首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Understanding and interpretation of ‘numbers’ produced about the depositional age of an erratic boulder by cosmogenic nuclide surface-exposure dating is important in the construction of glacial chronology. We have sampled three ‘Findlinge’ (glacially transported boulders) located on the right-lateral margin of the Aare glacier at Möschberg, Grosshöchstetten, southeast of Bern, with the aim of shedding light on this topic. The boulders have the same depositional, but different post-depositional histories: simple exposure; exhumation; and human impact. This sampling is specially selected for this study, since the boulders showing exhumation and human impact would not have been sampled in a regular surface-exposure dating application. We measured cosmogenic 10Be concentrations and calculated apparent exposure ages that are 13.6 ± 0.5, 18.1 ± 0.8, and 7.5 ± 0.4 ka, respectively. The exposure age of the first boulder reflects exhumation. The apparent exposure age of 18.1 ± 0.8 ka (erosion-corrected exposure age 19.0 ± 0.9 ka) from the second boulder correlates well with the end of the Alpine and global last glacial maximum. The third boulder shows evidence of quarrying as it is surrounded by a rim of excavation material, which is also reflected by the 7.5 ± 0.4 ka apparent exposure age. We modeled the variation of 10Be concentrations with depth down into the sediment in which the first (exhumed) boulder was once buried in, and down into the third (quarried) boulder. According to our modeling, we determined that the exhumed ‘Findling’ was buried in sediment at a depth of around 0.5 m, and around 2 m of rock was quarried from the third ‘Findling’. Our results reveal the importance of sampling for surface-exposure dating within a well defined field context, as post-depositional impacts can easily hinder exposure-dating of surfaces.  相似文献   

2.
Rockfalls and rock avalanches are a recurrent process in high mountain areas like the Mont Blanc massif. These processes are surveyed due to the hazard they present for infrastructure and alpinists. While rockfalls and rock avalanches have been documented for the last 150 years, we know very little about their frequency since the Last Glacial Maximum (LGM). In order to improve our understanding, it is imperative to date them on a longer timescale. A pilot campaign using Terrestrial Cosmogenic Nuclide (TCN) dating of five samples was carried out in 2006 at the Aiguille du Midi (3842 m a.s.l.). In 2011, a larger scale study (20 samples) was carried out in five other test sites in the Mont Blanc massif. This paper presents the exposure ages of the 2011 TCN study as well as the updated exposure ages of the 2006 study using newer TCN dating parameters. Most of these exposure ages lie within the Holocene but three ages are Pleistocene (59.87?±?6.10 ka for the oldest). A comparison of these ages with air temperature and glacier cover proxies explored the possible relationship between the most active rockfall periods and the warmest periods of the Holocene: two clusters of exposure ages have been detected, corresponding to the Middle Holocene (8.2–4.2 ka) and the Roman Warm Period (c. 2 ka) climate periods. Some recent rockfalls have also been dated (<?0.56 ka).  相似文献   

3.
At several times during the Quaternary, a major eastward-flowing outlet glacier of the former Patagonian Ice Sheet occupied the Lago San Martin Valley in Argentina (49°S, 72°W). We present a glacial chronology for the valley based on geomorphological mapping and cosmogenic nuclide (10Be) exposure ages (n = 10) of boulders on moraines and lake shorelines. There are five prominent moraine belts in the Lago San Martin Valley, associated with extensive sandar (glaciofluvial outwash plains) and former lake shorelines. Cosmogenic nuclide exposure ages for boulders on these moraines indicate that they formed at 14.3 ± 1.7 ka, 22.4 ± 2.3 ka, 34.4 ± 3.4 ka to 37.6 ± 3.4 ka (and possibly 60 ± 3.5 ka), and 99 ± 11 ka (1σ). These dated glacier advances differ from published chronologies from the Lago San Martin Valley based on 14C age determinations from organic sediments and molluscs in meltwater channels directly in front of moraines or in kettleholes within end moraine ridges. The moraine boulder ages also point to possible pre-LGM glacial advances during the last glacial cycle and a key observation from our data is that the LGM glaciers were probably less extensive in the Lago San Martin Valley than previously thought.  相似文献   

4.
Here we combine 10Be depth profile techniques applied to late glacial ice‐contact marine and lacustrine deltas, as well as boulder exposure dating of associated features in the Scoresby Sound region, east Greenland, to determine both the surface age and the magnitude of cosmogenic nuclide inheritance. Boulder ages from an ice‐contact delta in northern Scoresby Sund show scatter typical of polar regions and yield an average age of 12.8 ± 0.5 ka – about 2 ka older than both our average profile surface age of 10.9 ± 0.7 ka from three depth profiles and a radiocarbon‐based estimate. On the other hand, boulder exposure ages from a set of moraines in southern Scoresby Sund show excellent internal consistency for polar regions and yield an average age of 11.6 ± 0.2 ka. The profile surface age from a corresponding ice‐contact delta is 8.1 ± 0.9 ka, while a second delta yields an age of 10.0 ± 0.4 ka. Measured 10Be inheritance concentrations from all depth profiles are internally consistent and are between 10% and 20% of the surface concentrations, suggesting a regional cosmogenic inheritance signal for the Scoresby Sound landscape. Based on the profile inheritance concentrations, we explore the first‐order catchment‐averaged bedrock erosion under the Greenland ice sheet, yielding estimates of total erosion during the last glacial cycle of the order of 2–30 m. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Detailed mapping of dolerite slope deposits overlying sedimentary Triassic rocks on the northern slopes of the Nicholas Range in northeastern Tasmania has revealed an extensive mass movement complex. Landforms north of the summit plateau of the Nicholas Range include the following: (1) a cliff of dolerite columns with associated scree slopes at its base; (2) a topple landscape consisting of several topples that have fallen in a north-easterly direction; (3) a “ripple” landscape consisting of a series of long boulder ridges aligned approximately east-west. Exposure dates were obtained for three large boulders (collapsed dolerite columns) from a ridge within the ripple landscape. The two youngest dates gave a mean age of 52.1 ± 1.9 ka using 36Cl. This is the estimated age for collapse of the dated columns from the cliff face c. 750 m to the south. Boulder ages and landscape morphology indicate that the ripple landscape developed by physical and chemical degradation and concurrent northern displacement of topples over a slip plane formed at the contact between dolerite colluvium and underlying Triassic sedimentary rocks. There is no evidence of movement today, other than localised debris flows associated with knickpoints in streams, and it is deduced that movement on the slip plane occurred under a cooler climate than that prevailing today, possibly under the influence of melting of winter snow during the last glacial cycle. As there is no evidence of significant recent mass movement and forests in the area are likely to have experienced many stand-destroying forest fires in the Holocene, forest harvest is not considered to pose a risk to landscape stability.  相似文献   

6.
This paper presents results of the analysis of paired cosmogenic isotopes (10Be and 26Al) from eight quartz‐rich samples collected from ice‐moulded bedrock on the Aran ridge, the highest land in the British Isles south of Snowdon. On the Aran ridge, comprising the summits of Aran Fawddwy (905 m a.s.l.) and Aran Benllyn (885 m a.s.l.), 26Al and 10Be ages indicate complete ice coverage and glacial erosion at the global Last Glacial Maximum (LGM). Six samples from the summit ridge above 750–800 m a.s.l. yielded paired 10Be and 26Al ages ranging from 17.2 to 34.4 ka, respectively. Four of these samples are very close in age (10Be ages of 17.5 ± 0.6, 17.5 ± 0.7, 19.7 ± 0.8 and 20.0 ± 0.7 ka) and are interpreted as representing the exposure age of the summit ridge. Two other summit samples are much older (10Be ages of 27.5 ± 1.0 and 33.9 ± 1.2 ka) and these results may indicate nuclide inheritance. The 26Al/10Be ratios for all samples are indistinguishable within one‐sigma uncertainty from the production rate ratio line, indicating that there is no evidence for a complex exposure history. These results indicate that the last Welsh Ice Cap was thick enough to completely cover the Aran ridge and achieve glacial erosion at the LGM. However, between c. 20 and 17 ka ridge summits were exposed as nunataks at a time when glacial erosion at lower elevations (below 750–800 m a.s.l.) was achieved by large outlet glaciers in the valleys surrounding the mountains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Noblesse multi-collector noble gas mass spectrometer is specially designed for multi-collection of Ar isotopes with different beam sizes, especially for small ion beams, precisely, and hence is perfectly suitable for 40Ar/39Ar geochronology. We have analyzed widely used sanidine, muscovite, and biotite standards with recommended ages of ~ 1.2–133 Ma, with the aim to assess the reliability of Noblesse for 40Ar/39Ar dating. An ESI MIR10 30W CO2 laser was used for total fusion or incremental heating samples. Extracted gases were routinely purified by four SAES NP10 getters (one at ~ 400 °C and others at room temperature). A GP50 getter and a metal cold finger cooled by liquid N (? 196 °C) were also attached for additional purification if necessary. The Ar isotopes were then measured by Noblesse using Faraday or multiplier according to the signal intensities. Over a period of 1.5 months 337 air calibrations produced a weighted mean 40Ar/36Ar of 296.50 ± 0.08 (2σ, MSWD = 4.77). Fish Canyon sanidine is used to calculate J-values, which show good linear relationship with position in irradiation. The age of four mineral standards (Alder Creek sanidine, Brione muscovite, Yabachi sanidine, and Fangshan biotite) are within error of the accepted ages. Five Alder Creek sanidine aliquots yielded an age range of 1.174–1.181 ± 0.013 Ma (2σ) which broadly overlaps the established age of the standard and the uncertainty approaches those of the foremost Ar/Ar laboratories in the world. The weighted mean ages of four Brione muscovite aliquots (18.75 ± 0.16 Ma, 2σ), five Yabachi sanidine aliquots (29.50 ± 0.19 Ma, 2σ), and three Fangshan biotite aliquots (133.0 ± 0.76 Ma, 2σ) are consistent with the recommended values of these standards, and the uncertainties are typical of modern Ar/Ar laboratories world-wide.  相似文献   

8.
Cosmogenic nuclide surface exposure dating of boulders and erratics provides new constraints for a glacial chronology in the source area of the Urumqi River, Tian Shan, China. 10Be exposure ages of 15.0 ± 1.3–17.1 ± 1.5 ka from the Upper Wangfeng (UWF) moraines agree well with their previous relative age assignments to marine isotope stage (MIS) 2, but are younger than published AMS 14C and electron spin resonance (ESR) ages (from 22.8 ± 0.6 to 37.4 ka). This difference may result from variations in techniques, or could reflect the impact of surface erosion and sediment/snow cover on surface exposure dating. 10Be ages from the Lower Wangfeng (LWF) moraines (18.7 ± 1.8 and 16.2 ± 1.5 ka) are indistinguishable from the UWF exposure ages, but are significantly younger than previously reported thermoluminescence (TL) and ESR ages (37.7 ± 2.6–184.7 ± 18 ka). Either these two groups were formed during the same period (MIS 2) and there are problems with TL and ESR ages, or the moraines were of very different ages and the similar exposure ages result from different degrees of degradation. Erratics on rock steps and a drumlin along >8 km of the main glacial valley above the UWF have internally consistent and slightly decreasing 10Be exposure ages indicating glacier retreat >2.5 m a?1 after MIS 2 and before middle or late Holocene glacier re‐advances. This retreat rate is similar to rates observed from modern glaciers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Relict rock glaciers have considerable potential for contributing to palaeoclimatic reconstruction, but this potential is often undermined by lack of dating control and problems of interpretation. Here we reinvestigate and date four proposed ‘rock glaciers’ in the Cairngorm Mountains and show that the morphology of only one of these appears consistent with that of a true rock glacier produced by creep of underlying ice or ice‐rich sediment. All four features comprise rockslide or rock avalanche runout debris, and the possibility that all four represent unmodified runout accumulations cannot be discounted. Surface exposure dating of the four debris accumulations using cosmogenic 10Be produced uncertainty‐weighted mean ages of 15.4 ± 0.8 ka, 16.2 ± 1.0 ka, 12.1 ± 0.6 ka and 12.7 ± 0.8 ka. All four ages imply emplacement under cold stadial conditions, two prior to the Windermere Interstade of ca. 14.5–12.9 cal. ka BP and two during the Loch Lomond Stade of ca. 12.9–11.5 cal. ka BP. The above ages indicate that paraglacial rock‐slope failure on granite rockwalls occurred within a few millennia after deglaciation. The mean exposure ages obtained for runout debris at two sites – Strath Nethy (16.2 ± 1.0 ka) and Lairig Ghru (15.4 ± 0.8 ka) – are consistent with basal radiocarbon ages from Loch Etteridge, 22 km to the southwest (mean = 15.6 ± 0.3 cal. ka BP) and imply widespread deglaciation of the Cairngorms and adjacent valleys before 15 ka and possibly 16 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
To develop a more precise understanding of Alpine glacier fluctuations during the Holocene, the glacier forefields of the Triftjegletscher and the Oberseegletscher east of Zermatt in the Valais Alps, Switzerland, were investigated. A multidisciplinary approach of detailed geological and geomorphological field mapping combined with 10Be exposure and radiocarbon dating was applied. A total of twelve samples of boulders and bedrock were taken from both Little Ice Age (LIA) landforms, as documented by the Dufour map published in 1862, and from landforms outside of the LIA. The resulting 10Be ages range between 12590 ± 350 a and 420 ± 170 a. A piece of wood found embedded in the Little Ice Age moraine gave radiocarbon ages that range between 293 cal years BP up to modern (356–63 cal years before 2013). Based on these results, four tentative steps of the Holocene evolution could be distinguished. An early Holocene stage, which documents the decay of the Egesen stadial glaciers when the first parts of the study area became ice free. This was followed by a phase with no evidence of glacier advance. Then in the late Holocene, the glaciers advanced (at least) twice. An advance around 1200 a, as shown by several moraine ages, coincides with the Göschenen II cold phase. A more extensive readvance occurred during the LIA as shown on the historical maps and underpinned by one 10Be exposure age and the radiocarbon age. This later advance destroyed or overprinted the earlier landforms in most parts of the area.  相似文献   

11.
The Upper Garonne Basin included the largest glacial system in the Pyrenees during the last glacial cycle. Within the long-term glacial retreat during Termination-1 (T-1), glacier fluctuations left geomorphic evidence in the area. However, the chronology of T-1 glacial oscillations on the northern slopes of the Central Pyrenees is still poorly constrained. Here, we introduce new geomorphological observations and a 12-sample dataset of 10Be cosmic-ray exposure ages from the Ruda Valley. This U-shaped valley, surrounded by peaks exceeding 2800 m a.s.l., includes a sequence of moraines and polished surfaces that enabled a reconstruction of the chronology of the last deglaciation. Following the maximum ice extent, warmer conditions prevailing at ~15–14 ka, during the Bølling–Allerød (B–A) Interstadial, favoured glacial retreat in the Ruda Valley. Within the B–A, glaciers experienced two phases of advance/stillstand with moraine formation at 13.5 and 13.0 ka. During the early Younger Dryas (YD), glacial retreat exposed the highest surfaces of the Saboredo Cirque (~2300–2350 m) at 12.7 ka. Small glaciers persisted only inside the highest cirques (~2470 m), such as in Sendrosa Cirque, with moraines stabilising at 12.6 ka. The results of this work present the most complete chronology for Pyrenean glacial oscillations from the B–A to the YD.  相似文献   

12.
Trimlines separating glacially abraded lower slopes from blockfield‐covered summits on Irish mountains have traditionally been interpreted as representing the upper limit of the last ice sheet during the Last Glacial Maximum (LGM). Cosmogenic 10Be exposure ages obtained for samples from glacially deposited perched boulders resting on blockfield debris on the summit area of Slievenamon (721 m a.s.l.) in southern Ireland demonstrate emplacement by the last Irish Ice Sheet (IIS), implying preservation of the blockfield under cold‐based ice during the LGM, and supporting the view that trimlines throughout the British Isles represent former englacial thermal regime boundaries between a lower zone of warm‐based sliding ice and an upper zone of cold‐based ice. The youngest exposure age (22.6±1.1 or 21.0±0.9 ka, depending on the 10Be production rate employed) is statistically indistinguishable from the mean age (23.4±1.2 or 21.8±0.9 ka) obtained for two samples from ice‐abraded bedrock at high ground on Blackstairs Mountain, 51 km to the east, and with published cosmogenic 36Cl ages. Collectively, these ages imply (i) early (24–21 ka) thinning of the last IIS and emergence of high ground in SE Ireland; (ii) relatively brief (1–3 ka) glacial occupation of southernmost Ireland during the LGM; (iii) decoupling of the Irish Sea Ice Stream and ice from the Irish midlands within a similar time frame; and (iv) that the southern fringe of Ireland was deglaciated before western and northern Ireland.  相似文献   

13.
Optically stimulated luminescence dating of Late Quaternary glaciogenic sediments was undertaken in critical areas of the Himalayas of northern Pakistan in order to examine the timing of glaciation. The dates demonstrate that several glaciations occurred during the last glacial cycle. In Swat, the Grabral 2 Stade and the Kalam I Stade were dated at ca. 77 ka and ca. 38 ka, respectively. The error on the former date is large and it is conceivable that the moraines may have formed during the early part of Oxygen Isotope Stage 3 rather than during Oxygen Isotope Stage 4. The Kalam I Stade, however, clearly represents a glaciation during Oxygen Isotope Stage 3. The oldest moraines and those at the lowest altitude in the Indus valley at Shatial have an age of ca. 60 ka. These also relate to a major glacial advance during Oxygen Isotope Stage 3. A younger series of moraines, the Jalipur Tillite, and glaciofluvial sands at Liachar in the Indus valley, and moraines at Rampur–Tarshing have ages of ca. 27 ka, ca. 21–23 ka and ca. 15 ka, respectively. These dates show that glaciers also occupied parts of the Indus valley during Oxygen Isotope Stage 2. These dates and the morphostratigraphy show that glaciation in the Pakistani Himalaya was more extensive during the early part of the last glacial cycle and that the local last glacial maximum in Pakistan was asynchronous with the maximum extent of Northern Hemisphere ice sheets. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Recent research based primarily on exposure ages of boulders on moraines has suggested that extensive ice masses persisted in fjords and across low ground in north‐west Scotland throughout the Lateglacial Interstade (≈ Greenland Interstade 1, ca. 14.7–12.9 ka), and that glacier ice was much more extensive in this area during the Older Dryas chronozone (ca. 14.0 ka) than during the Younger Dryas Stade (ca. 12.9–11.7 ka). We have recalibrated the same exposure age data using locally derived 10Be production rates. This increases the original mean ages by 6.5–12%, implying moraine deposition between ca. 14.3 and ca. 15.1 ka, and we infer a most probable age of ca. 14.7 ka based on palaeoclimatic considerations. The internal consistency of the ages implies that the dated moraines represent a single readvance of the ice margin (the Wester Ross Readvance). Pollen–stratigraphic evidence from a Lateglacial site at Loch Droma on the present drainage divide demonstrates deglaciation before ca. 14.0 ka, and therefore implies extensive deglaciation of all low ground and fjords in this area during the first half of the interstade (ca. 14.7–14.0 ka). This inference appears consistent with Lateglacial radiocarbon dates for shells recovered from glacimarine sediments and a dated tephra layer. Our revised chronology conflicts with earlier proposals that substantial dynamic ice caps persisted in Scotland between 14 and 13 ka, that large active glaciers probably survived throughout the Lateglacial Interstade and that ice extent was greater during the Older Dryas period than during the Younger Dryas Stade. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In Taiwan, efficient climate‐driven strong erosion processes are the leading cause for low preservation of geomorphic landforms. Despite the absence of present‐day glaciers, glacial relicts have been reported in high altitude areas. These scarce landforms provide opportunities for reconstructing the timing of the last deglaciation in a region where glacial history is poorly documented. We have collected boulders and striated bedrocks in the Nanhutashan area and calculated surface exposure ages based on in‐situ produced 10Be concentrations. The oldest glacial remains, dated at 11.1 ± 3.3 ka, correspond to the last glacial advance. The Holocene is characterized by a continuous retreat of the ice‐cap until at least 7.2 ± 1.0 ka. Our results are in agreement with a scenario where changes of monsoon regimes lead to a strong reduction of the winter monsoon during the early Holocene, causing a decrease of snow supply and disequilibrium of the hydrological budget.  相似文献   

16.
We report the first direct ages for late Quaternary glaciation on the North Island of New Zealand. Mt Ruapehu, the volcanic massif in the North Island's centre, is currently glaciated and probably sustained glaciers throughout the late Quaternary, yet no numeric ages have been reported for glacial advances anywhere on the North Island. Here, we describe cosmogenic 10Be ages of the surface layers of a glacially transported boulder and glacially polished bedrock from the Tararua Range, part of the axial ranges of the North Island. Results indicate that a limited valley glaciation occurred, culminating in recession at the end of the last glacial coldest period (LGCP, ca. 18 ka). This provides an initial age for deglaciation on the North Island during the last glacial–interglacial transition (LGIT). It appears that glaciation occurred in response to an equilibrium‐line altitude (ELA) lowering of ~1400 m below the present‐day mean summer freezing level. Ages for glaciation in the Tararua Range correspond closely to exposure ages for the last glacial maximum (LGM) from the lateral moraines of Cascade Valley in the South Island, and in Cobb Valley, in northern South Island. The corollary is that glaciation in the Tararua Range coincided with the phase of maximum cooling during MIS 2, prior to the Antarctic Cold Reversal (ACR), during the LGCP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Cosmogenic 10Be surface exposure ages for bedrock sites around Torridon and the Applecross Peninsula in Wester Ross, northwest Scotland, provide new insights into the Lateglacial transition. Accounting for postglacial weathering, six statistically comparable exposure ages give a late Younger Dryas (G‐1) exposure age of 11.8 ± 1.1 ka. Two further outliers are tentative pre‐Younger Dryas exposure ages of 13.4 ± 0.5 ka in Torridon, and 17.5 ± 1.2 ka in Applecross. The Younger Dryas exposure ages have compelling implications for the deglaciation of marginal Loch Lomond Stadial ice fields in Torridon and Applecross. Firstly, they conflict with predictions of restricted ice cover and rapid retreat based on modelling experiments and climate proxies, instead fitting a model of vertically extensive and prolonged ice coverage in Wester Ross. Secondly, they indicate that >2 m of erosion took place in the upper valleys of Torridon and Applecross during the Younger Dryas, implying a dominantly warm‐based glacial regime. Finally, the exposure ages have clarified that corrie (cirque) glaciers did not readvance in Wester Ross, following final deglaciation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We measured in situ cosmogenic 10Be in 16 bedrock and 14 boulder samples collected along a 40-km transect outside of and normal to the modern ice margin near Sikuijuitsoq Fjord in central-west Greenland (69°N). We use these data to understand better the efficiency of glacial erosion and to infer the timing, pattern, and rate of ice loss after the last glaciation. In general, the ages of paired bedrock and boulder samples are in close agreement (r2 = 0.72). Eleven of the fourteen paired bedrock and boulder samples are indistinguishable at 1σ; this concordance indicates that subglacial erosion rates are sufficient to remove most or all 10Be accumulated during previous periods of exposure, and that few, if any, nuclides are inherited from pre-Holocene interglaciations. The new data agree well with previously-published landscape chronologies from this area, and suggest that two chronologically-distinct land surfaces exist: one outside the Fjord Stade moraine complex (~10.3 ± 0.4 ka; n = 7) and another inside (~8.0 ± 0.7 ka; n = 21). Six 10Be ages from directly outside the historic (Little Ice Age) moraine show that the ice margin first reached its present-day position ~7.6 ± 0.4 ka. Early Holocene ice margin retreat rates after the deposition of the Fjord Stade moraine complex were ~100–110 m yr?1. Sikuijuitsoq Fjord is a tributary to the much larger Jakobshavn Isfjord and the deglaciation chronologies of these two fjords are similar. This synchronicity suggests that the ice stream in Jakobshavn Isfjord set the timing and pace of early Holocene deglaciation of the surrounding ice margin.  相似文献   

19.
Gimli beach in Manitoba is one of the lowest elevation beaches in the southern Lake Agassiz basin, and is a distinct ridge composed of bedded sand and gravel that rises above the lake plain and extends for more than 40 km. Ten new optically stimulated luminescence (OSL) ages from Gimli beach yield ages mostly ranging from 9.7 ± 0.7 to 10.5 ± 0.8 ka (average 10.3 ± 0.5 ka), which is older by 0.6 to >1.0 ka than age estimates of previous researchers. Two of our new OSL ages are notably older than the others, dating to ~11.3 ± 0.8 and 13.9 ± 1.0 ka, which we attribute to poorly bleached sands. We ascribe an age of about 10 ka to Gimli beach, which is several centuries before overflow from Lake Agassiz and its vast drainage basin shifted from the western Great Lakes to glacial Lake Ojibway and the St. Lawrence Valley.  相似文献   

20.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号