首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
Parabolic dunes are widely distributed on coasts and margins of deserts and steppes where ecosystems are vulnerable and sensitive to environmental changes and human disturbances. Some studies have indicated that vegetated parabolic dunes can be activated into highly mobile barchan dunes and the catastrophic shift of eco‐geomorphic systems is detrimental to land management and social‐economic development; however, no detailed study has clarified the physical processes and eco‐geomorphic interactions that control the stability of a parabolic dune and its resistance to unfavorable environmental changes. This study utilizes the Extended‐DECAL (Discrete Eco‐geomorphic Aeolian Landscapes) model, parameterized by field measurements of dune topography and vegetation characteristics combined with remote sensing, to explore how increases in drought stress, wind strength, and grazing stress may lead to the activation of stabilizing parabolic dunes into highly mobile barchans. The modeling results suggest that the mobility of an initial parabolic dune at the onset of a perturbation determines the capacity of a system to absorb environmental change, and a slight increase in vegetation cover of an initial parabolic dune can increase the activation threshold significantly. The characteristics of four eco‐geomorphic interaction zones control the processes and resulting morphologies of the transformations. A higher deposition tolerance of vegetation increases the activation threshold of the dune transformation under both a negative climatic impact and an increased sand transport rate, whereas the erosion tolerance of vegetation influences the patterns of resulting barchans (a single barchan versus multiple barchans). The change in the characteristics of eco‐geomorphic interaction zones may indirectly reflect the dune stability and predict an ongoing transformation, whilst the activation angle may be potentially used as a proxy of environmental stresses. In contrast to the natural environmental changes that tend to affect relatively weak and young plants, grazing stress can exert a broader impact on any plant indistinctively. A small increase in grazing stress just above the activation threshold can accelerate dune activation significantly. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Extensive coastal dune ?elds occur on the Quaternary strandplain associated with the São Francisco River mouth. Two different generations of dunes are identi?ed. One is inactive, already ?xed by vegetation, comprising parabolic dunes. The other generation is active, bordering the present‐day shoreline and transgressing over the inactive dune ?eld. Three morphological provinces in the active coastal dune ?elds are recognized. On the updrift side of the São Francisco River mouth, they are: (a) sand‐sheet with shrub coppice and shadow dunes; (b) isolated dunes of the barchan‐transversal type up to 5 m high, and interdune areas; and (c) a 23 m high compound dune, with superimposed small dunes. The same provinces are recognized on the downdrift side of the river mouth, with two important exceptions: the barchan‐transversal and compound dunes are replaced, respectively, by (i) zibar‐type dunes up to 5 m high, and (ii) a 19 m high precipitation dune, which is associated with numerous blowouts. The prevailing eastern winds from August to January favour the development of the aeolian bedforms and the migration of dunes. The shoreline orientation almost transversal to the winds and the great supply of ?ne‐grained sediments contribute to the formation of barchan‐transversal types and compound dunes in the updrift side. On the other hand, in the downdrift side the shoreline orientation is almost parallel to the prevailing winds. This fact, in association with a coarser grain size in the beachface, favours the formation of zibar‐type and precipitation dunes with numerous blowouts. The rate of migration of individual dunes is about 20 to 24 m per year. This study suggests that the aeolian sedimentation is a relatively recent phenomenon at the Quaternary strandplain of the São Francisco River. The ?rst generation of dune ?elds initiated some time after 3000 years BP and the second generation originated some centuries ago. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
This paper discusses a model which simulates dune development resulting from aeolian saltation transport. The model was developed for application to coastal foredunes, but is also applicable to sandy deserts with transverse dunes. Sediment transport is calculated using published deterministic and empirical relationships, describing the influence of meteorological conditions, topography, sediment characteristics and vegetation. A so-called adaptation length is incorporated to calculate the development of transport equilibrium along the profile. Changes in topography are derived from the predicted transport, using the continuity equation. Vegetation height is incorporated in the model as a dynamic variable. Vegetation can be buried during transport events, which results in important changes in the sediment transport rates. The sediment transport model is dynamically linked to a second-order closure air flow model, which predicts friction velocities over the profile, influenced by topography and surface roughness. Modelling results are shown for (a) the growth and migration of bare, initially sine-shaped dunes, and (b) dune building on a partly vegetated and initially flat surface. Results show that the bare symmetrical dunes change into asymmetric shapes with a slipface on the lee side. This result could only be achieved in combination with the secondorder closure model for the calculation of air flow. The simulations with the partly vegetated surfaces reveal that the resulting dune morphology strongly depends on the value of the adaptation length parameter and on the vegetation height. The latter result implies that the dynamical interaction between aeolian activity and vegetation (reaction to burial, growth rates) is highly relevant in dune geomorphology and deserves much attention in future studies. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Vegetation plays an important role in shaping the morphology of aeolian dune landscapes in coastal and semi‐arid environments, where ecogeomorphic interactions are complex and not well quantified. We present a Discrete ECogeomorphic Aeolian Landscape model (DECAL) capable of simulating realistic looking vegetated dune forms, permitting exploration of relationships between ecological and morphological processes at different temporal and spatial scales. The cellular automaton algorithm applies three simple rules that lead to self‐organization of complex dune environments, including nebkhas with distinctive deposition tails that form in association with mesquite‐type shrubs, and hairpin (long‐walled) parabolic dunes with trailing ridges that evolve from blowouts in association with vegetation succession. Changing the conditions of simulations produces differing landscapes that conform qualitatively to observations of real‐world dunes. The model mimics the response of the morphology to changes in sediment supply, vegetation distribution, density and growth characteristics, as well as initial disturbances. The introduction of vegetation into the model links spatial and temporal scales, previously dimensionless in bare‐sand cellular automata. Grid resolutions coarser than the representative size of the modelled vegetation elements yield similar morphologies, but when cell size is reduced to much smaller dimensions, the resultant landscape evolution is dramatically different. The model furthermore demonstrates that the relative response characteristics of the multiple vegetation types and their mutual feedback with geomorphological processes impart a significant influence on landscape equilibria, suggesting that vegetation induces a characteristic length scale in aeolian environments. This simple vegetated dune model illustrates the power and versatility of a cellular automaton approach for exploring the effects of interactions between ecology and geomorphology in complex earth surface systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Farewell Spit is a 25 km long barrier spit that marks the end of a littoral drift system, almost 1000 km in length that runs along South Island, New Zealand. The spit is composed of barchan dunes over 20 m high, sand sheets over 1 km wide and vegetated linear dunes. Analysis of aerial photography indicates a rapid colonization of the spit by vegetation which has expanded in area by 75% since 1950. Vegetation colonization preferentially occurs on the southern side of the spit, with its northern margin characterized by barchan dunes which migrate at rates of up to 64 m/yr. Sand sourced from longshore drift appears to be the primary source of beach sediment, which is then transported into the dune field by the persistent westerly winds of the Roaring 40s. While there has been significant dune roll‐over on the surface of the spit, its overall area has remained much the same for the past 54 years. Occasional cyclone events cause erosion, but this is balanced by aeolian sediment transport. It would appear that extension of the subaerial portion of the spit is related to the development of shells banks at its downdrift end which are periodically welded to the main spit by dune extension. Farewell Spit therefore provides an ideal example of a barrier environment where longshore sediment supply and aeolian transport dominates geomorphic evolution. This differentiates the study site from other barrier environments where overwash or tidal inlet development often characterizes recent landform evolution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Bonäsheden, Sweden's largest continuous dune field, situated in the county of Dalarna, central Sweden, has been investigated using LiDAR (light detection and ranging) remote sensing, ground penetrating radar as well as by field observations and luminescence dating. The use of LiDAR in conjunction with geographic information system (GIS) software proved to be efficient in mapping the inactive dune field and classifying the dune morphology, especially when slope raster images were used. The dunes have formed mostly by winds from the northwest (NW) and are of a transverse type. Still other dune types, such as parabolic dunes, and transverse dunes with a deviating orientation are present. Also, there seems to be different generations of dunes, suggesting a complex palaeowind environment with a change from predominantly north‐westerly winds to more westerly winds. Luminescence dating finally allows us to have an absolute chronology of the development of the Bonäsheden dune field, revealing formation of the dune field closely following the de‐glaciation of this part of Sweden (c. 10.5 ka). The well preserved transverse shape of the majority of the dunes suggests rapid stabilization by vegetation, although sand drift still seems to have been active on a noticeable scale for at least 1500 years and also, occasionally and patchy, as coversand deposition during the Late Holocene. A simple model is proposed for the dune field development of Bonäsheden based on our findings. This model is a useful addition since the majority of present day dune field models focus on the formation of parabolic dunes or large unvegetated dune fields. Our results suggest that most models cannot adequately simulate the formation of such small dune fields as that of Bonäsheden, with apparently rapidly fixated transverse dunes in a previously glaciated, now vegetated area. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The evolution of barchan-to-parabolic dunes can be driven by vegetation establishment, which may be linked to climate change and/or human activity. However, little is known of the impact of changes in wind strength on vegetation development and the resulting impacts on the evolution of dune morphology and sedimentological characteristics. To address this issue, we studied the morphology and grain-size characteristics of barchan, barchan-to-parabolic and parabolic dunes in the Mu Us Desert in north China, which was combined with an analysis of changes in normalized difference vegetation index (NDVI) and climatic variables during 1982–2018. The results reveal a trend of increasing growing-season NDVI which was related to a significant decrease in drift potential (DP). Therefore, we suggest that the initiation of dune transformation was caused by the reduced wind strength which favored the establishment and development of vegetation. To reveal the response of sedimentological reorganization during the processes of dune transformation, grain-size characteristics along the longitudinal profile of the three different types of dunes were examined. The decreasing wind strength led to the transport of fine sands on the upper part of the windward face of the dunes, resulting in a progressive coarsening of the grain-size distribution (GSD) and a reduction in dune height at the crest area. No distinct trend in sorting and mean grain-size was observed on the windward slope of the barchan-to-parabolic dune, indicating that the sand in transit had little influence on the GSD. Conversely, progressive sorting and coarsening of the sand occurred towards the crest of the parabolic dune. This indicates that vegetation development limited the transport of sand from upwind of the dune, and affected a shift in the dune source material to the underlying source deposits, or to reworked pre-existing aeolian deposits, and resulted in the trapping of sand in the crest area. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
Changes in vegetation cover within dune fields can play a major role in how dune fields evolve. To better understand the linkage between dune field evolution and interdune vegetation changes, we modified Werner's (Geology, 23, 1995: 1107–1110) dune field evolution model to account for the stabilizing effects of vegetation. Model results indicate that changes in the density of interdune vegetation strongly influence subsequent trends in the height and area of eolian dunes. We applied the model to interpreting the recent evolution of Jockey's Ridge, North Carolina, where repeat LiDAR surveys and historical aerial photographs and maps provide an unusually detailed record of recent dune field evolution. In the absence of interdune vegetation, the model predicts that dunes at Jockey's Ridge evolve towards taller, more closely‐spaced, barchanoid dunes, with smaller dunes generally migrating faster than larger dunes. Conversely, the establishment of interdune vegetation causes dunes to evolve towards shorter, more widely‐spaced, parabolic forms. These results provide a basis for understanding the increase in dune height at Jockey's Ridge during the early part of the twentieth century, when interdune vegetation was sparse, followed by the decrease in dune height and establishment of parabolic forms from 1953‐present when interdune vegetation density increased. These results provide a conceptual model that may be applicable at other sites with increasing interdune vegetation cover, and they illustrate the power of using numerical modeling to model decadal variations in eolian dune field evolution. We also describe model results designed to test the relative efficacy of alternative strategies for mitigating dune migration and deflation. Installing sand‐trapping fences and/or promoting vegetation growth on the stoss sides of dunes are found to be the most effective strategies for limiting dune advance, but these strategies must be weighed against the desire of many park visitors to maintain the natural state of the dunes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Topographic surveys on an inland parabolic sand dune over a six‐year period provide insight into the effects of diminishing local sand supply on dune stabilization. During the interval (2003–2009) sparse vegetation cover (Psoralea lanceolata) increased despite drier than normal moisture conditions and steady wind power during the growing season. Whereas these climatic conditions are typically ascribed to sustaining or increasing dune activity, here they coincide with stabilization. Through the use of geographic information system (GIS) analysis of volumetric changes it is shown that the increase of P. lanceolata can be attributed to the reduction of local sand supply from two blowouts along the arms of the parabolic dune during the six‐year period. These results show that climate is not the only control on dune activity in vegetated inland dunefields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A relatively unknown coastal zone of southern Mozambique in Africa is covered by vast mobile and stabilized dunefields. The aeolian dynamics of these transgressive dunefields are studied based on mobility and stability models, statistical analysis of climate data and topographic profiles. Detailed analyses of regional winds, rainfall records, atmospheric temperature records and annual monitoring of dune migration rates helped to find reliable data about instantaneous aeolian sand transport rates, wind drift potential, dune mobility and dune migration rates. The data obtained suggest that the coastal transgressive dunefields are controlled by the southeast winds, availability of loose sediments on the beach, the presence of headland boundary between Maputo and Gaza provinces and the appropriate deposition spaces between the coastline and lacustrine‐lagoon systems. Two distinctive segments of transgressive dunefields were identified in the region studied, including the northern segment of Maputo province with active (mobile) and semi‐vegetated dunes that migrate 23 m/yr landward, and Gaza province dunefields with stabilized (vegetated) and semi‐vegetated dunes. The data obtained in this research have considerable potential to make a valuable contribution to the study of coastal dunefields. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

11.
Studies have shown that the impact of climate change, human and animal actions on coastal vegetation can turn stabilized dunes into active mobile dunes and vice versa. Yet, the driving factors that trigger vegetation changes in coastal dunes are still not fully understood. In the transgressive dunefields of the Younghusband Peninsula (south-east coast of South Australia) historical aerial photographs show an increase in vegetation cover over the last ~70 years. This study attempts to identify the causes of the changes in vegetation cover (1949 to 2017) observed in a typical section of the coastal dune systems of the Peninsula. Vegetation cover was first estimated for various years using the available historical aerial photography (long-term changes – 1949 to 2017) and recent satellite imagery (short-term annual changes – 2010 to 2017) for the area, and then results were discussed against the observed changes in climatic variables and rabbit density, factors that could have played a role in this transformation. Results of long-term changes show that the vegetation cover has increased significantly from 1949 to 2017, from less than 7% vegetation cover to almost 40%, increasing dune stabilization and forming parabolic dune systems. Periods with the largest growth in vegetation cover (1952-1956 and 2009-2013) coincide with a significant decline in rabbit numbers. Rabbit density was found to be the primary factor linked to the rapid vegetation growth and stabilization of the dunefield, for both decadal long-term (last 68 years) and annual short-term changes (last 8 years). Other factors such as changes in rainfall, aeolian sediment transport, land use practices, and the introduction of invasive plants have apparently played a limited to negligible role in this stabilization process. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
The stable longitudinal dunes in the northern Simpson Desert, Australia, were observed in satellite imagery to become more active after vegetation cover was reduced by fire and drought. Subsequent rainfall events also resulted in significant vegetation regrowth and dune stabilization. These switches between more active and stable conditions have not been previously described in the largely vegetated dune fields of central Australia. The observations, made on 12 dune sites, relied on high spatial resolution satellite imagery to observe dune crest activity, and seasonal Landsat fractional cover imagery to observe vegetation cover changes. The non-photosynthetic vegetation (NPV) component of the fractional vegetation cover images revealed significant changes in hummock grass cover on the dunes between 1988 and 2018, with a positive relationship with the three-year cumulative rainfall, disrupted by two periods of patchy burning. Only those sites that had burnt became active, and only after vegetation cover had remained low (NPV < 16%) during the ‘Millennium Drought’. There is no threshold in vegetation cover, below which dune crests become active, but active dune features require four-years of low NPV cover (< 16%) to develop. The large rainfall event that ended the drought increased NPV cover, stabilizing the dunes. Similar hummock grass covered dunes are present across large areas of the arid zone, and are likely to respond in similar ways, given that fire and drought are common occurrences in Australia. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
Barchans, isolated crescent‐shaped bedforms, are believed to be formed under almost unidirectional wind or water ?ows and limited sand supply. The formation of barchan morphologies under the action of purely oscillatory wave motion has not yet been fully investigated. The present study attempted to form barchan topography in a wave ?ume and to compare this with barchans in the ?eld. Barchan morphologies of ripple size, called the barchan ripples, were generated from a ?at bed by the action of waves. The horn width, the distance between horn tips, of the barchan ripples increased linearly with an increase in the total length, the overall length projected on the centre line of the barchan, with a coef?cient common to barchan dunes in deserts. The ratio of horn length to horn width of the barchan ripples was smaller than that of barchan dunes, but similar to that of subaqueous barchans in the ?eld. The longer the wave period was, the larger the ratio of the body length to horn width became. Most subaqueous barchans formed under waves (in the laboratory) and unidirectional ?ows (in the ?eld) had blunter horns than subaerial barchans. The shape of the barchan ripples changed with wave period. The outer rim became rounder with increasing wave period. The relationship between the base area and the height of barchan morphologies seems to be linear, with a constant coef?cient for the scale from ripples to dunes. The barchan ripples showed a linear relationship between the height and the horn width, similar to that for barchan dunes. The migration speed of the barchan ripples was proportional to the cube of the ?ow velocity and was inversely proportional to height. The same relation with a different value of the coef?cient was obtained for barchan dunes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Cellular automaton modelling for the simulation of dune field formation and evolution has developed progressively in aeolian geomorphology in the last decade or so. A model that incorporates the effects of vegetation and its interactions with geomorphic landscape development – the Discrete Ecogeomorphic Aeolian Landscapes (DECAL) model – can replicate a number of important visual and qualitative aspects of the complex evolution of aeolian dune landscapes under the influence of vegetation dynamics in coastal environments. A key challenge in this research area is the analysis and comparison of both simulated and real‐world vegetated dune landscapes using objective and quantifiable principles. This study presents a methodological framework or protocol for numerically quantifying various ecogeomorphic attributes, using a suite of mathematically defined landscape metrics, to provide a rigorous and statistical evaluation of vegetated dune field evolution. Within this framework the model parameter space can be systematically explored and simulation outcomes can be methodically compared against real‐world landscapes. Based on a simplified scenario of parabolic dunes developing out of blow‐outs the resulting dune field realizations are investigated as a function of variable growth vigour of two simulated vegetation types (pioneer grass and successional woody shrub) by establishing a typological phase‐diagram of different landscape classes. The set of simulation outcomes furthermore defines a higher‐dimensional phase‐space, whose axes or dimensions can be interpreted by analysing how individual ecogeomorphic landscape metrics, or state variables, contribute to the data distribution. Principal component analysis can reduce this to a visual three‐dimensional (3D) phase‐space where landscape evolution can be plotted as time‐trajectories and where we can investigate the effects of changing environmental conditions partway through a simulation scenario. The use of landscape state variables and the construction of a 3D phase‐space presented here may provide a general template for quantifying many other eco‐geomorphic systems on the Earth's surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Basically, sand dunes are patterns resulting from the coupling of hydrodynamic and sediment transport. Once grains move, they modify the surface topography which in turns modifies the flow. This important feedback mechanism lies at the core of continuous dune modelling. Here we present an updated review of such a model for aeolian dunes, including important modifications to improve its predicting power. For instance, we add a more realistic wind model and provide a self‐consistent set of parameters independently validated. As an example, we are able to simulate realistic barchan dunes, which are the basic solution of the model in the condition of unidirectional flow and scarce sediments. From the simulation, we extract new relations describing the morphology and dynamics of barchans that compare very well with existing field data. Next, we revisit the problem of the stability of barchan dunes and argue that they are intrinsically unstable bed‐forms. Finally, we perform more complex simulations: first, a barchan dune under variable wind strength and, second, barchan dune fields under different boundary conditions. The latter has important implications for the problem of the genesis of barchan dunes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
As with most dune fields, the White Sands Dune Field in New Mexico forms in a wind regime that is not unimodal. In this study, crescentic dune shape change (deformation) with migration at White Sands was explored in a time series of five LiDAR‐derived digital elevation models (DEMs) and compared to a record of wind direction and speed during the same period. For the study period of June 2007 to June 2010, 244 sand‐transporting wind events occurred and define a dominant wind mode from the SW and lesser modes from the NNW and SSE. Based upon difference maps and tracing of dune brinklines, overall dune behavior consists of crest‐normal migration to the NE, but also along‐crest migration of dune sinuosity and stoss superimposed dunes to the SE. The SW winds are transverse to dune orientations and cause most forward migration. The NNW winds cause along‐crest migration of dune sinuosity and stoss bedforms, as well as SE migration of NE‐trending dune terminations. The SSE winds cause ephemeral dune deformation, especially crestal slipface reversals. The dunes deform with migration because of differences in dune‐segment size, and differences in the lee‐face deposition rate as a function of the incidence angle between the wind direction and the local brinkline orientation. Each wind event deforms dune shape, this new shape then serves as the boundary condition for the next wind event. Shared incidence‐angle control on dune deformation and lee‐face stratification types allows for an idealized model for White Sands dunes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Distribution‐free statistical methods of comparative data analysis have identi?ed subtle granulometric differences attributed to the evolution of barchan form at Gurra‐Gurra waterhole. Geomorphic locations on the barchan dunes display statistically signi?cant grain‐size differences that assist in the interpretation of aeolian processes. In summer, very ?ne sands mantle the dunescape and are the fraction that most affects the parameters of sorting and skewness. The sur?cial sedimentological character is one of subtle contrasts between the processes of grain winnowing and intergranular protection. The second and third moment measures are parameters that best demonstrate the spatial granulometric differences. Dune‐forming processes at Gurra‐Gurra have produced dune sands that have a very narrow range of grain size, which, in turn, re?ects textural and mineralogical maturity, and hence an extensive transport history. The statistical techniques employed in this study can also be used for the comparison of temporal (seasonal) sedimentological change, and for the granulometric analysis and association of process for dunes of different morpho‐types. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The formation of the complex linear dunes in the central Taklimakan Sand Sea is discussed based on analyses of wind regimes, sand grain size distributions on the topography of the dunes, and a combination of geomorphic and geophysical investigations into the morphology of the dunes. Complex linear dune formation is shown to have ?ve stages. Analysis clearly shows that under the control of wind regime, sand supply and other factors, the simple linear dunes move sideways while they evolve. This is the main cause for the formation of complex linear dunes in the central Taklimakan Sand Sea. We have not collected enough evidence to show whether the complexity of the complex linear dunes is left over from previous wind regimes or whether the previous wind regimes had different dominant wind directions compared to those of modern winds. The evolutionary processes of complex linear dunes in the region partly support the theory of ‘barchan evolution’ but do not support the ‘roll‐vortex’ and ‘bimodal wind regime’ hypotheses. After the complex linear dunes were developed, the local wind regime and the other controls such as sand supply suggest it is possible for them to maintain their linear shape. The evolutionary process discussed is limited to the region indicated in this paper, and may not be applicable to the whole Taklimakan Sand Sea. There are different evolutionary processes in different dune?elds because of variations in the factors that control complex linear dune formation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Transgressive dune fields often comprise a multiplicity of landforms where vegetation processes largely affect landform dynamics, which in turn, also affect vegetation processes. These associations have seldom been studied in detail. This paper examines four separate landform types in a complex coastal transgressive dunefield located in the central Gulf of Mexico, in order to assess the relationships between dunefield habitat, local environmental factors, vegetation associations and landform evolution. Topographic surveys using tape and clinometer were conducted in conjunction with vegetation survey transects at four locations across the Doña Juana dunefield. Vegetation surveys allowed the estimation of relative plant cover of each plant species found along the transects. A large variety of landforms were found at the Doña Juana Dunefield: deflation plains, gegenwalle (counter) ridges, transverse dune trailing ridges, blowouts and parabolic dunes, aklé (fish‐scale shaped) dunefields and precipitation ridges, with plant species associations developing on these different landforms equally variable. Flood tolerant species were located in the lower parts (deflation plain and gegenwalle ridges) whereas the older and dryer parts were covered by coastal matorral shrubs. Burial‐tolerant species were dominant in the most mobile areas (blowouts and aklé dunefield and margin). The dune trailing ridge, with relatively milder conditions, showed the highest richness, with no dominant species. A dual interaction was found such that colonizing species both create and affect topography, and in turn, topography determines vegetation association and succession patterns. In coastal dunes, the vegetation and abiotic environment (namely the different landforms and the inherent micronevironmental variability) interact tightly and generate a complex and highly dynamic biogeomorphic system where substrate mobility and colonization processes reinforce one another in positive feedback. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Sedimentary architecture and genesis of residual dune ridges in a temperate climate are presented and implications for their use as archive of changes in long-term precipitation and wind climate are discussed. Residual dunes are common features of wet aeolian systems, where they form sets of shallow ridges, oriented perpendicular to the prevailing wind direction. Residual dune ridges of the study area are vegetated and typically elevate 0.6 to 2.5 m above the surrounding interdune flats. They develop on the lower stoss side of active transgressive dunes, triggered by periods of elevated groundwater table and hence colonization of the foot of the dune by rapid growing pioneer vegetation. Stabilized by plants, the growing ridge detaches from the active transgressive dune and gets abandoned within years in the course of the downwind-migration of the transgressive dune. Grain-size data suggest a main sediment supply from the transgressive dune and only minor input from other sources. Ground-penetrating radar reveals that the residual dune ridges are composed of windward-dipping as well as leeward-dipping sedimentary beds. Leeward-dipping strata reflect sediment supply from the parental dune, whereas windward-dipping beds are seen to result from sediment redistribution along the ridge and sediment supply from the adjacent swales during the ridge growth period. Multi-annual to multi-decadal variability in precipitation leads to the development of sequences composed of tens of ridges, spanning time periods of several centuries. Spacing of individual ridges in these sequences is controlled not by long-term variability in precipitation alone, but probably also reflects variable wind intensity which affects the migration rate of the parental dune. The important role of vegetation in ridge construction makes these landforms a demonstrative example of landscape development by geo-biosphere interacting processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号