首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Batch sorption system using co-immobilized (activated carbon and Bacillus subtilis) beads as adsorbent was investigated to remove Cr(VI) from aqueous solution. Fourier transform infrared spectroscopy analysis showed the functional groups of both bacteria and activated carbon in co-immobilized beads. Experiments were carried out as a function of contact time (5–300 min), initial metal concentration (50–200 mg L?1), pH (2–8), and adsorbent dose (0.2–1 g L?1). The maximum percentage of removal was found to be 99 %. Langmuir model showed satisfactory fit to the equilibrium adsorption data of co-immobilized beads. The kinetics of the adsorption followed pseudo-second-order rate expression, which demonstrates that chemisorption plays a significant role in the adsorption mechanism. The significant shift in the Fourier transform infrared spectroscopy peaks and a Cr peak in the scanning electron microscope–energy dispersive spectroscopy spectra further confirmed the adsorption. The results indicate that co-immobilized beads can be used as an effective adsorbent for the removal of Cr(VI) from the aqueous solution.  相似文献   

2.
Acacia nilotica was used for the adsorption of Reactive Black 5 (RB5) dye from an aqueous solution. Both the raw and activated (with H3PO4) carbon forms of Acacia nilotica (RAN and ANAC, respectively) were used for comparison. Various parameters (including dye concentration, contact time, temperature, and pH) were optimized to obtain the maximum adsorption capacity. RAN and ANAC were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The maximum experimental adsorption capacities for RAN and ANAC were 34.79 and 41.01 mg g?1, respectively, which agreed with the maximum adsorption capacities predicted by the Langmuir, Freundlich, and Dubinin–Radushkevich equilibrium isotherm models. The adsorption data of ANAC showed a good fit to the isotherm models based on the coefficient of determination (R 2): Langmuir type II (R 2 = 0.99) > Freundlich (R 2 = 0.9853) > Dubinin–Radushkevich (R 2 = 0.9659). This result suggested monolayer adsorption of RB5 dye. The adsorption of RB5 dye followed pseudo-second-order kinetics. The RAN adsorbent reflected an exothermic reaction (enthalpy change, ΔH = ?0.006 kJ mol?1) and increased randomness (standard entropy change, ΔS = 0.038 kJ mol?1) at the solid–solution interface. In contrast, ANAC reflected both exothermic [?0.011 kJ mol?1 (303–313 K)] and endothermic [0.003 kJ mol?1 (313–323 K)] reactions. However, the ΔS value of ANAC was lower when the RB5 adsorption increased from 313 to 323 K. The negative values for the Gibbs free energy change at all temperatures indicated that the adsorption of RB5 dye onto RAN and ANAC was spontaneous in the forward direction.  相似文献   

3.
Bimetallic Fe/Ni nanoparticles were synthesized and used for the removal of profenofos organophosphorus pesticide from aqueous solution. These novel bimetallic nanoparticles (Fe/Ni) were characterized by scanning electron microscopy, energy-dispersive X-ray analysis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The effect of the parameters of initial pesticide concentration, pH of the solution, adsorbent dosage, temperature, and contact time on adsorption was investigated. The adsorbent exhibited high efficiency for profenofos adsorption, and equilibrium was achieved in 8 min. The Langmuir, Freundlich, and Temkin isotherm models were used to determine equilibrium. The Langmuir model showed the best fit with the experimental data (R 2 = 0.9988). Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were tested to determine absorption kinetics. The pseudo-second-order model provided the best correlation with the results (R 2 = 0.99936). The changes in the thermodynamic parameters of Gibb’s free energy, enthalpy, and entropy of the adsorption process were also evaluated. Thermodynamic parameters indicate that profenofos adsorption using Fe/Ni nanoparticles is a spontaneous and endothermic process. The value of the activation energy (E a = 109.57 kJ/mol) confirms the nature of the chemisorption of profenofos onto Fe/Ni adsorbent.  相似文献   

4.
The functionalized nano-clay composite adsorbent was prepared, and its properties were characterized using FT-IR, XRD and SEM techniques. The synthesized nano-clay composite was studied with regard to its capacity to remove ibuprofen under different adsorption conditions such as varying pH levels (5–9), initial ibuprofen concentrations (3, 5 and 10 mg L?1), contact time, and the amount of adsorbent (0.125, 0.25, 0.5 and 1 g). In order to evaluate the nanocomposite adsorption capacity, the adsorption results were assessed using nine isotherm models. The results showed that the optimum adsorption pH was 6 and that an increase or decrease in the pH reduced the adsorption capacity. The adsorption process was fast and reached equilibrium after 120 min. The maximum efficacy of ibuprofen removal was approximately 95.2%, with 1 g of adsorbent, 10 mg L?1 initial concentration of ibuprofen, 120 min contact time and pH = 6. The optimal adsorption isotherm models were the Freundlich, Fritz–Schlunder, Redlich–Peterson, Radke–Prausnitz, Sip, Toth and Khan models. In addition, four adsorption kinetic models were employed for adsorption system evaluation under a variety of experimental conditions. The kinetic data illustrated that the process is very fast, and the reaction followed the Elovich kinetic model. Therefore, this nano-clay composite can be used as an effective adsorbent for the removal of ibuprofen from aqueous solutions, such as water and wastewater.  相似文献   

5.
In this study, sepiolite-nano zero valent iron composite was synthesized and applied for its potential adsorption to remove phosphates from aqueous solution. This composite was characterized by different techniques. For optimization of independent parameters (pH = 3–9; initial phosphate concentration = 5–100 mg/L; adsorbent dosage = 0.2–1 g/L; and contact time = 5–100 min), response surface methodology based on central composite design was used. Adsorption isotherms and kinetic models were done under optimum conditions. The results indicated that maximum adsorption efficiency of 99.43 and 92% for synthetic solution and real surface water sample, respectively, were achieved at optimum conditions of pH 4.5, initial phosphate concentration of 25 mg/L, adsorbent dosage of 0.8 g/L, and 46.26 min contact time. The interaction between adsorbent and adsorbate is better described with the Freundlich isotherm (R 2 = 0.9537), and the kinetic of adsorption process followed pseudo-second-order model. Electrostatic interaction was the major mechanisms of the removal of phosphates from aqueous solution. The findings of this study showed that there is an effective adsorbent for removal of phosphates from aqueous solutions.  相似文献   

6.
In this study, the adsorption behavior of Ni(II) in an aqueous solution system using natural adsorbent Peganum harmala-L was measured via batch mode. The prepared sorbent was characterized by scanning electron microscope, Fourier transform infrared spectroscopy, N2 adsorption–desorption and pHzpc. Adsorption experiments were carried out by varying several conditions such as contact time, metal ion concentration and pH to assess kinetic and equilibrium parameters. The equilibrium data were analyzed based on the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. Kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particular diffusion models. Experimental data showed that at contact time 60 min, metal ion concentration 50 mg/L and pH 6, a maximum amount of Ni(II) ions can be removed. The experimental data were best described by the Langmuir isotherm model as is evident from the high R 2 value of 0.988. The adsorption capacity (q m) obtained was 68.02 mg/g at an initial pH of 6 and a temperature of 25 °C. Kinetic studies of the adsorption showed that equilibrium was reached within 60 min of contact and the adsorption process followed the pseudo-first-order model. The obtained results show that P. harmala-L can be used as an effective and a natural low-cost adsorbent for the removal of Ni(II) from aqueous solutions.  相似文献   

7.
In this study, the feasibility of using a low-cost adsorbent mixture composed of leonardite (L) and clinoptilolite (C) was evaluated by batch adsorption method using different parameters such as mixing ratio, contact time, pH, temperature, and adsorbent amount for the removal of Zn (II) ions from an aqueous solution. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Additionally, leonardite–clinoptilolite mixture was analyzed by scanning electron microscopy coupled with energy dispersive X-ray. The Zn (II) adsorption along with an unprecedented adsorption capacity of 454.55 mg g?1 for unmodified natural sorbents was obtained by mixing leonardite and clinoptilolite (LC) without any pretreatment at a ratio of 3:1, using 0.1 g of sorbent at a pH 6, for 2 h of contact time. The experimental data showed a good fit for the Langmuir isotherm model. The thermodynamic parameters revealed that the present adsorption process was spontaneous and exothermic in nature (25–50 °C). The kinetic results of the adsorption showed that the Zn (II) adsorption onto the LC follows pseudo-second-order model. The resultant LC mixture has an excellent adsorption capacity of a Zn (II) aqueous solution, and data obtained may form the basis for utilization of LC as an unpretreated low-cost adsorbent for treatment of metalliferous industrial wastewater.  相似文献   

8.
In this study, arsenic adsorption to an Australian laterite has been examined for a particle-size range between 38 μm and 25 mm. The results show that particle size influences both kinetic and equilibrium characteristics of arsenic adsorption. The equilibrium adsorption capacity increases from around 100 mg kg?1 for laterite particles coarser than 4 mm, to around 160 mg kg?1 for laterite particles between 75 μm and 4 mm, and to over 200 mg kg?1 for laterite particles finer than 75 μm. The kinetic adsorption data can be fitted with the pseudo-second-order reaction model, in particular for finer particles where the film diffusion and/or surface reaction are important processes. The model-fitted rate constant remains steady for laterite particles coarser than 2 mm, increases moderately with particle size in the range between 75 μm and 2 mm, and increases dramatically for laterite particles finer than 75 μm. These arsenic adsorption behaviours can be explained by the relative importance of two particle-size-dependent processes: quick external-surface adsorption (more important for fine particles) and slow intraparticle adsorption (more important for coarse particles). Most of the external-surface adsorption completes in the first hour of the experiment. To apply the studied laterite for dissolved arsenic removal, it is recommended that fine particles, in particular finer than 75 μm, should be used if the contact time is the limitation, and that coarse particles, in particular 2–4 mm, should be used if sufficient contact time is available.  相似文献   

9.
A novel biosorbent synthesized from Ficus racemosa leaves based on the treatment using NaOH was applied for removal of Acid Blue 25 from aqueous solution. The synthesized biosorbent was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller analysis. NaOH treatment was demonstrated to remove lignin content from the biomass and to induce the development of significant pores. Batch experiments were performed to evaluate the effect of important operating parameters such as pH (range of 2–10), biosorbent dose (range of 1–10 g/L), contact time (range of 0–5 h), initial dye concentration (range of 50–400 mg/L) and temperature (range of 293–323 K) on the extent of removal of Acid Blue 25. The established optimum conditions were pH of 2, biosorbent dose of 4 g/L, contact time of 3 h and temperature of 323 K, yielding maximum removal of dye. Pseudo-second-order model was found to best fit the kinetic data. Langmuir and Temkin isotherm models were found to best fit the equilibrium data. The obtained thermodynamic parameters confirmed endothermic and spontaneous nature of adsorption. The study established the utility of novel biosorbent for removal of Acid Blue 25 with higher adsorption capacities (83.33 mg/g) as compared to the more commonly used adsorbents. Desorption-adsorption  studies conducted for seven cycles indicated potential reusability of synthesized biosorbent for the treatment of dye effluents.  相似文献   

10.
Exposure to high concentration of nitrate through drinking water poses a threat to human health and environment. Electrocoagulation (EC) is an alternative water treatment process that involves electrogeneration of coagulant agents. In the present study, EC was exerted for the nitrate removal in a batch reactor using aluminum and iron anodes simultaneously. The effects of the main parameters including electrical current, initial pH, NaCl dosage, initial nitrate concentration and presence of turbidity on NO3 ? removal were investigated. NO2 ? as a by-product was monitored during electrolysis, and nitrate–nitrite index was calculated. The results indicated that optimum condition was pH of 5, 300 mA electrical current, 100 mg/L NaCl and electrolysis time of 40 min, under which removal efficiency was 81.5 %. Nitrite anion was generated during electrolysis of nitrate solution which increases nitrate–nitrite index at the first reaction time, and it was eliminated after 20-min electrolysis time. Reaction kinetic of nitrate removal in the absence and presence of turbidity was first-order and zero-order, respectively.  相似文献   

11.
Liners are commonly used in engineered waste disposal landfill to minimize the potential contamination of the aquatic environment. The adsorption behavior of Cu(II) from aqueous solution onto clay admixed with various mix ratios of quarry fines was investigated. The amount of Cu(II) adsorption increases with increase in contact time. The copper removal efficiencies of the composite mixture gradually decrease from 94.53 % (raw clay) to 85.59 % (20 % of quarry fines with clay), and appreciable decrease in percent removal 75.61 % was found with 25 % of quarry fines with clay. The kinetic adsorption data were analyzed by pseudo-first-order, pseudo-second-order, Bhattacharya–Venkobachar and Natarajan–Khalaf kinetic models to classify adsorption process mechanisms. Kinetic experimental data were good agreement with pseudo-second-order kinetic model with the degree of fitness of the data (R 2) 0.9999 for the adsorption of Cu(II). The results revealed that quarry fines can be used with optimum of 20 % replacement of natural clay for removal of Cu(II) as a liner material in landfills.  相似文献   

12.
Nonlinear kinetic analysis of phenol adsorption onto peat soil   总被引:1,自引:0,他引:1  
Phenolic compounds are considered as a serious organic pollutant containing in many industrial effluents particularly vulnerable when the plant discharge is disposed on land. In the present study, the phenol removal potential of peat soil as adsorption media was investigated as the adsorption process are gaining popular for polishing treatment of toxic materials in industrial wastewater. Batch experiments were performed in the laboratory to determine the adsorption isotherms of initial concentrations for 5, 8, 10, 15, and 20 mg/L and predetermined quantity of peat soil with size ranges between 425 and 200 μm poured into different containers. The effects of various parameters like initial phenol concentration, adsorbent quantity, pH, and contact time were also investigated. From experimental results, it was found that 42 % of phenol removal took place with optimized initial phenol concentration of 10 mg/L, adsorbent dose of 200 g/L, solution pH 6.0 for the equilibrium contact time of 6 h. The result exhibits that pseudo-first-order (R 2 = 0.99) and Langmuir isotherm models are fitted reasonably (R 2 = 0.91). Adams–Bohart, Thomas, Yoon–Nelson, and Wolborska models were also investigated to the column experimental data of different bed heights to predict the breakthrough curves and to determine the kinetic coefficient of the models using nonlinear regression analysis. It was found that the Thomas model is the best fitted model to predict the experimental breakthrough curves with the highest coefficient of determination, R 2 = 0.99 and lowest root mean square error and mean absolute performance error values.  相似文献   

13.
This paper reports the potential of chemically treated wood chips to remove copper (II) ions from aqueous solution a function of pH, adsorbent dose, initial copper (II) concentration and contact time by batch technique. The wood chips were treated with (a) boiling, (b) formaldehyde and (c) concentrated sulphuric acid and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive analysis X-ray. pH 5.0 was optimum with 86.1, 88.5 and 93.9 % copper (II) removal by boiled, formaldehyde-treated and concentrated sulphuric acid-treated wood chips, respectively, for dilute solutions at 20 g L?1 adsorbent dose. The experimental data were analysed using Freundlich, Langmuir, Dubinin–Radushkevich and Temkin isotherm models. It was found that Freundlich and Langmuir models fitted better the equilibrium adsorption data and the adsorption process followed pseudo-second-order reaction kinetics. The results showed that the copper (II) is considerably adsorbed on wood chips and it could be an economical option for the removal of copper from aqueous systems.  相似文献   

14.
Incidence of high fluoride (F?) in groundwater (>1.5 mg/L) in two tribal belts of eastern India, one around Chukru in the Palamau district of Jharkhand and the other around Karlakot in the Nuapada district of Odisha, has been studied. The maximum concentration of F? in groundwater from dug wells and tube wells is 10.30 mg/L in Chukru and 4.62 mg/L in Karlakot. The groundwaters are mildly alkaline with pH ranges of 7.52–8.22 and 7.33–8.20 in Chukru and Karlakot, respectively. The F? concentration is positively correlated with pH, electrical conductivity and SO4 2? in both areas. The high F? in groundwater resulted mainly from dissolution of biotite and fluorapatite in quartzofeldspathic gneiss. The ionic dominance pattern (in meq/L) is mostly in the order Ca2+ > Na+ > Mg2+ > K+ among cations and HCO3 ? > SO4 2? > < Cl? > F? among anions in the Karlakot groundwater. Preliminary adsorption experiments were conducted on natural haematite iron ore and synthetic magnetite to evaluate their potential for F? removal from water. Effects of different parameters such as contact time, pH, adsorbent dose and initial F? concentration on the adsorption capacity of these materials were investigated. Strong dependence of F? removal on pH was observed for both the adsorbents. With natural haematite iron ore, the maximum F? removal of 66 % occurred at an initial pH of 3.2 for a solution with F? concentration of 3 mg/L, adsorbent dose of 7 g/L and overnight contact time. The haematite iron ore was observed to increase the pH of the F? solution. Adsorption equilibrium was not achieved with this adsorbent even after a contact time of 45.2 h. In the case of synthetic magnetite, 84 % F? removal was achieved after 2 min of contact time for a solution with F? concentration of 6 mg/L, adsorbent dose of 10 g/L and initial pH of 7. The results indicate high potential of both natural haematite iron ore and synthetic magnetite as adsorbents of F? in water.  相似文献   

15.
Atomic layer deposition (ALD) thin film coating was applied to improve the hydrophilia of biochar derived from black willow. 2 (2Al, 0.82 wt% Al2O3), 5 (5Al, 1.40 wt% Al2O3), and 10 (10Al, 2.36 wt% Al2O3) cycles of alumina ALD were applied. The biochars were characterized by inductively coupled plasma–atomic emission spectroscopy, nitrogen adsorption and desorption, scanning electron microscopy, and Fourier transform infrared spectroscopy. The adsorbents were utilized for the removal of methylene blue (MB) from an aqueous solution to evaluate their adsorption capacities. The 5Al biochar showed the highest adsorption capacity, compared to the uncoated biochar and other Al2O3 coated biochars, due to its improved hydrophilia. The amount of MB adsorbed onto the 5Al biochar was almost three times that adsorbed onto the uncoated biochar during the first hour of adsorption experiments. Adsorption isotherms were modeled with the Langmuir and Freundlich isotherms. The data fit well with the Langmuir isotherm, and the maximum adsorption capacities were found to be 26.8 and 35.0 mg/g at 25 °C for the uncoated biochar and 5Al biochar, respectively. The adsorbed MB amount per square meter achieved 1.3 mg/m2 onto the 5Al biochar, and it was twice the amount on the uncoated biochar. The experimental data were analyzed by pseudo-first-order and pseudo-second-order kinetics models of adsorption. The pseudo-second-order model better describes adsorption kinetic data for the uncoated biochar and 5Al biochar than the pseudo-first-order model does.  相似文献   

16.
The aim of this research was to evaluate the efficiency of electrocoagulation (EC) for the removal of natural organic matter (NOM) by using iron (Fe) and aluminum (Al) electrodes. The effects of several operational parameters such as initial pH (3–10), time of electrolysis (5–30 min), initial concentration of organic matter (10–50 mg NOM/L), current density (0.25–1.25 mA/cm2), type of electrode material (n = 4, 2 sides × 11 cm × 10 cm, wall thickness = 2 mm, distance between each electrode = 5 mm), and type of connection of electrodes (bipolar and monopolar configurations) were explored for the removal of NOM from synthetic humic acid solution in a 2 L laboratory-scale EC cells (A s/V = 0.110 cm?1). The optimum conditions for the process were identified as pH = 3 and 7, electrolysis time = 20 and 10 min for Fe and Al electrodes, respectively. Using both electrodes at current density = 0.25 mA/cm2 and initial concentration of organic matter = 50 mg/L, a NOM removal efficiency of almost 100% could be achieved in the bipolar mode. Based on the optimum conditions, specific reactor electrical energy consumptions were 14.90 kWh/kg Al (or 0.092 kWh/m3) and 2.88 kWh/kg Fe (or 0.11 kWh/m3). Specific electrode consumptions were obtained to be 0.0062 and 0.0382 kg/m3, and operating costs of the EC system were preliminary estimated at 0.057 and 0.119 $/m3 for Al and Fe electrodes, respectively.  相似文献   

17.
A new organic–inorganic composite cation exchanger polyaniline Sn(IV) silicate has been synthesized. The physicochemical properties of this ion exchanger were determined using different analytical techniques including fourier transform infrared spectroscopy, simultaneous thermogravimetry–differential thermogravimetry analyses, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and elemental analysis studies. Ion exchange capacity and effect of heating temperature on ion exchange capacity were also carried out on this ion exchange material. Adsorption properties for different metal ions have been investigated and the results revealed that polyaniline Sn(IV) silicate had the highest adsorption capacity for Cd2+ ion. It’s selectivity was tested by achieving some important binary separations. Dependence of adsorption on contact time, temperature, pH of the solution and exchanger dose had been studied to achieve the optimum conditions. Adsorption kinetic study showed that the adsorption process followed the first order kinetics. Adsorption data were fitted to linearly transformed Langmuir isotherm with R 2 (correlation coefficient) >0.99. The maximum removal of Cd2+ was found at pH 9. The adsorption was fast and the equilibrium established within 40 min. Thermodynamic parameters viz- entropy change, enthalpy change and Gibb’s free energy change were also calculated.  相似文献   

18.
A simple one-step synthetic approach using rice husk has been developed to prepare magnetic Fe3O4-loaded porous carbons composite (MRH) for removal of arsenate (As(V)). The characteristics of adsorbent were evaluated by transmission electron microscope, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and thermogravimetric analysis. On account of the combined advantages of rice husk carbons and Fe3O4 nanoparticles, the synthesized MRH composites showed excellent adsorption efficiency for aqueous As(V). The removal of As(V) by the MRH was studied as a function of contact time, initial concentration of As(V), and media pH. The adsorption kinetics of As(V) exhibited a rapid sorption dynamics by a pseudo-second-order kinetic model, implying the mechanism of chemisorption. The adsorption data of As(V) were fitted well to the Langmuir isotherm model, and the maximum uptake amount (q m ) was calculated as 4.33 mg g?1. The successive regeneration and reuse studies showed that the MRH kept the sorption efficiencies over five cycles. The obtained results demonstrate that the MRH can be utilized as an efficient and low-cost adsorbent for removal of As(V) from aqueous solutions.  相似文献   

19.
Novel bionanocomposites, S. cerevisiae–AgNPs, were synthesized by in situ formation of AgNPs on S. cerevisiae surface using fulvic acids as reductants under simulated sunlight. S. cerevisiae–AgNPs were characterized using UV–Vis spectroscopy, scanning electron microscope, transmission electron microscope and Fourier transform infrared spectroscopy. These analyses showed that AgNPs were distributed on the surface of S. cerevisiae. The application of S. cerevisiae–AgNPs in bacteria killing and heavy metal removal was studied. S. cerevisiae–AgNPs effectively inhibited the growth of E. coli with increasing concentrations of S. cerevisiae–AgNPs. E. coli was killed completely at high concentration S. cerevisiae–AgNPs (e.g., 100 or 200 µg mL?1). S. cerevisiae–AgNPs as excellent heavy metal absorbents also have been studied. Using Cd2+ as model heavy metal, batch experiments confirmed that the adsorption behavior fitted the Langmuir adsorption isotherms and the Cd2+ adsorption capacity of S. cerevisiae–AgNPs was 15.01 mg g?1. According to adsorption data, the kinetics of Cd2+ uptake by S. cerevisiae–AgNPs followed pseudo second-order kinetic model. Moreover, S. cerevisiae–AgNPs possessed ability of different heavy metals’ removal (e.g., Cr5+, As5+, Pb2+, Cu2+, Mn2+, Zn2+, Hg2+, Ni2+). The simulated contaminated water containing E. coli, Cd2+ and Pb2+ was treated using S. cerevisiae–AgNPs. The results indicated that the bionanocomposites can be used to develop antibacterial agents and bioremediation agents for water treatment.  相似文献   

20.
An activated carbon-impregnated cellulose filter was fabricated, and the capacity to remove dust and volatile organic compounds was evaluated in a laboratory. The adsorption capacities for benzene, toluene, ethyl benzene and m-xylene gases were compared by an adsorption isotherm test conducted as a preliminary test, showing that m-xylene and benzene were the most and least favorable for adsorption onto activated carbon, respectively. Cellulose filters were made with four levels of activated carbon contents, and dust removal was performed with all of the filters showing 99 % and higher efficiencies stable with a small variation during the experiment. Activated carbon content of 5 g in the unit filter area (125 g/m2) was found optimum for benzene, toluene, ethylbenzene and m-xylene removal, as it appeared that higher than 5 g activated carbon content was unnecessary for the improvement of its capacity. With increasing benzene, toluene, ethylbenzene and m-xylene loading, the highest removal rates were determined as 0.33–0.37 mg/cm2 s for as short as 0.0046 s of air filter residence time. The rapid removal was possible because of the high surface area of the activated carbon-impregnated cellulose filter provided by powdered activated carbon, which is distinguished from the granular form in conventional activated carbon towers. As fixed within a cellulose scaffolding structure, the powdered activated carbon performed excellent benzene, toluene, ethylbenzene, and m-xylene adsorption (98.9–100 %), and at the same time, particular matters were removed in average 99.7 % efficiency after being filtered through the cellulose filter sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号