首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Size distribution of PM10 mass aerosols and its ionic characteristics were studied for 2 years from January 2006 to December 2007 at central Delhi by employing an 8-stage Andersen Cascade Impactor sampler. The mass of fine (PM2.5) and coarse (PM10?2.5) mode particles were integrated from particle mass determined in different stages. Average concentrations of mass PM10 and PM2.5 were observed to be 306 ± 182 and 136 ± 84 μg m?3, respectively, which are far in excess of annual averages stipulated by the Indian National Ambient Air Quality Standards (PM10: 60 μg m?3 and PM2.5: 40 μg m?3). The highest concentrations of PM10?2.5 (coarse) and PM2.5 (fine) were observed 505 ± 44 and 368 ± 61 μg m?3, respectively, during summer (June 2006) period, whereas the lower concentrations of PM10?2.5 (35 ± 9 μg m?3) and PM2.5 (29 ± 13 μg m?3) were observed during monsoon (September 2007). In summer, because of frequent dust storms, coarse particles are more dominant than fine particles during study period. However, during winter, the PM2.5 contribution became more pronounced as compared to summer probably due to enhanced emissions from anthropogenic activities, burning of biofuels/biomass and other human activities. A high ratio (0.58) of PM2.5/PM10 was observed during winter and low (0.24) during monsoon. A strong correlation between PM10 and PM2.5 (r 2 = 0.93) was observed, indicating that variation in PM10 mass is governed by the variation in PM2.5. Major cations (NH4 +, Na+, K+, Ca2+ and Mg2+) and anions (F?, Cl?, SO4 2? and NO3 ?) were analyzed along with pH. Average concentrations of SO4 2? and NO3 ? were observed to be 12.93 ± 0.98 and 10.33 ± 1.10 μg m?3, respectively. Significant correlation between SO4 2? and NO3 ? in PM1.0 was observed indicating the major sources of secondary aerosol which may be from thermal power plants located in the southeast and incomplete combustion by vehicular exhaust. A good correlation among secondary species (NH+, NO3 ? and SO4 2?) suggests that most of NH4 + is in the form of ammonium sulfate and ammonium nitrate in the atmosphere. During winter, the concentration of Ca2+ was also higher; it may be due to entrainment of roadside dust particles, traffic activities and low temperature. The molar ratio (1.39) between Cl? and Na+ was observed to be close to that of seawater (1.16). The presence of higher Cl? during winter is due to western disturbances and probably local emission of Cl? due to fabric bleaching activity in a number of export garment factories in the proximity of the sampling site.  相似文献   

2.
The objective of the study is to investigate spatio-temporal variations of PM10, PM2.5, and PM1 concentrations at seven residential sites, located in the vicinity of opencast coal projects, Basundhara Garjanbahal Area (BGA), India. Meteorological parameters such as wind speed, wind direction, relative humidity, and temperature were collected simultaneously with PM concentrations. Mean concentrations of PM10 in the range 215 ± 169–526 ± 412 μg m?3, PM2.5 in the range of 91 ± 79–297 ± 107 μg m?3, PM1 in the range of 68 ± 60–247 ± 84 μg m?3 were obtained. Coarse fractions (PM2.5–10) varied from 27 to 58% whereas fine fractions (PM1–2.5 and PM1) varied in the range of 51–73%. PM2.5 concentration was 41–74% of PM10 concentration, PM1 concentration was 31–62% of PM10 concentration, and PM1 concentration was 73–83% of PM2.5 concentration. Role of meteorology on PM concentrations was assessed using correlation analysis. Linear relationships were established among PM concentrations using least square regression analysis. With the aid of principal component analysis, two components were drawn out of eight variables, which represent more than 75% of variance. The results indicated that major sources of air pollutants (PM10, PM2.5, PM1, CO, CO2) at the residential sites are road dust raised by vehicular movement, spillage of coal generated during transportation, spontaneous combustion of coal, and biomass burning in village area.  相似文献   

3.
Aeolian (wind) erosion is most common in arid regions. The resulted emission of PM10 (particulate matter that is smaller than 10 μm in diameter) from the soil has many environmental and socioeconomic consequences such as soil degradation and air pollution. Topsoil resistance to aeolian transport highly depends on the surface composition. The study aim was to examine variations in PM10 fluxes in a desert-dust source due to surface composition and topsoil disturbance. Aeolian field experiments using a boundary layer wind tunnel alongside soil composition analysis were integrated in this study. The results show variations in PM10 fluxes (ranging from 9.5 to 524.6 mg m?2 min?1) in the studied area. Higher wind velocity increased significantly the PM10 fluxes in all surface compositions. A short-term natural disturbance caused changes in the aggregate soil distribution (ASD) and increased significantly PM10 emissions. Considering that PM10 contains clays, organic matter, and absorbed elements, the recorded PM10 fluxes are indicative of the potential soil loss and degradation by wind erosion in such resource-limited ecosystems. The findings have implications in modeling dust emission from a source area with complex surfaces.  相似文献   

4.
The 19th Common Wealth Games was organized at Delhi, India, during October 3 to 14, 2010, where more than 8,000 athletes from 71 Commonwealth Nations have participated. In order to give them better environment information for proper preparedness, mass concentrations of particulate matters below 10 microns (PM10) and 2.5 microns (PM2.5), black carbon (BC) particles and gaseous pollutants such as carbon monoxide (CO) and nitrogen oxide (NO) were monitored and displayed online for ten different locations around Delhi, including inside and outside the stadiums. This extensive information system for air quality has been set up for the period from September 24 to October 21, 2010, and data have been archived at 5-min interval for further research. During the study period, average concentration of PM10 and PM2.5 was observed to be 229.7 ± 85.5 and 112.1 ± 56.0 μg m?3, respectively, which is far in excess of the corresponding annual averages, stipulated by the national ambient air quality standards. Significant large and positive correlation (r = 0.93) between PM10 and PM2.5 implies that variations in PM10 mass are governed by the variations in PM2.5 mass. The mass concentrations of PM2.5 inside the stadium were found to be ~18 % lower than those outside; however, no large variations were observed in PM10. Mean concentrations of BC, CO and NO for the observation period were 10.9 μg m?3 (Min, 02 μg m?3; Max, 31 μg m?3), 1.83 ± 0.89 ppm (Min, 0.48 ppm; Max, 4.55 ppm) and 37.82 ppb (Min, 2.4 ppb; Max, 206.05 ppb), respectively. BC showed positive correlation (r = 0.73) with CO suggests unified source for both of them, mainly from combustion emissions. All the measured parameters, however, show a significant diurnal variation with enhanced peaks in the morning and late night hours and lower values during daytime.  相似文献   

5.
Landslides frequently occur during large earthquakes and storms in Taiwan, supplying large volumes of sediment to downslope areas. When coupled with the intense northeast monsoon over Taiwan in the dry winter season, this can lead to high concentrations of airborne particulates that are hazardous to human health. Air quality monitoring stations near unvegetated riverbanks recorded high concentrations of particulate matter less than 10 μm (PM10) after Typhoon Morakot in 2009. The objective of this study was, therefore, to analyze the effects on air quality of sediment caused by the typhoon. A deflation module was simulated, and the resulting estimates were compared with observed data from the Taitung monitoring station for 2004 and 2005. The relationship of dust flux to average atmospheric dust concentration was analyzed for October to December 2001–2010. Analysis showed that the 2001–2008 data are highly correlated (0.78) with the average concentration. The intercept of 28.07 represented the background concentration with no dust emission, from October to December of 2001–2008. Based on the dust flux potential in 2009, the average yearly PM10 concentration would be 37.98 µg/m3; however, the measured concentration was 61.67 µg/m3 from October to December. This suggests the strong influence of dust re-suspended from unvegetated riverbanks by Typhoon Morakot.  相似文献   

6.
The rapid urbanization, industrialization, modernization, and the frequent Middle Eastern dust storms have negatively impacted the ambient air quality in Bahrain. The objective of this study is to identify the most critical atmospheric air pollutants with emphasis on their potential risk to health based on calculated AQI (air quality index) values using EPA approach. The air quality datasets of particulate matters (PM10 and PM2.5), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) were measured in January 2012 and August 2012 using five mobile air quality monitoring stations located at different governorates. The results of this study demonstrated that PM10 and PM2.5 are the most critical air pollutants in Bahrain with PM2.5 prevailing during January 2012 and PM10 prevailing during August 2012. The corresponding AQI categories were utilized to evaluate spatial variability of particulate matters in five governorates. The impact of meteorological factors such as ambient air temperature, wind speed, relative humidity, and total precipitation on ambient air quality were discussed. The analysis demonstrated that the highest PM10 concentrations were observed in the Northern Governorate while the highest PM2.5 concentrations were observed in the Capital, Central, and Northern Governorates during August 2012. It was observed that the levels of PM2.5 pollution were higher within proximity of the industrial zone. The results suggested that the average PM2.5/PM10 ratio in August 2012 was lower than in January 2012 due to the Aeolian processes. This study concludes that higher wind speed, total precipitation, relative humidity rates, and lower ambient air temperature in January 2012 assisted with the dissipation of particulate matter thus lowering the pollution levels of both PM10 and PM2.5 in comparison to August 2012.  相似文献   

7.
Ambient air and coarse, fine and particulate-bound mercury (Hg(p)) pollutants were collected and analyzed from March 17 to May 22 and September 3, 2009 to March 5, 2010 at a highway traffic site located in Sha-Lu, central Taiwan. This study has the following objectives: (1) to measure the coarse and fine particulates concentrations and the particulate-bound mercury Hg(p) which was attached to these particulate; (2) to determine the average Hg(p) compositions in coarse and fine particulates and (3) to compare the Hg(p) concentrations and compositions particulate in this study to the those obtained in other studies. The results obtained in this study indicated that the average ambient air PM2.5, PM2.5–10 and PM10 were 18.79 ± 6.71, 11.22 ± 4.93 and 30.01 ± 10.27 μg/m3, respectively. The ranges of concentrations for Hg(p) in PM2.5 were from 0.0016 to 0.0557 ng/m3, from 0.0006 to 0.0364 ng/m3 in PM2.5–10 and from 0.0022 to 0.0862 ng/m3 in PM10. In addition, the highest particle-bound mercury compositions in PM2.5 were 16.85 ng/g and the lowest particle-bound mercury concentrations were 0.55 ng/g. The highest particle-bound mercury compositions in PM2.5–10 were 13.88 ng/g and the lowest particle-bound mercury in PM2.5–10 were 0.22 ng/g.  相似文献   

8.
The purpose of this paper was to perform the experimental and numerical analyses of PM10 and PM2.5 concentrations in Imam Khomeini (IKH) underground subway station in Tehran. The aim was to provide fundamental data in order to fulfill workers and passengers respiratory health necessities. Experimental measurements was done at three different locations (entrance, middle and exit) inside the platform and also outdoor ambient of the station. The Dust-Trak was applied to measure continuous PM2.5 and PM10 concentrations at a logging interval of 30 s. The measurements were recorded during rush hours (8:00 am–12:00 pm) for one week per each season from June 2015–June 2016.Moreover, computational fluid dynamic (CFD) simulation was done for the platform of the above station and the necessary boundary conditions were provided through field measurements. Those basic parameters which were considered for numerical analysis of particulate matters concentrations included air velocity, air pressure and turbulence. Furthermore, the piston effect caused by train movement inside the station provided natural ventilation in the platform. The results showed that seasonal measured PM2.5 and PM10 indoor concentrations had a variety range from 40–98 µg/m3 to 33–102 µg/m3, respectively, and were much higher than national indoor air quality standard levels. Meanwhile, PM2.5 and PM10 concentrations in the IKH underground subway station were approximately 2.5–2.9 times higher than those in outdoor ambient, respectively. Numerical simulation indicated that the predicted concentrations were underestimated by a factor of 8% in comparison with the measured ones.  相似文献   

9.
The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 µg m?3 (mean ± standard deviation) with a range of 17–128 µg m?3 and a nighttime average of 55 ± 32 µg m?3 with a range of 4–186 µg m?3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 µg m?3, with a mean value of 53 ± 25 µg m?3, which exceeded the 24-h PM2.5 standard of 35 µg m?3 set by USEPA, but was below the standard of 75 µg m?3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) > zinc (Zn) > manganese (Mn) > lead (Pb) > arsenic (As) > chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 µg m?3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.  相似文献   

10.
Wind-blown mineral dust derived from the crustal surface is an important atmospheric component affecting the Earth’s radiation budget. Deposition of dust particles was measured in snow on the Glacier No. 4, Mt Bogeda, in the eastern Tian Shan, China. The mean number concentration of dust particles with 0.57 < d < 26 μm in the snowpack is 279 × 103 mL?1, with a mean mass concentration of 1,480 μg kg?1. Dust number size distribution showed the dominant particles with d < 2 μm, while volume size distribution showed single-modal structures having volume median diameters from 3 to 25 μm. Results were compared with the data from other sites in the Tian Shan and various northern hemisphere sites. A backward trajectory model was also employed to examine the transport process of dust particles in this region. Most of the air mass originated from the southern and northwestern regions, e.g., the Taklimakan and Gurbantunggut deserts in springtime, during the Asian dust period, which may bring plentiful aerosol dust particles from the sandy deserts. Transport of dust from western Chinese deserts to adjacent mountains is in agreement with a growing body of evidence on the importance of dust inputs to alpine regions.  相似文献   

11.
Outdoor PM2.5 easily flows into indoor and seriously influences indoor air quality due to its characteristics of flow, diffusion and penetration. It is a proper ‘gas’ tracer similar to CO2 to study building ventilation. Therefore, in this paper, a model for calculating air change rates by removing indoor PM2.5 was deduced. Also, some factors influencing the air change rate were qualitatively analyzed and the expression of possible air change rate error was given. The comparison between the results from PM2.5 removal method and the data from CO2 decay method validated the model. The relative error between the results of the two methods is less than 10%. On the basis of validating the model, this paper presented the research of air change rates in ten naturally ventilated house rooms in three Chinese cities. It is found that the rooms with the ventilation rates of 1.15–6.75 m3/h/person have inadequate ventilation.  相似文献   

12.
Based on long-term PM2.5 data observed at high temporal and spatial resolution, the relationships between PM2.5, primary emission, and weather factors in China during four seasons were examined using statistical analysis. The results reveal that primary emission plays a decisive role in the spatial distribution and seasonal variability of PM2.5, except in western China, where PM2.5 is controlled by dust weather. In addition to the accumulation of primary emissions, unfavorable meteorological conditions for the diffusion of air pollution lead to the occurrence of PM2.5 pollution. The significant dynamic factors affecting PM2.5 concentration are surface wind speed, planet boundary layer height, and ventilation coefficient, especially in winter. The ventilation coefficient is inversely correlated with PM2.5. Better ventilation is more favorable for the dilution and outflow of local PM2.5. However, in spring and autumn, ventilation coefficient and PM2.5 are positively correlated over the southern regions with low emission, indicating that ventilation also affects the inflow of PM2.5 from outside the region. Wind shear, 850 hPa divergence, and vertical velocity have insignificant effects on the long-term variations in PM2.5. The significant thermal factor is 850 hPa temperature in winter, except in the Pearl River Delta and Xinjiang regions. In spring, the influence of each thermal factor is weak. In summer, the influences of temperature and humidity are more significant than in spring. In autumn, the influence of humidity is relatively obvious, compared with other thermal factors. The correlation coefficients between multi-factors regressed and observed PM2.5 concentrations pass the 95% confidence test, and are higher than that of single-factor regression over most regions. The observed data from December 2016 to February 2017 were chosen to test the regression equation. The test result reveals that the regression equation is effective for predicting PM2.5 concentrations over regions with high primary emission.  相似文献   

13.
The rapid growth of Riyadh—capital of Saudi Arabia—is pushing the area to more pollution and incentive for reorganization. The aim of this research is to assess air pollutants in southeast of Riyadh and detect opinion of the population about their environment. The assessment was done by analyzing 405 questionnaires, evaluating thermal band of Landsat 8, and spatial analyzing of particular matter and chemicals in 19 air samples by geostatistical tool in the ArcMap. Most of the inhabitants stated that they are suffering from bad odor, sewage leakage, and dust mainly from a cement factory. The thermal band of Landsat clarified the location of the pollution sources mainly the 1st industrial city, Yammama Cement Factory, and power plant in Farouq area. The ordinary kriging maps showed that the highest concentration of PM10 (>403 μg/m3) lied to the northern and western side of the study area and caused a health issue to most inhabitants.  相似文献   

14.
周莉  石贵勇  付宇  关瑶  陈来国 《岩矿测试》2016,35(3):302-309
PM2.5是近年来影响我国城市大气环境的首要污染物,其成因机制复杂。本文采用扫描电镜和ICP-MS研究了广州市大气颗粒物PM2.5的显微形貌及其化学组成特征,并应用富集因子法进行源解析。结果表明,PM2.5的颗粒形态以无定形态为主;主要物质表现为含Fe、Mg、Al、K、Na的硅酸盐组合,具有道路扬尘、建筑施工排放等一次粒子特征;单个无定形颗粒物能谱表现出硫酸盐+硝酸盐的组合特征,为汽车尾气所排放的前体污染气体NOx和SO2进入大气环境中,在特定的物理化学条件下通过成核作用发生相态改变所形成的二次粒子。PM2.5中高度富集Cd、Se、Zn、Cu、Pb、As等重金属,异常富集的Br主要为当地普遍使用的阻燃剂十溴联苯醚和拆解电子垃圾所致,稀土元素的浓度在0.022~0.582 ng/m3之间,具有重稀土元素富集的特征。这些特征反映出广州市PM2.5颗粒物的组成既有一次粒子,也有二次粒子,物质来源具有多重性。  相似文献   

15.
Air particulate matter (PM) samples were collected from June 2006 to May 2007 for determination of chemical elements. PM samples were taken in two size fractions (PM2.5 and PM10) with MiniVolume air samplers on rooftops of various buildings (15–25 m above ground) in the city of Riyadh. The samples were subjected to X-ray fluorescence analysis to measure major (Na, Mg, Al, K, Ca, Si, P, S, and Fe) and trace elements (Mn, Ni, Cu, Zn, and Ba). The results showed that the PM concentrations were higher for PM10 compared to PM2.5, indicating that the major PM source was local dust. Also the spatial distribution with high PM concentrations was observed in the south and southeast of the city and the lowest levels were in the center and northeast of the city. This spatial distribution was attributed to different factors such as wind direction and velocity, emission from cement factories, and the presence of buildings, trees, and paved streets that reduce the amount of dust resuspended into the atmosphere. The air quality of the city was found to range from good to hazardous based on PM2.5, and from good to very hazardous based on PM10. The element-enrichment factors revealed two element groups according to their changing spatial behavior. The first group showed no significant spatial changes indicating they have the same common source. The second group (mainly S and Ni) exhibited significant changes as expected from anthropogenic inputs. The origin of S is possibly a combination of minerals (CaSO4) and fossil fuel combustion. The source of Ni is probably from fossil fuel combustion.  相似文献   

16.
Based on data from ground-based air quality stations, space–time variations of six principal atmospheric pollutants, such as particulate matter (PM2.5 and PM10) and gas pollutants (SO2, NO2, СО, and O3), obtained from January 1, 2014 to December 31, 2017 in the city of Lanzhou, have been studied. Average total concentrations of PM2.5 and PM10 were 53.2?±?26.91 and 124.54?±?82.33 µg/m3, respectively; however, the results showed that in 75.53% and 84.85% days, concentrations of these pollutants exceeded Chinese National Ambient Air Quality Standard and in 100% days exceeded World Health Organization guidelines standards. Daily mean values of aerosol optical depth and Ångström exponent based on data, received by satellite Moderate Resolution Imaging Spectroradiometer, show a broad range of values for aerosol optical depth (from 0.018 to 1.954) and Ångström exponent (from 0.003 to 1.8). Results of principal components analysis revealed three factor loadings. Thus, Factor 1 has the relevant loadings for PM2.5, PM10, CO, SO2, and NO2 (36%) and closely associated with transport emissions and industrial sources, which contribute to air pollution in Lanzhou. Factor 2 was heavily loaded with temperature and visibility (16.94%). Factor 3 consisted of relative humidity (14.11%). Cluster analysis revealed four subgroups: cluster 1 (PM2.5, NO2, SO2), cluster 2 (CO), cluster 3 (PM10) and cluster 4 (relative humidity, visibility, temperature, O3, wind speed), which were compliant with results, obtained from principal components analysis. Positive correlation was found among all pollutants, other than O3. According to processed backward trajectories obtained by Hybrid Single-Particle Lagrangian Integrated Trajectory model, it was found that movement of air masses occur from north, northwest, and west directions—the location of principal natural sources of aerosols.  相似文献   

17.
The contents of Co, Cr, Cu, Mn, Ni, Pb and Zn in the dust samples collected from Changqing industrial park of Baoji city, NW China, were measured by XRF, while As and Hg in the dust samples were analyzed by AFS. Geo-accumulation index (I geo), pollution index (PI) and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of dust. The health risk due to exposure to heavy metals in dust was analyzed by the Health Risk Assessment Model of US EPA. The results show that the arithmetic means of As, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn are 23.3, 16.4, 1591.8, 178.2, 0.243, 346.5, 40.2, 1,586.2 and 1,918.8 mg kg?1, respectively, which are higher than the background values of Shaanxi soil, especially for Cr, Cu, Hg, Pb, and Zn. The mean values of I geo reveal the order of Pb > Zn > Cr > Hg > Cu > As > Co > Ni > Mn. The high I geo of Cr, Cu, Hg, Pb and Zn in dust indicates that there is considerable pollution from Cr, Cu, Hg, Pb and Zn, while the low I geo of As, Co, Mn and Ni presents no pollution in dust. The assessment results of PI support the results of I geo, and IPI indicates heavy metals in dust polluted seriously. The health risk assessment shows that ingestion of dust particles is the route for exposure to heavy metals from dust, followed by dermal adsorption. Exposure to As, Cr and Pb from dust may pose a potential health threat to children and adults. The risk of cancer from As, Co, Cr and Ni due to dust exposure is low.  相似文献   

18.
Arid and semi‐arid environments are important sources for the atmospheric loading of PM10 (particulate matter <10 μm), although the emission of this material is often limited by surface crusts. This study investigates the emission and vertical flux of PM10 from a clay‐crusted playa, with and without saltating grains to abrade the surface. Using a portable field wind tunnel, it was found that, despite disturbance to the surface, the emission of PM10 decays rapidly without abrasion. Only in the presence of saltating grains was PM10 continuously liberated from the surface, such that the emission rate (the total amount of PM10 emitted from the surface expressed as a horizontal flux) varied linearly with the saltation transport rate. Although the emission of PM10 was found to depend on saltation abrasion, past studies have tended to focus on the relationship between the vertical flux of PM10 (the amount of PM10 being transported vertically through the boundary layer) and the shear velocity. In this study, the vertical flux of PM10 was found to vary with the shear velocity to the power of 2·14. Although the vertical PM10 flux is a proportion of the emission rate (the horizontal flux), no statistically significant relationship was observed between the emission rate and the shear velocity. The disparity of these results is explained by the lack of a consistent relationship between the shear velocity and the saltation transport rate in this supply‐limited environment. This suggests that the observed relationship between the vertical PM10 flux and the shear velocity is a spurious correlation, resulting from the use of shear velocity to calculate the vertical dust flux. It is thus concluded that shear velocity is not an appropriate variable for emission modelling in supply‐limited environments and that improvements in dust emission modelling will only be realized if the abrasion process is the focus of a concerted research effort.  相似文献   

19.
Deepawali is one of the main festivals for Hindu religion which falls in the period October–November every year with great fireworks display. In this study, we investigated the levels of water soluble ions and heavy metals—during the fireworks festival in Rajnandgaon, Central India. The chemical compositions and noise level distributions are reported from the sampling site. First time during Deepawali, air quality was studied in this area, The Aerosol samples of PM10 (particle aerodynamic diameter <10 μm) are collected in October 24–28, 2011. Aims of the present studies are (1) To describe the particulate concentrations and associated chemical species during Deepawali festival, (2) To recognize the noise level in Deepawali festival. For study, the samples were collected in glass fiber filter paper and analyzed for the major water soluble ions F?, Cl?, NO3 ?, SO4 2?, Na2+, NH4 +, K+, Ca2+, and Mg2+ employing ion chromatograph. Concentration of heavy metals was analyzed by ICP-MS and was observed to occur in order Fe > Zn > Pb > Ni > Cr > Cd. The result revels that all concentration are above the permissible limit fixed by CPCB, USPEA, and WHO standard. It is concluded that the burning of fireworks during Deepawali festival was the main source of heavy metals and ion.  相似文献   

20.
190 Street dust samples were collected from nine different localities including high traffic (desert highway), moderate traffic (city center), light traffic (minor streets), residential streets, school gardens, hospital and health centers, industrial sites, parks and background sites (control) of Ma’an area. The concentrations of Fe, Zn, Ni, Pb, Mn, Cu and Cd were analyzed by flame atomic absorption spectrophotometer to assess and to compare road dust contamination levels of metals among the different types of urban environment. The results showed that dust samples from the urban and industrial site contained significant levels of the metals studied compared to the values obtained from the background site. The variation in concentration of the heavy metals determined from different locations was in the decreasing order as: industrial > high traffic > parks > moderate traffic > hospital and health centers > school gardens > light traffic > background sites. The mean concentrations of the metals were in the order of C Fe > C Zn > C Ni > C Pb > C Mn > C Cu > C Cd where C is the concentration of these metals in solution. Enrichment factor calculations indicated that Cd, Pb, Zn and Ni were highly enriched. Fossil fuel combustion, wear of brake lining materials, traffic emissions and several industrial processes are considered the main sources of these metals. Assessment of the contamination level in dust sample was estimated based on the geoaccumulation index (I geo), the pollution index, and integrated pollution index (IPI). The values of IPI are in the following order: Pb > Zn > Cu > Ni > Cd > Mn. All the indices for the metals under consideration were either low or corresponded to middle level of contamination. The use of factor analysis showed that anthropogenic activities seem to be the responsible source of contamination for metals in dust samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号