首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 314 毫秒
1.
Co supported on ZSM-5 (Co-ZSM-5) catalysts was synthesized by wet ion exchange (WIE), impregnation (IM), and in situ hydrothermal (IHT) methods. Their adsorptive catalytic activities for the removal of VOC’s [Benzene, Toluene, Ethylbenzene and Toluene (BTEX)] in air were tested. The physicochemical properties were investigated by XRD, FTIR, SEM, XPS, and low-temperature N2 adsorption. The results indicate that the catalytic performance of Co-ZSM-5 for VOC’s abatement is effective and the synthesis methods reasonably influence the catalytic activity of Co-ZSM-5. Among three samples prepared by three different methods, the catalyst synthesized by the hydrothermal method possesses the highest adsorptive catalytic activity for BTEX oxidation. The optimized contact time was 60 min. The catalytic activities of the prepared catalysts are varied in the order of IHT > IM > WIE based on the combined removal capacity 59.24 > 34.46 > 23.82 (mg/g). For the Co-ZSM-5 WIE catalysts, the procedure has an evident effect on their catalytic performance. For example, the WIE catalysts prepared with cobalt chloride (II) by ion exchange have a higher acidity and surface area than the catalyst prepared with cobalt chloride (II) by impregnation method but less cobalt content. The excellent performance of IHT catalysts may be endorsed to the better availability of the oxidized form (Co3+), due to high content, higher surface area and acidity. Moreover, the Co-ZSM-5 catalyst synthesized by the IHT method shows high stability after being used.  相似文献   

2.
This study examines the sediment particle size distribution and the trace metal concentrations from a dammed-river watershed (Nestos River) to its deltaic zone in NE Greece. The study area is relatively unpolluted. The distribution of trace metals (Cu, Cr, Cd, Ni, Pb, Hg) in sediments throughout the catchment area showed selective “trapping” of certain elements behind the two artificial dams (Thissavros and Platanovrisi dams) in the watershed and a sudden reduction downstream (83% for Cd, 81% for Cr, 94% for Cu, 90% for Ni, 86% for Hg and 33% for Pb). Marked sediment particle separation is observed at the upstream dam (Thissavros), where coarse material including sand is trapped (coarse fraction 12.9–49.3%). Fine-grained material (<63 μm) is trapped behind the Platanovrisi dam (68.1%), and the reservoir showed elevated metal concentrations, especially for Cu and Cd (16.3 and 0.5 μg/g, respectively). Lead exhibited a homogenous distribution throughout the watershed (20.1–32.3 μg/g). All other trace metals (Cu, Cr, Cd, Ni and Hg) decline sharply downstream of the dam complex. In the delta system, nearshore sediments consist of shallow deposits in the vicinity of river mouth and are enriched in Cr (4.4–53.0 μg/g) and Ni (2.6–44.3 μg/g), while the further offshore and slightly deeper (20–40 m) sediments illustrate elevated Hg (0–0.07 μg/g), Cd (0.09–0.18 μg/g), Cu (11.5–18.3 μg/g) and Ni (38–54.5 μg/g).  相似文献   

3.
Environmental geochemical studies were carried out to find out the extent of contamination in sediments due to heavy metals in Balanagar industrial area, Hyderabad, Andhra Pradesh, India. The industrial area consisting of 350 small and large industries manufacturing battery, steel planting, pharmaceutical chemicals, metal plating, etc. The present study was undertaken on sediment contamination in Balanagar industrial area, to determine extent and distribution of heavy metals (Cu, Cr, Ni, Pb, Zn, As) and to delineate the source. There is no treatment plant in the industrial area, and many industries release the effluents into nearby nalas and lakes. Solid waste from the industries is also being dumped along the roads and near the open grounds due to which heavy metals migrate from solid waste to the groundwater. The sediments samples were collected from the study area in clean polythene covers and were analyzed for their heavy metals by X-ray fluorescence spectrometry. The concentration ranges of different heavy metals were Cr, 96.2–439.6 mg/kg; Cu, 95.7–810 mg/kg; Ni, 32.3–13,068.2 mg/kg; Pb, 59.2–512 mg/kg; Zn, 157.1–4,630.5 mg/kg; Co, 1.8–48.3 mg/kg; and V, 35.2–308.5 mg/kg. High concentration of heavy metals in sediments can be attributed to some pharmaceutical and metal industries in the study area. Based on the results obtained, suitable remedial measures can be adopted such as phytoremediation and bio-remediation for reduction of heavy metals in sediments.  相似文献   

4.
Adsorptive separation of Pb(II) and Cu(II) using modified waste Lyocell fiber adsorbent was investigated in this research. The waste Lyocell fiber was functionalized through carboxymethylation of the hydroxyl moieties using sodium chloroacetate as modifying agent and was crosslinked with epichlorohydrin to provide water stability. The maximum equilibrium batch uptake in single metal system was 353.45 mg/g for Pb(II) and 98.33 mg/g for Cu(II), according to the Langmuir isotherm model. The adsorption rates were very fast and reached equilibrium within 3 and 5?10 min for Cu(II) and Pb(II), respectively. In competitive binary metal system, the uptake of Cu(II) largely decreased to 38.40 mg/g, and Pb(II) selectivity was observed. Elemental and functional characterization suggested that the adsorption proceeded by ion exchange between the adsorbent and metal ions. In a flow-through column system, adsorption followed by desorption aided in effectively eluting ~260 mg of Pb(II) (out of ~300 mg total adsorbed) from the Pb(II)–Cu(II) binary solution. Finally, the adsorbent was very effective in four successive adsorption–desorption cycles with over 99 % uptake and 94 % desorption efficiencies. The present study may provide an alternative option for waste fiber recycling and could be useful in recovering heavy metal ions from aqueous sources to complement their depleting reserves.  相似文献   

5.
An increase in heavy metal pollution in the soils of Hassi Messaoud (Algeria) due to intense industrialization and urbanization has become a serious environmental problem. There are three large industrial complexes that have been established in the region of Hassi Messaoud for petroleum extraction field and refinery. The region hosts several industrial facilities which are the main sources for hazardous wastes. Surface soil samples from 58 sampling sites (systematically sampled; 1 × 1 km regular grid), including different functional areas in Hassi Messaoud, were collected and analyzed. The results showed that the average concentrations of Cu, Ni, Mn, Pb and Zn in soil of Hassi Messaoud were up to 13.17, 35.78, 121.21, 130.97 and 61.08 mg/kg, respectively. Ni concentrations were comparable to background values, while Cu, Mn, Pb and Zn concentrations were higher than their corresponding background values. Among the functional areas, the industrial regions displayed the highest metal concentrations, while the lowest concentrations occurred in rural soil. Principal component analysis coupled with cluster analysis showed that: (1) Pb and Zn had anthropogenic sources; and (2) Ni, Cu and Mn were associated with parent materials. Contaminations in soils were classified as geoaccumulation index and enrichment factor. Pollution index values of Cu, Ni, Mn, Pb and Zn varied in the range of 0.04–5.41, 0.46–2.49, 0.01–5.73, 0.62–152.9 and 0.09–53.01, with mean values of 1.32, 1.08, 1.26, 5.64 and 3.1, respectively. The integrated pollution index (IPI) of all the analyzed samples varied from 0.42 to 31.59, with a mean of 2.48, and more than 5.45 % of samples are extremely contaminated; 18.18 % are heavily contaminated; 60 % are moderately contaminated; and others are low contaminated. The spatial distribution of IPI showed that desert and rural areas displayed relatively lower heavy metal contamination in comparison with other areas.  相似文献   

6.
Heavy metal accumulation due to industrial activities has become a very sensitive issue for the survival of the aquatic life. Therefore, distributions of several heavy metals have been studied in the surface sediments of Tapti–Hazira estuary, Surat, to assess the impact of anthropogenic and industrial activities near estuary. Totally 60 sediment samples were collected from four different sites at Tapti–Hazira estuary, Surat from January 2011 to May 2011 and examined for metal contents. The average heavy metal load in the study area are found to be 43.28–77.74 mg/kg for Pb, 48.26–72.40 mg/kg for Cr, 117.47–178.80 mg/kg for Zn, 71.13–107.82 mg/kg for Ni, 123.17–170.52 mg/kg for Cu, 0.74–1.25 mg/kg for Cd, 14.73–21.69 mg/kg for Co. Calculated enrichment factors (EF) reveal that enrichment of Pb and Cd is moderate at all sites, whereas other metals Cr, Ni, Zn, Co, and Cu show significant to very high enrichment. Geo-accumulation index (I geo) results revealed that the study area is nil to moderately contaminated with respect to Cd, moderately to highly polluted with respect to Pb, Zn, and Cu and high to very highly polluted with respect to Co and Cr.  相似文献   

7.
Concentrations of trace elements such as As, Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn and Zr were studied in soils to understand metal contamination due to agriculture and geogenic activities in Chinnaeru River Basin, Nalgonda District, India. This area is affected by the geogenic fluoride contamination. The contamination of the soils was assessed on the basis of geoaccumulation index, enrichment factor (EF), contamination factor and degree of contamination. Forty-four soil samples were collected from the agricultural field from the study area from top 10–50 cm layer of soil. Soil samples were analyzed for trace elements using X-ray fluorescence spectrometer. Data revealed that soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Ba (370–1,710 mg/kg), Cr (8.7–543 mg/kg), Cu (7.7–96.6 mg/kg), Ni (5.4–168 mg/kg), Rb (29.6–223 mg/kg), Sr (134–438 mg/kg), Zr (141.2–8,232 mg/kg) and Zn (29–478 mg/kg). The concentration of other elements was similar to the levels in the earth’s crust or pointed to metal depletion in the soil (EF < 1). The high EFs for some trace elements obtained in soil samples show that there is a considerable heavy metal pollution, which could be due to excessive use of fertilizers and pesticides used for agricultural or may be due to natural geogenic processes in the area. Comparative study has been made with other soil-polluted heavy metal areas and its mobility in soil and groundwater has been discussed. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may result in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

8.
The present study to find seasonal (September 2010–June 2011) heavy metal (Cd, Pb, Cr, Co, Ni, Zn, Cu, Fe, As) contamination and the origins thereof in surface sediments of Gökçekaya Dam Lake, as constructed on Sakarya River, the third-longest river in Turkey and the largest river of the Northwestern Anatolia. Upon analyses for the purpose thereof, heavy metal contamination in annual average concentrations in the lake sediment varied, respectively, as Fe > Zn > Cr > Ni > Cu > Pb > Co > As > Cd. Statistical assessments performed in order to see whether the average values of the heavy metal contamination as measured at stations placed in the lake changed by seasonal periods. There found statistically significant differences especially in Cd, Zn, and Pb between seasonal periods. In accordance with the Sediment Quality Index, Gökçekaya Dam Lake sediment was classified as “highly polluted” in terms of the amount of anthropogenic contaminants of As, Cr, Cu, Ni, Pb, and Zn. Enrichment factor and geoaccumulation index values (I geo) were calculated in order to geochemically interpret the source of contamination due to heavy metal concentration in the lake sediment and the level of pollution. The As, Co, Cr, Cu, Ni Pb, and Zn values demonstrated that the sediment was rich for anthropogenic contaminants. The lake was found especially rich for arsenic (14.97–34.70 mg/kg) and lead (68.75–98.65 mg/kg) in accordance with annual average values. In general the lake was geochemically characterized as “moderately contaminated” in terms of As, Co, Cr, Cu, Ni, Pb, and Zn content.  相似文献   

9.
This article presents the results on distribution and enrichment pattern of acid-leachable trace metals (ALTMs) from roadside soil of Miri city, Sarawak, East Malaysia. The city is one of the fastest developing in the Malaysian region with huge petroleum resources. ALTMs Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd along with organic carbon and carbonates (CaCO3) were analyzed in 37 soil sediments collected from roadside. The enrichment of ALTMs [especially Cu (0.4–13.1 μg g?1), Zn (9.3–70.7 μg g?1), Pb (13.8–99.1 μg g?1)] in the roadside soils indicate that these metals are mainly derived from sources related to traffic exhausts, forest fires and oil refineries. The comparative study and enrichment pattern of elements indicates that Mn, Cu, Zn and Pb are enriched multi-fold than the unpolluted soil and Ni, Pb, Cd in some samples compared to Sediment Quality Guidelines like Lowest Effect Level (LEL) and Effects Range Low (ERL) in the region which is mainly due to the recent industrial developments in the region.  相似文献   

10.
The technique of diffusive gradients in thin films (DGT) was applied to obtain high-resolution vertical profiles of trace metals in sediment porewater of a eutrophic lake, Lake Chaohu. All sampling sediments were under anaerobic conditions with Eh values below 0, the redox potential profile in M4 was relatively stable, and higher Eh values in M4 than that in M1 were observed due to hydrodynamic effects. Fe, Mn and As exhibited closely corresponding profiles due to the co-release of Fe and Mn oxides and the reduction of As. Higher Fe and Mn concentrations and lower As concentrations were observed in M1 of the western half-lake than those in M4 of the eastern half-lake due to different sources and metal contamination levels in the two regions. Cu and Zn showed increasing concentrations similar to Mn and Fe at 1–2 cm depth of sediments, while DGT measured Co, Ni, Cd and Pb concentrations decreased down to 3–4 cm in the profiles. Co, Ni, Cu, Zn, Cd and Pb showed insignificant regional concentration variances in the western and eastern half-lakes. According to the R(C DGT/C centrifugation) values, the rank order of metal labilities decrease as follows: Fe (>1) > Cu, Pb, Zn (>0.9) > Co, Ni, Cd (>0.3) > Mn, As (>0.1).  相似文献   

11.
The Platinova Reef, in the Skaergaard Intrusion, east Greenland, is an example of a magmatic Cu–PGE–Au sulfide deposit formed in the latter stages of magmatic differentiation. As is characteristic with such deposits, it contains a low volume of sulfide, displays peak metal offsets and is Cu rich but Ni poor. However, even for such deposits, the Platinova Reef contains extremely low volumes of sulfide and the highest Pd and Au tenor sulfides of any magmatic ore deposit. Here, we present the first LA-ICP-MS analyses of sulfide microdroplets from the Platinova Reef, which show that they have the highest Se concentrations (up to 1200 ppm) and lowest S/Se ratios (190–700) of any known magmatic sulfide deposit and have significant Te enrichment. In addition, where sulfide volume increases, there is a change from high Pd-tenor microdroplets trapped in situ to larger, low tenor sulfides. The transition between these two sulfide regimes is marked by sharp peaks in Au, and then Te concentration, followed by a wider peak in Se, which gradually decreases with height. Mineralogical evidence implies that there is no significant post-magmatic hydrothermal S loss and that the metal profiles are essentially a function of magmatic processes. We propose that to generate these extreme precious and semimetal contents, the sulfides must have formed from an anomalously metal-rich package of magma, possibly formed via the dissolution of a previously PGE-enriched sulfide. Other processes such as kinetic diffusion may have also occurred alongside this to produce the ultra-high tenors. The characteristic metal offset pattern observed is largely controlled by partitioning effects, producing offset peaks in the order Pt+Pd>Au>Te>Se>Cu that are entirely consistent with published D values. This study confirms that extreme enrichment in sulfide droplets can occur in closed-system layered intrusions in situ, but this will characteristically form ore deposits that are so low in sulfide that they do not conform to conventional deposit models for Cu–Ni–PGE sulfides which require very high R factors, and settling of sulfide liquids.  相似文献   

12.
In the present study, bulk contents of Ni, Zn, Cu, Pb and Mn in urban area of Tehran city are determined. Subsequently, the chemical bonds of metals with various soil fractions are brought out. Chemical partitioning studies revealed that various percentile of Ni, Zn, Cu, Pb and Mn is found in anthropogenic portion of soils. Zinc, Ni, Cu, Pb and Mn fall within “low pollution” class in accordance with index of pollution (I POLL). The trend of anthropogenic share of studied metals in soils of Tehran is Zn (55 %) > Cu (31 %) > Ni and Pb (30 %) > Mn (12 %). The overall potential of studied plants in metal removal from soil is Salvia > Viola > Portulaca. It should be pointed out that roots have higher potential in metal removal from soil when compared with leaf and stem. Lithogenic portion of metals remains intact before and after pot analysis. Thus, phytoremediation is highly dependent on the chemical bonds of metals. Present study showed that metal contents of loosely bonded ions, sulfide bonds and organometallic bonds are reduced after 90 days of plant cultivation. The overall removal trend of studied metals is Zn (16 %) > Cu (14 %) > Ni (11 %) > Pb (7 %) > Mn (6 %). The obtained results show that the anthropogenic portion of metals is reduced after the phytoremediation practice. For instance, the initial anthropogenic portion of Zn (55 %) is changed to 39 % showing an overall reduction of about 16 %. The anthropogenic portions of Cu, Ni, Pb and Mn are also reduced by 14, 11, 7 and 6 %, respectively.  相似文献   

13.
The Barmer Basin of Rajasthan is significant for its Paleogene lignite sequences. The lignite seam occurs in Akli Formation of Barmer Basin at the depth of 06–241 m. A total of 57 lignite samples were collected from the working faces of lignite mine and were subjected to proximate analysis (moisture, ash yield, volatile matter, and fixed carbon), ultimate analysis (carbon, hydrogen, nitrogen, oxygen and sulfur), elemental analysis (Fe, Ca, Mg, Cd, Mn, K, Na, Cu, Co, Ni, Cr, Zn, and Pb) and rock-eval pyrolysis for mineral carbon (MINC). Some elements like Cu, Cd, Co, Ni, Zn, Pb, Na, and K occur in high concentration, while Mg and Ca have their concentrations lower than World Clarke average. In addition, various minerals and functional groups present in the lignite samples were analyzed through X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy. The mineral (weight and atomic) percentage has also been analyzed through scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS).  相似文献   

14.
Ni, Co, and Zn are widely distributed in the Earth’s mantle as significant minor elements that may offer insights into the chemistry of melting in the mantle. To better understand the distribution of Ni2+, Co2+, and Zn2+ in the most abundant silicate phases in the transition zone and the upper mantle, we have analyzed the crystal chemistry of wadsleyite (Mg2SiO4), ringwoodite (Mg2SiO4), forsterite (Mg2SiO4), and clinoenstatite (Mg2Si2O6) synthesized at 12–20 GPa and 1200–1400 °C with 1.5–3 wt% of either NiO, CoO, or ZnO in starting materials. Single-crystal X-ray diffraction analyses demonstrate that significant amounts of Ni, Co, and Zn are incorporated in octahedral sites in wadsleyite (up to 7.1 at%), ringwoodite (up to 11.3 at%), olivine (up to 2.0 at%), and clinoenstatite (up to 3.2 at%). Crystal structure refinements indicate that crystal field stabilization energy (CFSE) controls both cation ordering and transition metal partitioning in coexisting minerals. According to electron microprobe analyses, Ni and Co partition preferentially into forsterite and wadsleyite relative to coexisting clinoenstatite. Ni strongly prefers ringwoodite over coexisting wadsleyite with \({D}_{\text{Ni}}^{\text{Rw}/\text{Wd}}\)?=?4.13. Due to decreasing metal–oxygen distances with rising pressure, crystal field effect on distribution of divalent metal ions in magnesium silicates is more critical in the transition zone relative to the upper mantle. Analyses of Ni partitioning between the major upper-mantle phases implies that Ni-rich olivine in ultramafic rocks can be indicative of near-primary magmas.  相似文献   

15.
Heavy metals are known to pose a potential threat to terrestrial and aquatic flora and fauna. Due to increasing human influence, heavy metal concentrations are rising in many mangrove ecosystems. Therefore, an assessment of heavy metal (Cd, Cr, Cu, Ni, Pb, Fe, Mn, and Zn) concentrations was conducted within the bulk soil and rhizosphere soil of Avicennia marina at the Pichavaram Mangrove Forest in India. The rhizosphere soil showed higher concentrations of metals than the bulk soil. Compared to the bulk soil, the metals Cd, Fe, Mn, and Zn were 6.0–16.7% higher, whereas Cr, Cu, Ni, and Pb were 1.7–2.8% higher concentration. Among the three selected sampling sites (dense mangrove forest, estuarine region, and sea region), the sea region had the highest concentration of all heavy metals except Zn. The trend of the mean metal concentration was Fe > Mn > Cr > Ni > Cu > Pb > Zn > Cd. Heavy metals concentrations elevated by the 2004 tsunami were persistent even after 4 years, due to sedimentary soil processes, the rhizosphere effect of mangroves, and anthropogenic deposition. Analysis of the heavy metal-resistant bacteria showed highest bacterial count for Cr-resistant bacteria and rhizosphere soil. The maximum level of heavy metal-resistant bacteria was observed at the site with the highest heavy metal contamination. The heavy metal-resistant bacteria can be used as indicator of heavy metal pollution and furthermore in bioremediation.  相似文献   

16.
A number of mafic–ultramafic intrusions that host Ni–Cu sulfide mineralization occur in the northeastern Tarim Craton and the eastern Tianshan Orogenic Belt (NW China). The sulfide-mineralized Pobei mafic–ultramafic complex is located in the northeastern part of the Tarim Craton. The complex is composed of gabbro and olivine gabbro, cut by dunite, wehrlite, and melatroctolite of the Poyi and Poshi intrusions. Disseminated Ni–Cu sulfide mineralization is present towards the base of the ultramafic bodies. The sulfide mineralization is typically low grade (<0.5 wt.% Ni and <2 wt.% S) with low platinum-group element (PGE) concentrations (<24.5 ppb Pt and <69 ppb Pd); the abundance of Cu in 100 % sulfide is 1–8 wt.%, and Ni abundance in 100 % sulfide is typically >4 wt.%. Samples from the Pobei complex have εNd (at 280 Ma) values up to +8.1, consistent with the derivation of the magma from an asthenospheric mantle source. Fo 89.5 mol.% olivine from the ultramafic bodies is consistent with a primitive parental magma. Sulfide-bearing dunite and wehrlite have high Cu/Pd ratios ranging from 24,000 to 218,000, indicating a magma that evolved under conditions of sulfide saturation. The grades of Ni, Cu, and PGE in 100 % sulfide show a strong positive correlation. A model for these variations is proposed where the mantle source of the Pobei magma retained ~0.033 wt.% sulfide during the production of a PGE-depleted parental magma. The parental magma migrated from the mantle to the crust and underwent further S saturation to generate the observed mineralization along with its high Cu/Pd ratio at an R-factor varying from 100 to 1,200. The mineralization at Poshi and Poyi has very high γOs (at 280 Ma) values (+30 to +292) that are negatively correlated with the abundance of Os in 100 % sulfide (5.81–271 ppb) and positively correlated with the Re/Os ratios; this indicates that sulfide saturation was triggered by the assimilation of crustal sulfide with both high γOs and Re/Os ratios. When compared to other Permian mafic–ultramafic intrusions with sulfide mineralization in the East Tianshan, the Poyi and Poshi ultramafic bodies were formed from more primitive magmas, and this helps to explain why the sulfide mineralization has high Ni tenor.  相似文献   

17.
The concentrations of metals (Pb, Cu, Zn, Co, Ni, Fe and Mn) in the <2.5 μm fraction of surface soils (0–5 cm) from highly industrialized areas in Xuzhou (China) were determined. All analyzed metals with the exception of Mn and Co in the present study showed elevated concentrations in the <2.5 μm fraction of soils compared to background concentrations, particularly for Zn. Metal enrichment was positively correlated with carbonate complexation constants (but not bulk solubility products) as well as the first stability constants of metal-citrate, likely suggesting that both metal–organic complexation and/or precipitation of carbonate surfaces that subsequently adsorb metals are likely responsible for these metal enrichment on these samples. Sequential extraction analysis shows the metals Pb, Cu, Zn, Co and Mn were largely associated with the reducible fraction, whereas Ni was largely associated with the oxidisable fraction. Manganese is the only metal showing significant association with the exchangeable fraction (up to 33 %), suggesting that it may be the most susceptible metal to mobilization. Mineral magnetic analysis indicates that ferrimagnetic SSD + SP (stable single domain + superparamagnetic) minerals dominated the <2.5 μm fraction of Xuzhou surface soils. Lead, Cu and Zn were found to show significant correlations with χlf (p < 0.01), suggesting that magnetic technique might be beneficially used as a rapid and inexpensive method to estimate these metal contaminations in the <2.5 μm fraction of surface soils.  相似文献   

18.
The concentrations of Hg, Cu, Pb, Cr, and Ni in soil samples collected from a specialized salt production site at Zhongba in the Three Gorges Reservoir region of the Yangtze River in China were analyzed to reconstruct the heavy metal contamination contexts of different historic periods over the last 4,500 years. The results show that the observed sequence for individual levels of heavy metal pollution was as follows: Hg > Cu > Ni > Pb ≈ Cr. Hg pollution was high during every time period except the Ming Dynasty, with peaks being observed from the Spring and Autumn period. The pollution of Cu and Ni peaked during the Xi Zhou and Xia Dynasties, respectively. The pollution level of Pb has gradually increased since the Qin Dynasty and has coincided with the use of leaded gasoline. Cr contamination was moderate in all soil strata with little indication of change. Comprehensive heavy metal contamination was high during all of these periods, except during the Ming Dynasty, with peaks being observed between the Spring and Autumn Period and throughout the Warring States Period. Enrichment factors (EFs) were used to obtain information on heavy metal sources. The EFs indicate that most of the Hg and Cu originated from human activities, whereas Pb, Cr, and Ni predominantly came from crust weathering. Several preliminary inferences regarding the development of heavy metal utilization in the area were generated. Cu usage had developed well during the Xi Zhou Dynasty and the Autumn Period. Hg usage emerged during the Xia Dynasty and matured between the Spring and Autumn Period and the Warring States Period. Ni usage conceivably started during the Xia Dynasty. Other factors, such as religious activities, technology, environmental awareness and the intensity of salt production, have also affected heavy metal pollution concentrations.  相似文献   

19.
The concentrations of Cd, Cu, Mn, Ni, Pb, Fe and Zn were determined in superficial sediments extracted from nine zones of Budi Lagoon, located in the Araucanía Region (Chile). The concentrations of these metals were determined by flame atomic absorption spectroscopy and the method was validated using certified reference material (marine sediment). The concentration ranges found for the trace elements were: Pb < 0.5; Cd < 0.2–3.9; Cu 21.8–61.9; Ni 31.2–59.4; Zn 54.5–94.8 mgkg?1 (dry weight). The elements that registered the highest concentrations were Mn 285.4–989.8 mgkg?1 and Fe 4.8–10.6 %. The lagoon cluster analysis of the stations was divided into three groups (Temo station with high Cu and low Mn concentrations, Bolleco, Comué, Allipén and Deume 3 stations presented highest Cd concentration, and another group Botapulli, Río Budi, Deume 2 and Deume 1 stations presented low levels of Cd). The textural characteristics of the sediment were determined (gravel, sand and mud) and the results were correlated with the concentrations of the metals in the various study zones. The sediments of Budi Lagoon presented high levels of Fe and Mn, which are of natural origin and exceed the maximum values recorded by many authors. With respect to the recorded concentrations for Cd, Cu, Ni and Zn, are within the ranges published by other authors in similar works. The Pb element was not detected. The results were subjected to statistical analysis to evaluate the correlations between the content of the elements and obtain the site of sediment.  相似文献   

20.
A systematic study was carried out on the preparation and application of metal-loaded polypropylene-divinyl benzene resin for dibenzothiophene adsorption. Amidoxime groups over used industrial polypropylene-divinyl benzene chelating resin were regenerated through a chemical graft reaction, and the highest regeneration efficiency of about 90 % can be reached. Different metal phases (Zn, Ni, Cu, Fe, Bi, and Ag) were introduced to the regenerated resin via an incipient-wetness impregnation method to examine their desulfurization efficiency. The desulfurization efficiency of ca. 86.3 % can be gained over Zn-loaded resin (Zn-R) under optimized reaction conditions. The order of different desulfurization influencing factors was further verified according to the orthogonal experiments, that is, desulfurization temperature > metal loading content > space velocity > organic sulfur concentration. Distribution of adsorption products was analyzed, and the results reveal that the metal-modified resins can effectively remove the organic sulfur compounds in diesel oil without loss of its octane value. The desulfurization effect of metal-contained resins is primary determined by the π-complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号