to rays of straight lines by plotting logarithmic concentration values against height. The slope of the straight lines, representing the relative decay rate of concentration with height, decreases with an increase in free-stream wind velocity and grain size, implying that more blown sand is transported to greater heights as grain size and wind speed increase.  相似文献   

16.
为了探究风沙流起动过程中沙粒输运特征,利用PTV测量技术在风洞中对风沙流起动过程进行了测量,分析了沙粒空间分布、沙粒平均水平速度、输沙率、沙粒数密度和输沙通量随时间的变化规律。结果表明:风沙流起动时间大约为1.5 s。起动过程中,输沙率随时间迅速增加,气流中沙粒总数目随时间的变化可表示为指数函数,沙粒数密度和输沙通量随高度的变化均可近似表示为负指数衰减函数。在t=1.0 s时刻的沙粒平均水平速度大于相同高度处以后时刻的沙粒平均水平速度,同一高度处t=1.5 s以后的沙粒数密度大于t=0.5 s、1.0 s时刻的沙粒数密度,同一高度处t=1.5 s以后的输沙通量大于t=1.0 s时刻的输沙通量。沙粒数密度随高度的衰减率一般随时间的增加而减小,并在t=1.5 s后逐渐接近稳定值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号