首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discharge event frequency, magnitude and duration all control river channel morphology and sedimentary architecture. Uncertainty persists as to whether alluvial deposits in the rock record are a time-averaged amalgam from all discharge events, or a biased record of larger events. This paper investigates the controls on channel deposit character and subsurface stratigraphic architecture in a river with seasonal discharge and very high inter-annual variability, the Burdekin River of north-east Australia. In such rivers, most sediment movement is restricted to a few days each year and at other times little sediment moves. However, the maximum discharge magnitude does not directly correlate with the amount of morphological change and some big events do not produce large deposits. The Burdekin channel deposits consist of five main depositional elements: (i) unit bars; (ii) vegetation-generated bars; (iii) gravel sheets and lags; (iv) antidune trains; and (v) sand sheets. The proportions of each depositional element preserved in the deposits depend on the history of successive large discharge events, their duration and the rate at which they wane. Events with similar peak magnitude but different rate of decline preserve different event deposits. The high intra-annual and inter-annual discharge variability and rapid rate of stage change make it likely that small to moderate-scale bed morphology will be in disequilibrium with flow conditions most of the time. Consequently, dune and unit bar size and cross-bed set thickness are not good indicators of event or channel size. Antidunes may be more useful as indicators of flow conditions at the time they formed. Rivers with very high coefficient of variance of maximum discharge, such as the Burdekin, form distinctive channel sediment bodies. However, the component parts are such that, if they are examined in isolation, they could lead to misleading interpretation of the nature of the depositional environment if conventional interpretations are used.  相似文献   

2.
The depositional stratigraphy of within‐channel deposits in sandy braided rivers is dominated by a variety of barforms (both singular ‘unit’ bars and complex ‘compound’ bars), as well as the infill of individual channels (herein termed ‘channel fills’). The deposits of bars and channel fills define the key components of facies models for braided rivers and their within‐channel heterogeneity, knowledge of which is important for reservoir characterization. However, few studies have sought to address the question of whether the deposits of bars and channel fills can be readily differentiated from each other. This paper presents the first quantitative study to achieve this aim, using aerial images of an evolving modern sandy braided river and geophysical imaging of its subsurface deposits. Aerial photographs taken between 2000 and 2004 document the abandonment and fill of a 1·3 km long, 80 m wide anabranch channel in the sandy braided South Saskatchewan River, Canada. Upstream river regulation traps the majority of very fine sediment and there is little clay (< 1%) in the bed sediments. Channel abandonment was initiated by a series of unit bars that stalled and progressively blocked the anabranch entrance, together with dune deposition and stacking at the anabranch entrance and exit. Complete channel abandonment and subsequent fill of up to 3 m of sediment took approximately two years. Thirteen kilometres of ground‐penetrating radar surveys, coupled with 18 cores, were obtained over the channel fill and an adjacent 750 m long, 400 m wide, compound bar, enabling a quantitative analysis of the channel and bar deposits. Results show that, in terms of grain‐size trends, facies proportions and scale of deposits, there are only subtle differences between the channel fill and bar deposits which, therefore, renders them indistinguishable. Thus, it may be inappropriate to assign different geometric and sedimentological attributes to channel fill and bar facies in object‐based models of sandy braided river alluvial architecture.  相似文献   

3.
Sedimentological outcrop analysis and sub‐surface ground‐penetrating radar (GPR) surveys are combined to characterize the three‐dimensional sedimentary architecture of Quaternary coarse‐grained fluvial deposits in the Neckar Valley (SW Germany). Two units characterized by different architectural styles are distinguished within the upper part of the gravel body, separated by an erosional unconformity: (i) a lower unit dominated by trough‐shaped depositional elements with erosional, concave‐up bounding surfaces that are filled by cross‐bedded sets of mainly openwork and filled framework gravel; and (ii) an upper unit characterized by gently inclined sheets of massive and openwork gravels with thin, sandy interlayers that show lateral accretion on a lower erosional unconformity. The former is interpreted as confluence scour pool elements formed in a multi‐channel, possibly braided river system, the latter as extensive point bar deposits formed by the lateral migration of a meandering river channel. The lateral accretion elements are locally cut by chute channels mainly filled by gravels rich in fines, and by fine‐grained abandoned channel fills. The lateral accretion elements are associated with gravel dune deposits characterized by steeply inclined cross‐beds of alternating open and filled framework gravel. Floodplain fines with a cutbank and point bar morphology cover the gravel deposits. The GPR images, revealing the three‐dimensional geometries of the depositional elements and their stacking patterns, confirm a change in sedimentary style between the two stratigraphic units. The change occurred at the onset of the Holocene, as indicated by 14C‐dating of wood fragments, and is related to a re‐organization of the fluvial system that probably was driven by climatic changes. The integration of sedimentological and GPR results highlights the heterogeneity of the fluvial deposits, a factor that is important for modelling groundwater flow in valley‐fill aquifers.  相似文献   

4.
Particle over-passing on depth-limited gravel bars   总被引:3,自引:0,他引:3  
An experimental channel is used to examine the transport of mixed sand and gravel bedload over the crestal platform of ‘hump-back’ bars and along the top of planar gravel sheets. Hydraulic processes result in the simultaneous transport of cobbles and pebbles over a static closely packed bed consisting of like-sized and finer particles. For prescribed conditions, flat upper-stage plane sand-beds develop over the crestal location with pebbles rolling easily over the sandy bed. At the brinkpoint, flow separation ensures effective segregation of the gravel from the sand. Over the slip-face the deposition rate of the sand is insufficient to fill fully the interstices within the gravel foresets before rapid deposition of gravel further advances the bed-form. Consequently, distinctive vertical assemblages of open-work and closed contact framework gravels could be generated as another bar migrates over, and preserves, the initial structure. In respect to the observed mechanisms of sorting over the bars, a mathematical expression is developed to explain the critical conditions allowing coarse particle mobility over planar sand or gravel beds under upper-stage plane-bed conditions on the crestal platform. The model then is used to ascertain whether the depositional environment ascribed to certain facies in the Bunter Pebble Beds, described in a recent publication, is appropriate given the distinctive facies assemblages generated in this experiment and the known hydrodynamic control of the particle-segregation process.  相似文献   

5.
Climbing dune‐scale cross‐statification is described from Late Ordovician paraglacial successions of the Murzuq Basin (SW Libya). This depositional facies is comprised of medium‐grained to coarse‐grained sandstones that typically involve 0·3 to 1 m high, 3 to 5 m in wavelength, asymmetrical laminations. Most often stoss‐depositional structures have been generated, with preservation of the topographies of formative bedforms. Climbing‐dune cross‐stratification related to the migration of lower‐flow regime dune trains is thus identified. Related architecture and facies sequences are described from two case studies: (i) erosion‐based sandstone sheets; and (ii) a deeply incised channel. The former characterized the distal outwash plain and the fluvial/subaqueous transition of related deltaic wedges, while the latter formed in an ice‐proximal segment of the outwash plain. In erosion‐based sand sheets, climbing‐dune cross‐stratification results from unconfined mouth‐bar deposition related to expanding, sediment‐laden flows entering a water body. Within incised channels, climbing‐dune cross‐stratification formed over eddy‐related side bars reflecting deposition under recirculating flow conditions generated at channel bends. Associated facies sequences record glacier outburst floods that occurred during early stages of deglaciation and were temporally and spatially linked with subglacial drainage events involving tunnel valleys. The primary control on the formation of climbing‐dune cross‐stratification is a combination between high‐magnitude flows and sediment supply limitations, which lead to the generation of sediment‐charged stream flows characterized by a significant, relatively coarse‐grained, sand‐sized suspension‐load concentration, with a virtual absence of very coarse to gravelly bedload. The high rate of coarse‐grained sand fallout in sediment‐laden flows following flow expansion throughout mouth bars or in eddy‐related side bars resulted in high rates of transfer of sands from suspension to the bed, net deposition on bedform stoss‐sides and generation of widespread climbing‐dune cross‐stratification. The later structure has no equivalent in the glacial record, either in the ancient or in the Quaternary literature, but analogues are recognized in some flood‐dominated depositional systems of foreland basins.  相似文献   

6.
A hierarchical typology for the channels and bars within aggradational wandering gravel-bed rivers is developed from an examination of a 50 km reach of lower Fraser River, British Columbia, Canada. Unit bars, built by stacking of gravelly bedload sheets, are the key dynamic element of the sediment transfer system, linking sediment transport during individual freshets to the creation, development and remoulding of compound bar platforms that have either a lateral or medial style. Primary and secondary unit bars are identified, respectively, as those that deliver sediment to compound bars from the principal channel and those that redistribute sediment across the compound bar via seasonal anabranches and smaller channels. The record of bar accretion evident in ground-penetrating radar sequences is consistent with the long-term development of bar complexes derived from historical aerial photographs. For two compound bars, inter-annual changes associated with individual sediment transport episodes are measured using detailed topographic surveys and longer-term changes are quantified using sediment budgets derived for individual bars from periodic channel surveys. Annual sediment turnover on the bars is comparable with the bed material transfer rate along the channel, indicating that relatively little bed material bypasses the bars. Bar construction and change are accomplished mainly by lateral accretion as the river has limited capacity to raise bed load onto higher surfaces. Styles of accretion and erosion and, therefore, the major bar form morphologies on Fraser River are familiar and consistent with those in gravelly braided channels but the wandering style does exhibit some distinctive features. For example, 65-year histories reveal the potential for long sequences of uninterrupted accretion in relatively stable wandering rivers that are unlikely in braided rivers.  相似文献   

7.
沙洲是塑造分汊型河道最重要的形态因子,其发育与蚀退由于上游来水来沙变化呈现冲淤交替,从而影响分汊河道输水输沙平衡.通过单个卵石沙洲的淤积和冲刷试验,揭示不同加沙速率、粒径和来流量条件下,沙洲淤积和冲刷规律,并建立简化理论模型分析沙洲淤积速率.结果表明,4组加沙试验中,分流点后出现明显淤积下延至洲头,左汊和右汊成为输沙通道,洲尾中心线两侧的左右汊道有泥沙淤积,洲尾未出现淤积.7组清水冲刷试验中,洲头最先承受冲刷和蚀退,并沿洲体冲刷延伸,洲头冲刷的泥沙沿左右汊水流带到下游,洲尾未出现明显冲刷.卵石沙洲以洲头淤积为主导发育模式,泥沙粒径、洲头坡角和分流角是决定淤积速率的关键因子.  相似文献   

8.
The approach of dynamic stratigraphy aims to understand genetic processes that form stratigraphic units in a hierarchy of spatial and temporal scales. This approach was used to investigate Quaternary gravel deposits in terms of their sedimentology and in order to characterize the various sedimentary units in terms of their hydrogeological properties. Facies analysis within 62 gravel pits, laboratory permeability measurements of field samples and geophysical surveys (3-D georadar, 2-D seismic reflection) led to the detection and classification of sedimentary heterogeneity according to the following six scales whereby each scale can be translated into defined hydrostratigraphic units. (1) Particles and pores (micro scale) that reflect depositional and diagenetic fluid dynamics as well as source material behaviour (e.g. grain-size, roundness, lithological composition). This was found to be important for the hydrogeochemistry of groundwater in gravel aquifers (e.g. higher sorption capacity of carbon-rich limestone particles for organic pollutants). (2) Strata (meso scale) contain the recognition of sorting, fabric, texture and stratinomic features, which can give an indication of transport and depositional dynamics. Five major lithofacies groups, for example, were distinguished within fluvial gravel-bed deposits. Their variable hydraulic properties led to their subdivision into 12 hydrofacies types. They form the smallest mappable hydrostratigraphic units, which may result in either preferred pathways for fluid flow or flow barriers. (3) Depositional elements (macro scale) enable reconstruction of sedimentary/geomorphic elements and their dynamics within a depositional system (e.g. gravel-bed braided river systems are dominated by gravel sheet, gravel dunes and scour pool depositional elements). Hydrostratigraphically, the architecture of depositional elements influences the hydraulic connectivity and local permeability structure/distribution within an aquifer body. Five types of depositional elements in fluvial gravel-bed deposits were distinguished and their geometries/dimensions quantified. (4) Facies bodies (mega scale) composed of a stack of depositional elements and strata recording distinct environmental systems and their dynamics (e.g. a coarse-grained prograding delta system). Hydrostratigraphically, facies bodies represent major compartments of an aquifer. Six major types of meltwater-controlled facies bodies were identified in the study area. (5) Genetic sequences (mega scale) reflect the shifts of depositional environments caused by allocyclic changes (e.g. glacial advance recorded by a coarsening upward sequence) or autocyclic changes of landscape shaping events. These sequences may form separate hydrostratigraphic units or aquifer storeys. (6) Basin fill (giga scale) comprising the lateral and vertical stacking of facies bodies and genetic sequences controlled by either long-term glacier dynamics or short term flood events. The regional distribution of permeable gravel units and, for example, less permeable diamicts builds the larger scale hydrostratigraphy.  相似文献   

9.
Ground penetrating radar (GPR) surveys of unit and compound braid bars in the sandy South Saskatchewan River, Canada, are used to test the influential facies model for sandy braided alluvium presented by Cant & Walker (1978) . Four main radar facies are identified: (1) high‐angle (up to angle‐of‐repose) inclined reflections, interpreted as having formed at the margins of migrating bars; (2) discontinuous undular and/or trough‐shaped reflections, interpreted as cross‐strata associated with the migration of sinuous‐crested dunes; (3) low‐angle (< 6°) reflections, interpreted as formed by low‐amplitude dunes or unit bars as they migrate onto bar surfaces; and (4) reflections of variable dip bounded by a concave reflection, interpreted as being formed by the filling of channel scours, cross‐bar channels or depressions on the bar surface. The predominant vertical arrangement of facies is discontinuous trough‐shaped reflections at the channel base overlain by discontinuous undular reflections, overlain by low‐angle reflections that dominate the deposits near the bar surface. High‐angle inclined reflections are only found near the surface of unit bars, and are of relatively small‐scale (< 0·5 m), but can be found at a greater range of depths within compound bars. The GPR data show that a high spatial variability exists in the distribution of facies between different compound bars, with facies variability within a single bar being as pronounced as that between bars. Compound bars evolve as an amalgamation of unit bars and other compound bars, and comprise a facies distribution that is representative of the main bar types in the South Saskatchewan River. The GPR data are compared with the original model of Cant & Walker (1978) and reveal a much greater variability in the scale, proportion and distribution of facies than that presented by Cant & Walker (1978) . Most notably, high‐angle inclined strata are over‐represented in the model of Cant and Walker, with many bars being dominated by the deposits of low‐ and high‐amplitude dunes. It is suggested that further GPR studies from a range of braided river types are required to properly quantify the full range of deposits. Only by moving away from traditional, highly generalized facies models can a greater understanding of braided river deposits and their controls be established.  相似文献   

10.
Thick till sheets deposited during the Quaternary form significant aquitards in many areas of North America. However, the detailed sedimentary heterogeneity and architecture and depositional history of till units are not well understood. This study utilizes architectural element analysis to delineate the internal sedimentary architecture of the Tiskilwa Formation exposed at two outcrop sections in north‐central Illinois, USA. Architectural element analysis facilitates systematic delineation of sedimentary architecture based on the nature of facies contacts and change in facies associations, delineation of unit geometries and understanding of depositional processes at different scales of resolution; making architectural element analysis suitable for the sedimentological analysis and palaeoenvironmental reconstruction of subglacial deposits. Eleven facies types are identified in this study, including sand, gravel and diamict facies that record a suite of subglacial depositional processes. Detailed analysis of facies contacts (bounding surface hierarchy) and change in facies associations allows the delineation of five architectural elements, including coarse‐grained lens, coarse‐grained sheet, mixed zone, diamict lens and diamict sheet elements. The spatial arrangement and genetic interpretation of elements, and their spatial relationship with fifth‐order bounding surfaces, allows the delineation of five larger scale architectural units (‘element associations’), which can be mapped in the local study area and record at least three stacked successions of meltwater accumulation and till deposition. The results of this study can be utilized for architectural analysis of till sheets and provide insight to groundwater flow pathways through till in the study area and elsewhere.  相似文献   

11.
The history of Quaternary sedimentation in the subtidal Wash is described using high-resolution seismic profiles. The Pleistocene sequence is divided into three depositional units, comprising Anglian till overlain by possible Late Devensian subglacial scour fill and lacustrine sediments. These latter sediments may provide further evidence for a lake in the Wash impounded by ice along the Lincolnshire–Norfolk coast. The Holocene sequence is divided into six depositional units, each truncated by the one above. Estuarine sediment resting on a marine flooding surface forms the earliest unit. This sediment was partially eroded by migration of the shoreface as the marine flooding progressed landward. The following four units comprise sand and gravel banks deposited on the erosion surface. Bank deposition was followed by an episode of tidal scour caused either by increased tidal current velocities following reclamation of the Fenland or by breakdown of postulated former offshore barriers. The youngest and most extensive Holocene unit rests on the scoured surface and comprises several types of deposit. These are: large sand banks around the periphery of the subtidal area with sediment extending seawards into two NE–SW aligned troughs; low sand banks on a central ridge dividing the troughs and partially covering the sediments in the troughs; thick gravels towards the mouth of the Wash; muddy sediments forming drapes over the sand in the centre of the Wash. The data provide information on the variety of processes related to the advance and retreat of Pleistocene ice sheets in eastern England and the subsequent Holocene marine flooding of the Wash–Fenland embayment. The Holocene sequence reveals periods of widespread sedimentation separated by periods of both local and regional erosion, with possible implications for climatic and hydrodynamic change. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits.  相似文献   

14.
A review of the braided-river depositional environment   总被引:8,自引:0,他引:8  
Andrew D. Miall 《Earth》1977,13(1):1-62
  相似文献   

15.
Element analysis of modern-day floodplains provides a framework for characterizing associations amongst depositional forms, the processes responsible for them and their local depositional environment. From interpretation of the spatial association of elements, mechanisms of floodplain evolution can be analysed. The Squamish River, in southwestern British Columbia, is a high-energy, gravel-based river, which exhibits a distinct downstream gradation in channel planform type. The floodplain sedimentology of this river is evaluated using an element approach. Five elements, defined on the basis of their morphological outline, position within sediment sequences and sedimentological character, describe the floodplain sedimentology: (i) top-stratum, (ii) chute channel; (iii) ridge; (iv) bar platform; (v) basal channel gravels. The sedimentological composition of each element is described. Each of these units relates directly to morphostratigraphic units which make up contemporary bars of the Squamish River. Associations among facies defined at the bedform scale, morphostratigraphic units on bar surfaces and elemental floodplain features are described and explained. The vertical stacking arrangement of elements is analysed in trenches (dug perpendicular to the main channel) and in bank exposures. Two elemental sedimentology models are proposed. In the first model, bar platform sands are discontinuous above basal channel gravels. Chute channel, ridge and proximal topstratum elements form thick sequences above. The second model is characterized by sequences in which distal top-stratum deposits are observed. In these instances, bar platform sands are better preserved beneath the distal top-stratum element, with proximal top-stratum elements above. The applicability of these models is determined primarily by position on the floodplain. Chute channel reworking of floodplain sediments and replacement by top-stratum elements is the dominant process marginal to contemporary bars. Sites in which channel avulsion has resulted in preservation of distal top-stratum deposits in the midsequence of the present-day channel banks determine the occurrence of the second model. Although channel planform style changes down-valley in the study reach from braided to meandering, these two models apply in each reach. It is concluded that processes operative at the element scale, rather than the channel planform scale, determine floodplain sedimentology.  相似文献   

16.
Within the Kinsale Formation (Lower Carboniferous) of southern Ireland are pebbly sandstones and conglomerates contained in what is known locally as the Garryvoe conglomerate facies. In this facies there are three main groups of lithologies: (a) heterolithic mudrocks and sandstones characterized by a wide variety of wave-produced structures; (b) sandstones dominated by swaley cross-stratification (SCS), parallel lamination, and rare hummocky cross-stratification (HCS); and (c) pebbly sandstones and conglomerates occurring as discrete beds or as gravel clasts dispersed through SCS sets. Successions of the facies comprise units of heterolithic mudrock and rippled sandstone alternating repeatedly with coarsening-upward units of SCS pebbly sandstone capped by top-surface granule and pebble lags. The Garryvoe conglomerate facies accumulated in a system of offshore bars on a muddy shallow-marine shelf that was dominated by waves and currents generated by storms. Sands and gravels were bypassed from a contemporaneous northerly coastal zone to the shelf, where they were moulded by the storm-generated flow into low, broad, sand ridges (offshore bars). The elongate bars were spaced kilometres apart, oriented obliquely to the coast, and separated by muddy interbar troughs. Their surfaces were largely covered by hummocky and swaley forms. Long-term, gradual seaward migration of the offshore bars concentrated gravels on landward flanks from the dispersed pebbly sands that were on the crests and seaward flanks. Exceptionally intense storms could form laterally extensive winnowed gravel lags above thinned bar sequences. Such storms could also flush gravel-bearing turbidity currents into muddy interbar trough areas.  相似文献   

17.
The textural variability of river bed gravels at bar scales is poorly understood, as are the relations between variability at this scale and at reach and river scales. Surface and subsurface grain‐size distributions were therefore examined at reach, bar and bedform scales along lower Fraser River, British Columbia, Canada. Grain‐size variations within compound bars are conditioned by longitudinal position, elevation and morphological setting. Surface and subsurface sediments tend to decrease in median size from bar head to bar tail by 33% and 17%, respectively. Sediment size is constrained at some upper limit that is inversely related to bar surface elevation and which is consistent with competence considerations. The surface sediments on unit bars are finer and better sorted than the bed materials in bar‐top channels and along the main bar edges. Secondary unit bars tend to have a lower sand content than other features, a consequence of sediment resorting. Individual unit bars and gravel sheets exhibit streamwise grain‐size fining and lee‐side sand deposition. Over time, significant amounts of cut and fill do not ipso facto cause changes in surface grain sizes; yet, sediment characteristics can change without any significant morphological adjustment taking place. At the reach scale there is a clear downstream fining trend, but local variability is consistently high due to within‐bar variations. The surface median grain‐size range on individual bars is, on average, 25% of that along the entire 50 km reach but is 68% on one bar. While the overall fining trend yields a downstream change in surface median size of 0·76 mm km?1, the average value for ‘head‐to‐tail’ size reduction on individual bars is 6·3 mm km?1, an order of magnitude difference that highlights the effectiveness of bar‐scale sorting processes in gravel‐bed rivers. Possibilities for modelling bar‐scale variability and the interaction of the different controls that are identified are discussed.  相似文献   

18.
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics.  相似文献   

19.
20.
崖13-1气田陵三段是河控与潮控的辫状三角洲,主要储层沉积微相为分流河道、水下分流河道、河口坝、远砂坝及席状砂,其中河口坝的储层物性比分流河道和水下分流河道微相好,席状砂与远砂坝的物性相对较差,而各类正韵律河道与反韵律的砂坝决定了各垂向流动单元储层韵律特征。气田内的隔夹层与不同规模的海泛面相关,隔层以前三角洲泥为主,分布稳定,而夹层以分流间湾与水下分流间湾泥为主,分布较局限。结合沉积微相分布、储层非均质性及断层的分布,可以把气田区分为两个大区及6个流动单元,而南II、南III区仍可有较好的储层,但由于构造上处于低部位,含气前景还需进一步论证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号