首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The removal of poisonous Pb (II) from wastewater by different low-cost abundant adsorbents was investigated. Rice husks, maize cobs and sawdust, were used at different adsorbent/metal ion ratios. The influence of pH, contact time, metal concentration, adsorbent concentration on the selectivity and sensitivity of the removal process was investigated. The adsorption efficiencies were found to be pH dependent, increasing by increasing the solution pH in the range from 2.5 to 6.5. The equilibrium time was attained after 120 min and the maximum removal percentage was achieved at an adsorbent loading weight of 1.5 gm. The equilibrium adsorption capacity of adsorbents used for lead were measured and extrapolated using linear Freundlich, Langmuir and Temkin isotherms and the experimental data were found to fit the Temkin isotherm model.  相似文献   

2.
This paper reports the potential of chemically treated wood chips to remove copper (II) ions from aqueous solution a function of pH, adsorbent dose, initial copper (II) concentration and contact time by batch technique. The wood chips were treated with (a) boiling, (b) formaldehyde and (c) concentrated sulphuric acid and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive analysis X-ray. pH 5.0 was optimum with 86.1, 88.5 and 93.9 % copper (II) removal by boiled, formaldehyde-treated and concentrated sulphuric acid-treated wood chips, respectively, for dilute solutions at 20 g L?1 adsorbent dose. The experimental data were analysed using Freundlich, Langmuir, Dubinin–Radushkevich and Temkin isotherm models. It was found that Freundlich and Langmuir models fitted better the equilibrium adsorption data and the adsorption process followed pseudo-second-order reaction kinetics. The results showed that the copper (II) is considerably adsorbed on wood chips and it could be an economical option for the removal of copper from aqueous systems.  相似文献   

3.
Removal of dyes by low-cost adsorbents is an effective method in wastewater treatment. Iranian natural clays were determined to be effective adsorbents for removal of a basic dye (methylene blue) from aqueous solutions in batch processes. Characterizations of the clays were carried out by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis and field-emission scanning electron microscopy. Effects of the operational parameters such as adsorbent dosage, initial dye concentration, solution pH and temperature were investigated on the adsorption performance. Adsorption isotherms like Langmuir, Freundlich and Temkin were used to analyze the adsorption equilibrium data and Langmuir isotherm was the best fit. Adsorption kinetics was investigated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models and the results showed that the adsorption system conforms well to the pseudo-second-order model. The thermodynamic parameters of adsorption (ΔS°, ΔH° and ΔG°) were obtained and showed that the adsorption processes were exothermic.  相似文献   

4.
A zinc oxide-coated nanoporous carbon sorbent was prepared by acid modification and ZnO functionalization of mesoporous carbon. The synthesized materials, such as mesoporous carbon, oxidized mesoporous carbon and zinc oxide-coated nanoporous carbon, were characterized by nitrogen adsorption–desorption analysis, Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. ZnO on oxidized mesoporous carbon gradually increased with increase in the number of cycles. Furthermore, the effects of agitation time, initial metal ions concentration, adsorbent dose, temperature and pH on the efficiency of Pb(II) ion removal were investigated as the controllable factors by Taguchi method. The value of correlation coefficients showed that the equilibrium data fitted well to the Langmuir isotherm. Among the adsorbents, zinc oxide-coated nanoporous carbon showed the largest adsorption capacity of 522.8 mg/g (2.52 mmol/g) which was almost close to that of the zinc oxide-coated (2.38 mmol/g), indicating the monolayer spreading of ZnO onto the oxidized mesoporous carbon. The results of the present study suggest that ZnO-coated nanoporous carbon can be effectively used for Pb(II) adsorption from aqueous solution, whereas a part of acidic functional groups may be contributed to binding the Pb(II) for the oxidized mesoporous carbon and mesoporous carbon. Kinetic studies indicated that the overall adsorption process of Pb(II) followed the pseudo-second-order model. The ZnO-coated nanoporous carbon was regenerated and found to be suitable of reuse of the adsorbent for successive adsorption–desorption cycles without considerable loss of adsorption capacity.  相似文献   

5.
The most appropriate method in designing the adsorption systems and assessing the performance of the adsorption systems is to have an idea on adsorption isotherms. Comparison analysis of linear least square method and nonlinear method for estimating the isotherm parameters was made using the experimental equilibrium data of Zn(II) and Cu(II) onto kaolinite. Equilibrium data were fitted to Freundlich, Langmuir, and Redlich–Peterson isotherm equations. In order to confirm the best-fit isotherms for the adsorption system, the data set using the chi-square (χ 2), combined with the values of the determined coefficient (r 2) was analyzed. Nonlinear method was found to be a more appropriate method for estimating the isotherm parameters. The best fitting isotherm was the Langmuir and Redlich–Peterson isotherm. The Redlich–Peterson is a special case of Langmuir when the Redlich–Peterson isotherm constant g was unity. The sorption capacity of kaolinite to uptake metal ions in the increasing order was given by Cu (4.2721 mg/g)?<?Zn (4.6710 mg/g).  相似文献   

6.
Adsorption kinetic and equilibrium studies of two reactive dyes, namely, Reactive Red 31 and Reactive Red 2 were conducted. The equilibrium studies were conducted for various operational parameters such as initial dye concentration, pH, agitation speed, adsorbent dosage and temperature. The initial dye concentration was varied from 10 - 60 mg/L, pH from 2–11, agitation speed from 100–140 rpm, adsorbent dosage from 0.5 g to 2.5 g and temperature from 30 °C -50 °C respectively. The activated carbon of particle size 600 μm was developed from preliminary tannery sludge. The dye removal capacity of the two reactive red dyes decreased with increasing pH. The zero point charge for the sludge carbon was 9.0 and 7.0 for the two dyes, respectively. Batch kinetic data investigations on the removal of reactive dyes using tannery sludge activated carbon have been well described by the lagergren plots. It was suggested that the Pseudo second order adsorption mechanism was predominant for the sorption of the reactive dyes onto the tannery sludge based carbon. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data fitted well with Langmuir model than the Freundlich model. The maximum adsorption capacity(q0) from Langmuir isotherm were found to have increased in the range of 23.15–39.37 mg/g and 47.62–55.87 mg/g for reactive dyes reactive red 31 and reactive red 2, respectively.  相似文献   

7.
Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, in contrast to the traditionally used calcium alginate beads. Our adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h, and the removal efficiency of chromium(VI) was found to be 95 %. The adsorption data were applied to Langmuir, Freundlich, Dubinin–Redushkevich (D–R), and Temkin isotherm equations. Both Langmuir and Freundlich isotherm constants indicated a favorable adsorption. The value of mean sorption energy calculated from D–R isoterm indicates that the adsorption is essentially physical. The high maximum chromium(VI) adsorption capacity was determined from the Langmuir isotherm as 36.5 mg/g dry alginate beads. The chromium(VI) adsorption data were analyzed using several kinetic models such as the pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models, and the rate constants were quantified. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium(VI) from contaminated waters.  相似文献   

8.
A novel polyurethane foam/organobentonite/iron oxide nanocomposite adsorbent was successfully prepared via in situ polymerization of toluene diisocyanate and polyol in presence of 5 wt% organobentonite/iron oxide. The obtained nanocomposite was characterized in detail, and the results revealed that the clay layers are exfoliated and/or intercalated in the polymer matrix forming a nanocomposite structure. The application of the prepared nanocomposite for adsorption of cadmium ions from aqueous solution was tested as a function of various experimental parameters using batch procedures. Adsorptive removal of Cd(II) onto the nanocomposite attained maximum at adsorbent content 1.5 g/L, pH 6, and the equilibrium was established within 60 min. Kinetic studies showed that the experimental data fit very well to pseudo-second-order model, and the adsorption process proceeds through three steps. It was found that external liquid film and intraparticle diffusion steps deeply affect the rate of Cd2+ ions adsorption onto the synthesized nanocomposite. Langmuir isotherm model fitted the adsorption data better than Freundlich with a maximum adsorption capacity (q m) for Cd(II) equal to 78 mg/g under the specified experimental conditions. The synthesized nanocomposite afforded effective extraction for Cd2+ ions from natural water samples and excellent reusability feature. This study declares the potential efficiency of a new clay/polymer nanocomposite as alternative for wastewater remediation.  相似文献   

9.
This study was focused on nettle ash as an alternative adsorbent for the removal of nickel (II) and cadmium (II) from wastewater. Batch experiments were conducted to determine the factors affecting adsorption of nickel (II) and cadmium (II). The adsorption process is affected by various parameters such as contact time, solution pH and adsorbent dose. The optimum pH required for maximum adsorption was found to be 6. The experimental data were tested using Langmuir, Freundlich and Tempkin equations. The data were fitted well to the Langmuir isotherm with monolayer adsorption capacity of 192.3 and 142.8 mg/g for nickel and cadmium, respectively. The adsorption kinetics were best described by the pseudo second order model. The cost of removal is expected to be quite low, as the adsorbent is cheap and easily available in large quantities. The present study showed that nettle ash was capable of removing nickel and cadmium ions from aqueous solution.  相似文献   

10.
Open burnt clay was studied as a potential adsorbent for the adsorption of Congo red (a reactive dye) from aqueous solution. The effect of contact time, pH, adsorbent dosage and temperature were studied. It was observed that the amount of Congo red retained increase with decreasing pH and increasing initial concentration. Removal percentage at pH 2 and 3 are almost same. The adsorption capacity of regenerated burnt clay was showed more than 98 % recovery of the adsorption efficiency of initial virgin adsorbent. The equilibrium data were described well by both Langmuir and Freundlich isotherm model. The adsorption capacity of some natural adsorbents, namely rice husk, wood charcoal, tea waste etc. were also investigated and compared with that of open burnt clay.  相似文献   

11.
In this study, teff (Eragrostis tef) straw has been chemically treated and tested as an adsorbent for Cr(VI) removal. Chemically treatment of teff straw was done by NaOH, H3PO4 and ZnCl2 solutions. Scanning electron micrograph and X-ray diffraction were used for anatomical characterization, whereas Fourier transform infrared spectroscopy was used for surface change characterization of adsorbents. Effects of different experimental parameters like pH (2–12), initial Cr(VI) concentration (100–900 mg/L), adsorbent dose (2.5–20 g/L), contact time (15–360 min) and temperature (288–318 K) were studied. Temperature increment was found to stimulate the adsorption process. Langmuir isotherm was found to give better representation over wide range of temperature for untreated, H3PO4- as well as ZnCl2-treated teff straw, and Freundlich isotherm best represented the isotherm data for NaOH-treated teff straw. Maximum Cr(VI) adsorption capacity of untreated, NaOH-, H3PO4- and ZnCl2-treated teff straw was found to be 86.1, 73.8, 89.3 and 88.9 mg/g, respectively. Respective values of average effective diffusion coefficient (D e) were found to be 2.8 × 10?13, 2.59 × 10?14, 1.32 × 10?13 and 1.14 × 10?13 m2/s, respectively. The negative value of ΔG o for all the adsorbents indicates Cr(VI) spontaneous adsorption. Isosteric heat of adsorption (ΔH st,a) was found to vary with surface coverage (θ). ΔH st,a increased for untreated, H3PO4- and ZnCl2-treated teff straw, and decreased steadily with θ for NaOH-treated teff straw.  相似文献   

12.
Beidellite, a low-cost, locally available and natural mineral was used as an adsorbent for the removal of lead and cadmium ions from aqueous solutions in batch experiments. The kinetics of adsorption process was tested for the pseudo first-order, pseudo second-order reaction and intra-particle diffusion models. The rate constants of adsorption for all these kinetic models were calculated. Comparison amongst the models showed that the sorption kinetics was best described by the pseudo second-order model. Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data for different temperatures. The adsorption capacities (Q°) of beidellite for lead and cadmium ions were calculated from the Langmuir isotherm. It was found that adsorption capacity was in the range of 83.3–86.9 for lead and 42–45.6 mg/g for cadmium at different temperatures. Thermodynamic studies showed that the metal uptake reaction by beidellite was endothermic in nature. Binary metal adsorption studies were also conducted to investigate the interactions and competitive effects in binary adsorption process. Based on the optimum parameters found, beidellite can be used as adsorbent for metal removal processes.  相似文献   

13.
Landfill leachate is a high-strength wastewater. If it is not managed properly, it can pollute surrounding environment. The aim of this study is to determine the simultaneous adsorption capacity of iron oxide-coated gravel for metals such as Cd(II), Cu(II), Fe(II), Ni(II) and Zn(II) in high-strength leachate sample. Different operating conditions such as pH, time, and dosages were investigated to determine the kinetics and mechanism of adsorption process. Coating with iron oxide changed the external surface of gravel. The adsorption capacities increased with increased pH, and the optimum pH was found to be 7. High removal rates were observed in a short period of time. The Freundlich model fitted reasonably well to the experimental data, indicating multilayer adsorption process and the heterogeneity of the surface (R 2 ranging 0.57–0.94). The Temkin model fitted well to the experimental data as well (R 2 ranging 0.67–0.98), indicating that the adsorption is an exothermic process. The adsorption of ions was found to obey second-order kinetics, indicating one-step, surface-only adsorption process. The degree of metal adsorption on iron oxide-coated gravel at pH 7 was in the order Cu(II) > Cd(II) > Fe(II) > Zn(II) > Ni(II).  相似文献   

14.
Nanosilica particles modified by Schiff base ligands 3-methoxy salicylaldimine propyl triethoxysilane (MNS1), 5-bromo salicylaldimine propyl triethoxysilane (MNS2) and 3-hydroxy salicylaldimine propyl triethoxysilane (MNS3) were prepared, and their potential for separation of copper, lead, zinc, cadmium, cobalt and nickel ions from aqueous solutions was examined. The effect of parameters influencing adsorption efficiency including aqueous-phase pH, amount of adsorbent, stirring time and initial concentration of the metal ions was assessed and discussed. Although MNS1 and MNS3 removed lead ions efficiently, all adsorbents showed strong selectivity toward copper ions. It was shown that, under some circumstances, MNS3 decreased the amount of other ions, particularly cobalt, in the aqueous phase. The adsorbents were also applied for removal of copper and lead ions from real samples. Possible quantitative desorption of the metal ions loaded onto the adsorbents suggests their multiple uses in adsorption–desorption process. Investigation of temperature dependency of the process led to determination of the ΔH°, ΔS° and ΔG° values. This investigation indicates that the adsorption of copper ions onto the all studied adsorbents and lead ions onto MNS1 and MNS3 is endothermic. The Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms were tested to describe the equilibrium data. Pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion equations were applied to study the kinetics of copper and lead adsorption onto the modified nanoparticles. This investigation indicates that the process for all adsorbents follows pseudo-second-order kinetics and suggests a chemisorption mechanism for the adsorption processes by the studied adsorbents.  相似文献   

15.
In this study, sepiolite-nano zero valent iron composite was synthesized and applied for its potential adsorption to remove phosphates from aqueous solution. This composite was characterized by different techniques. For optimization of independent parameters (pH = 3–9; initial phosphate concentration = 5–100 mg/L; adsorbent dosage = 0.2–1 g/L; and contact time = 5–100 min), response surface methodology based on central composite design was used. Adsorption isotherms and kinetic models were done under optimum conditions. The results indicated that maximum adsorption efficiency of 99.43 and 92% for synthetic solution and real surface water sample, respectively, were achieved at optimum conditions of pH 4.5, initial phosphate concentration of 25 mg/L, adsorbent dosage of 0.8 g/L, and 46.26 min contact time. The interaction between adsorbent and adsorbate is better described with the Freundlich isotherm (R 2 = 0.9537), and the kinetic of adsorption process followed pseudo-second-order model. Electrostatic interaction was the major mechanisms of the removal of phosphates from aqueous solution. The findings of this study showed that there is an effective adsorbent for removal of phosphates from aqueous solutions.  相似文献   

16.
Leonardite, a by-product from coal mines, was applied to adsorb Cd(II) and Zn(II) from aqueous solutions. Individual and simultaneous adsorptions of the two metal ions were investigated. In a single-component adsorption system, Langmuir and Freundlich isotherms were fitted to the adsorption data. Linear and nonlinear regression methods were used for the assessment of the optimum adsorption isotherm. Error functions including root-mean-square error, sum of the squares of the errors, mean absolute percentage error, Marquardt’s percent standard deviation (MPSD), and Chi-square were applied in the nonlinear regression. The most suitable model for the adsorption of Cd(II) and Zn(II) in the single system is the Freundlich isotherm. The isotherm parameters calculated by MPSD provided the lowest sum of normalized error (SNE) value. The adsorption capacity was found to be 23.89 mg/g for Cd(II) and 16.86 mg/g for Zn(II). It was observed that the adsorption of Cd(II) on leonardite is greater than that of Zn(II). For binary component adsorption systems, Cd(II) and Zn(II) showed antagonistic behavior. The presence of the other metal ions could decrease the amount of metal adsorbed. Binary adsorption of Cd(II) and Zn(II) was tested with regard to four multi-component isotherms: Extended Langmuir, Modified Langmuir, Sheindorf–Rebuhn–Sheintuch, and Extended Freundlich. The Extended Freundlich isotherm proved to be a good fit for the experimental data.  相似文献   

17.
Zeolites are known to possess valuable physiochemical properties such as adsorption, cation exchange, molecular sieving, and catalysis. In addition, zeolites are highly selective scavengers of a variety of heavy metals from liquid effluents through the process of ion exchange. The present study was performed to hydrothermally synthesize Na8[AlSiO4]6(OH)2·2H2O (also known as hydroxy sodalite hydrate). Due to its small aperture size, this material can be an ideal candidate for the separation of small molecules and ions from aquatic and gas mixtures. Synthetic zeolites offer many advantages over natural zeolites, such as higher ion affinity and adsorption capacity. Batch adsorption isotherm studies were conducted to evaluate the obtained adsorbent for the lead ion removal from aqueous media. Modeling lead ion adsorption using Langmuir and Freundlich isotherm expressions determined the capacity of the adsorbent. A removal efficiency of 98.1 % in a 3.0 g/l adsorbent/solution mixture with a maximum adsorption capacity of 153.8 mg/g was obtained. One potential application of the synthesized zeolite is for the lead removal in point-of-use treatment devices.  相似文献   

18.
Graphene oxide nanosheets were synthesized by electrochemical exfoliation. X-ray diffraction, scanning electron microscopy, atomic force microscopy, Raman spectrometry and Fourier transform infrared spectrometry were used to characterize crystal structure, particle size, thickness and function groups of the nanosheets. The nanosheets were examined for adsorption of methyl orange, an anionic dye, in aqueous solution at different pHs and temperatures. The maximum adsorption capacity of methyl orange on graphene oxide nanosheets obtained from the Langmuir isotherm was 138.69 mg/g at pH 2.0, which is larger than that of other carbonaceous adsorbents. The large adsorption affinity of graphene oxide nanosheets to methyl orange might be due to the presence of hydrogen bonding and ππ interaction between methyl orange and graphene oxide nanosheets. Adsorption kinetics followed a pseudo-second-order kinetic model, and the isotherm adsorption results were fitted with Langmuir isotherm model in a monolayer adsorption manner. The thermodynamic studies indicated that the adsorption reaction was a spontaneous physisorption process.  相似文献   

19.
Activated carbon produced from fluted pumpkin (Telfairia occidentalis) seed shell was utilized for the removal of lead (II) ion from simulated wastewater. Adsorption tests were carried out in series of batch adsorption experiments. Several kinetic models (Bhattacharya-Venkobacher, Elovich, pseudo first and second order, intra-particle and film diffusion) were tasted for conformity to the experimental data obtained. The Langmuir and Freundlich adsorption models were also used to test the data. The amount of lead (II) ion adsorbed at equilibrium from a 200 mg/L solute concentration was 14.286 mg/g. The experimental data conform very well to the pseudo-second order equation where equilibrium adsorption capacities increased with increasing initial lead (II) concentration. The rate of the adsorption process was controlled by the film (boundary layer) diffusion as the film diffusion co-efficient values obtained from data analysis were of the order of 10 6cm2/s. From the plots, the linear regression coefficient (R2) of the Langmuir model was higher than that of the Freundlich: the adsorption isotherm obeyed the Langmuir model better than the Freundlich model.  相似文献   

20.
The adsorption of cadmium from simulated mining wastewater by coal waste (CW) and calcination-modified coal waste (MCW) was investigated. Effects of pH, initial concentration, particle size of adsorbent, adsorbent dosage and temperature were studied in batch experiments. The adsorption efficiency for cadmium increased with increasing pH, and the optimum pH for cadmium adsorption onto MCW and CW was 6.0 and 6.5, respectively. Kinetic experiments showed that the adsorption equilibrium was reached within 120 min and followed pseudo-second-order model well. The adsorption isotherm data fit Langmuir and Freundlich models, and the adsorption capacity of cadmium on the two adsorbents increased with increasing temperature from 298 to 318 K. MCW had a higher adsorption capacity of cadmium than CW, because calcination treatment can make CW to have more loose structure and higher specific surface area. Thermodynamic parameters, the Gibbs free energy change (?G0), enthalpy change (?H0) and entropy change (?S0), were calculated and the results showed that the adsorption of cadmium on CW and MCW was spontaneous and endothermic. Fourier transform infrared studies indicated silanol and aluminol groups were responsible for cadmium binding. The desorption results indicated that the two adsorbents could be used repeatedly at least three times without significant decrease in the adsorption capacity for cadmium. The results suggested that modified CW could have high potential as low-cost adsorbent for cadmium removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号