首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A large portion of water is consumed during various textile operations thereby discharging wastewaters with pollutants of huge environmental concern. The treatment of such wastewaters has promising impact in the field of environmental engineering. In this work, Fenton oxidation treatment was engaged to treat simulated textile wastewater. Box–Behnken design and response surface methodology were employed to optimize the efficiency of Fenton process. Iron dose, peroxide dose and pH were considered as input variables while the responses were taken as chemical oxygen demand and color removal. A total of 17 experiments were conducted and analyzed using second-order quadratic model. The quadratic models generated for chemical oxygen demand and color removal efficiencies were validated using analysis of variances, and it was found that the experimental data fitted the second-order model quite effectively. Analysis of variances demonstrated high values of coefficient of determination (R 2) for chemical oxygen demand and color removal efficiencies with values of 0.9904 and 0.9963 showing high conformation of predicted values to the experimental ones. Perturbation plots suggested that the iron dosage produced the maximum effect on both chemical oxygen demand and color removal efficiencies. The optimum parameters were determined as Fe2+ dose—550 mg/L, H2O2 dose—5538 mg/L, pH—3.3 with corresponding chemical oxygen demand and color removal efficiencies of 73.86 and 81.35%. Fenton process was found efficient in treatment of simulated textile wastewater, and optimization using response surface methodology was found satisfactory as well as relevant. From the present study, it can also be concluded that if this method is used as pretreatment integrated with biological treatment, it can lead to eco-friendly solution for treatment of textile wastewaters.  相似文献   

2.
Concentration and distribution of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) in surface sediments collected from five stations located along the southwest coast of India were investigated seasonally to assess whether there is insidious buildup of heavy metals. Spatial variation was in accordance with textural characteristics and organic matter content. The concentration of the metals in sediments of the study area followed the order: Zn > Cr > Ni > Cu > Pb > Cd > Hg. The use of geochemical tools and sediment quality guidelines to account for the magnitude of heavy metal contamination revealed high contamination in monsoon and impoverishment during post-monsoon. Estimated total metal concentrations in the present investigation were comparable with other studies; however, concentrations of Ni and Zn were higher than that of other coastal regions. Concentrations of metals in sediment largely exceed NOAA effects range:low (e.g., Cu, Cr, Hg) or effects range:median (e.g., Ni) values. This means that adverse effects for benthic organisms are highly probable.  相似文献   

3.
Physicochemical characteristics of wastewater from one of the paper mills near Nanjangud and the differential accumulation of heavy metals in parts of coconut trees growing in the area irrigated directly by the wastewaters of a paper mill were investigated. The total dissolved and suspended solids of wastewater were 1,136.9 mg/l and 2,185.4 mg/l, respectively. Biological oxygen demand (BOD) expands and COD is beyond the tolerance limit proposed by Indian standards. The concentrations of heavy metals like Cu, Pb, Zn, Ni, Co, and Cd in coconut water, root, and leaf are higher than the limits suggested by World Health Organization. Survival of coconut trees irrigated by polluted waters indicates tolerance to toxic heavy metals. Since coconut forms part of human food chain, accumulation of toxic heavy metals may lead to organic disorders.  相似文献   

4.
Natural sorbents have been thoroughly assessed to determine their adsorption capabilities to remove pollutants from industrial wastewaters. Among them, pine bark has demonstrated potential for carrying out the removal of contaminants, particularly heavy metals, at the level of traces present in dissolved state. Nevertheless, to move towards the wastewater treatment implementation at large scale, the handling and processing requirements of pine bark to optimise the adsorption of heavy metals must be fully assessed. This research study presents a new mathematical model to evaluate the impact of acid pre-treatment of pine bark on heavy metals adsorption at different pine bark-aqueous solution pulp densities. A diffusion–reaction mixed model was developed and applied to the case study of copper(II) adsorption onto pine bark. The low binding energy inferred from analysing the adsorption isotherms suggested that a diffusive mechanism is governing the whole process. The mixed diffusion–reaction kinetic model indicated that the activation increases the rate at which metal ions are adsorbed, but it reduces the maximum achievable adsorption which in turn restricts its usefulness to relatively high pulp densities (above 10 g/L). The latter constitutes the first step towards optimising the use of bark pine for treating wastewater polluted with heavy metals and for establishing rules for scaling-up the process.  相似文献   

5.
In this study, raw and treated wastewaters were reused for potato cultivation in order to verify the effect of wastewater on crop yield, crop’s heavy metals’ concentration as well as some major traits of potato. To this regard, a completely randomized test was designed with five water treatments and three replications. The watering were as follows: raw wastewater (T1), treated wastewater (T2), a combination of 50 % raw wastewater and 50 % fresh water (T3), a combination of 50 % treated wastewater and 50 % fresh water (T4), and fresh water (T5). The experiments were run during October 2009–June 2010 in the greenhouse of Bu-Ali Sina University. The results show that the effects of treatments were significant on the length and number of stems per plant (p < 0.05). The number of nodes and weight of tubers, crop yield and heavy metal (cadmium, nickel and lead) concentration in shoots and tubers were also significant (p < 0.01). The results indicated that the highest length of stem (55.44 cm) was obtained in T2 which had no significant differences from that of T1. The maximum and minimum tuber weights and crop yield were obtained in T1 and T5, respectively. Based on crop yield rate, the watering ranked as follows: T1 > T3 > T2 > T4 > T5. The maximum and minimum heavy metal values were observed in T1 and T5, respectively. Based on the cadmium, nickel and lead accumulations in shoots and tubers (except cadmium in shoots), the watering treatments ranked as: T1 > T3 > T2 > T4 > T5.  相似文献   

6.
Most of the industrial wastewaters comprise toxic, biologically non-biodegradable, and heavy metals which tend to accumulate in the biological organisms causing different diseases. There are some novel technologies and strategies to remove these pollutants. Using the magnetic nanoparticles which are cheap, recyclable, and reusable can be considered as an effective method for removing the pollutants as they do not require conservation or complicated equipments. Using this method, dangerous and rare heavy metals can be restored to the industry. In this study, magnetic nanoparticles with the size of 30 nm were prepared and used for the removal of chromium from synthetic wastewater polluted by chromium sulfate. For this purpose, removal of various concentrations of chromium(III) from wastewater was investigated. The best concentration was achieved in the removal efficiency of 99.1 %. The optimal values of pH, rotation speed of magnetic stirrer, time, temperature, and the amount of nanoparticles were determined according to the primary concentration (500 mg/L). The mechanism of chromium adsorption onto iron oxide (Fe3O4) magnetic nanoadsorbent was also investigated. The results showed both Freundlich and Longmuir isotherms to be the best fit for the chromium adsorption, with Freundlich isotherm being more suitable.  相似文献   

7.
Dynamics of heavy metals in the surface sediments of Mahanadi river estuarine system were studied for three different seasons. This study demonstrates that the relative abundance of these metals follows in the order of Fe > Mn > Zn > Pb > Cr > Ni ≥ Co > Cu > Cd. The spatial pattern of heavy metals supported by enrichment ratio data, suggests their anthropogenic sources possibly from various industrial wastes and municipal wastes as well as agricultural runoff. The metal concentrations in estuarine sediments are relatively higher than in the river due to adsorption/accumulation of metals on sediments during saline mixing, while there is a decreasing trend of heavy metal concentrations towards the marine side. The temporal variations for metals, such as Fe, Mn, Zn, Ni and Pb exhibit higher values during monsoon season, which are related to agricultural runoff. Higher elemental concentrations are observed during pre-monsoon season for these above metals (except Ni) at the polluted stations and for metals, such as Cr, Co and Cd at all sites, which demonstrate the intensity of anthropogenic contribution. R-mode factor analysis reveals that “Fe–Mn oxy hydroxide”, “organic matter”, “CaCO3”, and “textural variables” factors are the major controlling geochemical factors for the enrichment of heavy metals in river estuarine sediment and their seasonal variations, though their intensities were different for different seasons. The relationships among the stations are highlighted by cluster analysis, represented in dendrograms to categorize different contributing sites for the enrichment of heavy metals in the river estuarine system.  相似文献   

8.
This study examined the chemical speciation and mobility of As and heavy metals in a tailings impoundment in Samsanjeil mine located in Gosung, Korea, as well as the factors affecting them. XRD, SEM, and 5-step sequential extraction were used to examine the samples at two sampling sites (NN and SN sites). The pH of the tailings decreased with increasing depth at the NN site (from 7.2 to 2.8), whereas no significant differences were observed at the SN site (8.1–8.8). The samples at the SN site showed a larger amount of calcite than those at the NN site, indicating that calcite plays an important role buffering the pH in the study sites. Jarosite was found only at the lower part of the NN site, where calcite was not found. The mineralogical observation of jarosite and calcite was also confirmed by SEM. The concentrations of As and heavy metals in the tailings were as follows: Cu > As > Zn > > Pb > Co > Cr > Ni > Cd. The total concentrations of Ni, Zn, Co, and Cd were higher at the SN site than those at the NN site. On the other hand, the concentrations of As and Cr existing as oxyanions were higher at the NN site, which can be explained by the mobility changes of those elements affected by pH variations. At the NN site, the fractions of heavy metals bound to the Fe/Mn oxides, except for As and Cr, decreased, and Cu, Zn, and Co showed an increasing fraction of exchangeable metals with increasing depth. This suggests that the pH and resulting surface charge of minerals, such as goethite and jarosite, are the dominant factors controlling the chemical speciation of metals. These results highlight the importance of mineralogy in controlling the mobility and possible bioavailability of heavy metals in tailings.  相似文献   

9.
Soil pollution in agricultural areas surrounding big cities is a major environmental problem. Tabriz is the largest city in the northwest of Iran and the fourth largest city in the country. Soil samples were taken from 46 sites in the suburbs of the Tabriz city, and separate samples were taken from control site and analyzed. The results indicated that the mean pH value of the soil samples was 9.29, while the mean EC value was 354.33 μs/cm and the amount of TOC and TOM was 0.99 and 1.7 %, respectively. The mean concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the soil were determined to be 1.61, 10.56, 101.25, 87.40, 38.73, and 98.27 mg/kg, respectively (dry weight). The concentrations of heavy metals (Cd, Pb, Cu, Cr, and Zn), with the exception of Ni, were higher than the concentrations of the same heavy metals at the control site. Despite these elevated concentrations, the concentrations of heavy metals were lower than the toxicity threshold limit of agricultural soils. The values of the pollution index revealed that the metal pollution level was Pb > Cr > Cu > Zn > Cd > Ni, and the mean value of the integrated pollution index was determined to be 1.81, indicating moderate pollution. Nevertheless, there were some sites that were severely polluted by Cr (maximum values of 1,364 mg/kg). It was concluded that city probably has affected the surrounding agricultural area. Application of wastewater (municipal and industrial) as irrigation water, using of sludge as soil fertilizer, and atmospheric perceptions have been considered as main reasons of increased heavy metals concentrations found in the studied area.  相似文献   

10.
Fixed-bed column experiments have been conducted to evaluate the removal of metals from real industrial wastewaters. The effluents tested were provided by two different metallurgical companies: Industrial Goñabe, a galvanizing plant, and Sao Domingos mine, an abandoned sulfide mine. Sugar-beet pulp, a by-product of the sugar industry, and brown alga Fucus vesiculosus were used as biosorbents. The influence of pH on the sorption process was insignificant for the tests using Industrial Goñabe wastewater. On the contrary, an increase of pH improved metal sorption uptake and yield and saturation rate in the case of the Sao Domingos wastewater. A lower metal concentration in Sao Domingos wastewater resulted in a higher availability of metal-binding sites on the biomass. Better sorption parameters for both real wastewaters were obtained using brown alga Fucus vesiculosus. At pH 5, Zn sorption in continuous mode increased from 36 to 48% for Industrial Goñabe wastewater and from 34 to 37% for Sao Domingos wastewater. In the latter case, copper sorption increased from 73 to 88%. Breakthrough points that determine the service time of columns were reached later using alga as biosorbent. For Zn, column adsorption performance improved substantially with alga and its service time by 5 times. In the case of Cu, the breakthrough point of the second column was not reached during 1750 min of experimentation. The results obtained reaffirm the industrial applicability of these techniques.  相似文献   

11.
The important Iranian Karun River has never been investigated for the presence of potentially endocrine-disrupting chemicals, nonylphenol (NP). In this study, concentrations of NP were measured in water from Karun River and five wastewater discharge points into this river, collected during April to July 2010. The analytes were extracted by solid-phase extraction, and quantitative analyses were performed by HPLC–FLD. NP was detected in water and wastewater samples with 0.17–1.83 and 15.27–21.79 μg/L, respectively. The results showed that the NP content of aqueous phase of all wastewater samples higher than particulate phase, which were detected in the aqueous and particulate phases with mean concentrations of 12.8 ± 2.4 and 5.2 ± 1.2 μg/L, respectively. These data suggest that the NP levels in Karun river water are likely attributable to untreated municipal wastewaters discharged directly into the river. To our knowledge; this is the first study to evaluate NP concentrations in water and wastewater in Iran.  相似文献   

12.
This study was carried out in order to determine the concentration of heavy metals, e.g., lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), nickel (Ni) and chromium (Cr) in road dust in Kuala Lumpur’s city centre. Samples were collected from four sampling locations, each of which had four sampling points and three replications. Heavy metals from different fractions of particles separated by different diameter sizes: d < 63 μm (Fraction A), 63 < d < 125 μm (Fraction B) and 125 < d < 250 μm (Fraction C) were analyzed using inductively coupled plasma mass spectrometry. The results from this study showed that concentration of heavy metals was dominated by the smallest particle size: <63 μm and that Fe was the most abundant heavy metal overall, followed by Cu > Mn > Zn > Pb > Ni > Cr > Cd. The fact that Cd had the highest enrichment factor value (EF) for all particle sizes indicates that anthropogenic activities contributed to the presence of this metal. There was also a higher EF value for heavy metals in small particle (Fraction A), compared to Fraction B and C, which suggests that fine particles were being produced through anthropogenic activities. Cluster analysis and principal component analysis demonstrated the likelihood of the heavy metals detected in the road dust, originating from road traffic and industrial activities.  相似文献   

13.
This study focuses on the characterization of leachate generated from Gohagoda dumpsite in Kandy, Sri Lanka, assessment of its spatial and temporal variations, and identification of subsurface canals and perched water bodies in the wetland system affected by the leachate flow. Leachate samples were collected monthly throughout dry and rainy seasons from different points of the leachate drainage channel over a period of 1 year and they were tested for quality parameters: pH, temperature, electrical conductivity, total dissolved soils, alkalinity, hardness, total solids, volatile solids, total suspended solids, volatile suspended solids, biochemical oxygen demand (BOD5), chemical oxygen demand, nitrate-nitrogen, nitrite-nitrogen, phosphates, ammonium-nitrogen, chloride, dissolved organic carbon, total organic carbon and heavy metals. Sequential soil extraction procedures were performed for the characterization of leachate-affected local soil. A geophysical survey using direct current resistivity technique was conducted at locations downstream of the dumpsite. Leachate characteristics indicated that the leachate is in the methanogenic phase and the results strongly suggest that the leachate may be polluting the river where the leachate is discharged directly. Leachate exceeds the allowable limits of Sri Lankan wastewater discharge standards for many of the parameters. Significant difference (P < 0.05) was observed for most of organic and inorganic parameters among all sampling locations. Many parameters showed a negative correlation with pH. The affected soils showed high heavy metal concentrations. Resistivity study confirmed a confined leachate flow at the near surface with few subsurface canals. However, no separate subsurface plume movement was observed. The results of this research can effectively be used for the establishment of an efficient and effective treatment method for the Gohagoda landfill leachate.  相似文献   

14.
Health hazards from heavy metal pollution in water systems are a global environmental problem. Of similar concern is sludge that results from wastewater treatment due to unsatisfactory sludge management technology. Therefore, the effectiveness of using Mg–Al-layered double hydroxide in the removal of heavy metals from mine wastewater was tested and compared with that of calcium hydroxide [Ca(OH)2], which is a common treatment method for heavy metal removal. Initially, the mine wastewater contained cations of the heavy metals iron (Fe), zinc (Zn), copper (Cu), and lead (Pb). The Mg–Al-layered double hydroxides were able to remove 371, 7.2, 121, and 0.4 mg/L of these pollutants, respectively, using the co-precipitation method. The removal of these metals is most effective using 0.5 g Mg–Al-layered double hydroxide (Mg/Al molar ratio 4) and 20 min of shaking. Zn was removed by the formation of Zn(NO3)(OH)·H2O and Zn5(NO3)2(OH)8 when LDH, Mg/Al molar ratios of 4 and 2, respectively, were used. Similarly, Fe, Cu, and Pb were removed by the formation of Fe–Al-layered double hydroxide, Cu2(OH)3·NO3 and Pb4(OH)4(NO3)4, respectively. While Ca(OH)2 is also capable of reducing the heavy metal concentrations below the Japanese recommended values, this analysis shows that using 0.5 g Mg–Al-layered double hydroxide is a better treatment condition for mine wastewater, because it generates lower sludge volumes than 0.1 g of Ca(OH)2. The measured sludge volume was 1.5 mL for Mg–Al-layered double hydroxide and 2.5 mL for Ca(OH)2, a nearly twofold further reduction.  相似文献   

15.
This study was carried out to determine the concentration of heavy metals (Cd, Ni, Pb, Cr, Ni and Zn) in ordinary Portland cement (OPC) produced from the co-processing with hazardous waste in comparison with OPC produced using natural raw materials. The results showed that the concentration of heavy metals in cement produced from natural raw material was in the order of Zn > Pb > Cr > Ni > Cu > Cd. Zn and Cd were the highest and the lowest concentrations, respectively, in cements produced from the co-processing activity. The difference between heavy metals concentrations in OPC produced with and without co-processing was found to be statistically significant. The concentration of heavy metals in the cement produced is generally factory dependent. The human risk assessment associated with the heavy metals for non-carcinogenic and carcinogenic risks has been evaluated. The calculated hazard index (HI) and total lifetime cancer risks (LCR) were lower than the acceptable threshold reference values, HI < 1 and LCR < 1 × 10?4, respectively. Thus, it is anticipated that there is no potential of non-carcinogenic and carcinogenic risks for both adult and children. However, the findings indicated that there is a need for regulatory monitoring. The exposure pathway for both non-carcinogenic and carcinogenic risks are both in the order of ingestion > dermal > inhalation.  相似文献   

16.
This study aimed to investigate the population of annelida communities in relation to environmental factors and heavy metals accumulated in sediments of the Gorgan Bay. The pollution load index and potential ecological risk (PER) were calculated. The results indicated mean concentrations (ppm) of heavy metals were (mean ± SD) Pb: 11.5 ± 4.88, Cu: 18 ± 8.83, Zn: 42 ± 22.15, Ni: 29.20 ± 14.68, Co: 10.56 ± 14.68, As: 7.77 ± 2.12, Sr: 1,449 ± 902.59 and V: 26.64 ± 10.25. Considering PER, sediments of the Gorgan Bay had low ecological risk. Based on abundance data, dominant species were Streblospio gynobranchiata, Nereis diversicolor, Tubificoides fraseri and Tubificidae unknown, respectively. Results of redundancy analysis displayed that T. fraseri and N. diversicolor were associated with high values of Sr. All the species were negatively correlated with As. There were positive correlation between S. gynobranchiata and N. diversicolor with values of clay, salinity, depth and silt. The present study provided the relative importance of heavy metals and environmental variables which partly assist in structuring assemblages of annelida in a transitional area.  相似文献   

17.
A novel strain of the genus Micrococcus isolated from wastewater was studied for resistance to seven heavy metals and forty antibiotics. Its capacity to accumulate metal ions was also realized at different pH. The strain exhibited high minimal inhibitory concentration values for metal ions tested and resist to 15 antibiotics. The living cells of the bacterial strain show a largest uptake capacity at pH 6–8.5 for copper, nickel, and zinc with values ranging from 51.45 to 83.90 %, 52.59 to 78.81 %, and 59.55 to 78.90 %, respectively. It was also able to absorbed 59.81–80.08 % of chromium and 58.09–79.41 % of cobalt at pH 7.3–8.5. The maximum lead uptake was obtained at pH 5.5–8.5 with an amount of 55.28–91.06 %. The significant absorption of cadmium was shown at pH 6.5 with 38 %. In 25 µg mL-1 zinc, chromium, and nickel solutions, dead cells of the isolate were able to biosorbed 20.46, 22.5, and 23.98 µg mL?1, respectively, after 30 min of contact. In other solutions with higher concentrations 50 and 100 µg mL?1, the amount of each metal immobilized was, respectively, as follows: 38.02 and 90.21 µg mL?1 for zinc, 39.78 and 89.23 µg mL?1 for chromium, and 47.19 and 86.83 µg mL?1 for nickel. Due to its high-metal accumulation capacity in aerobic conditions, these Gram-positive bacteria may be potentially applicable in situ bioremediation of heavy metals contaminating aqueous systems.  相似文献   

18.
The objective of the present study is to evaluate the absorption efficacy of H. fusiformis biochar (HFB) for the removal of phenol and heavy metals from single and mixed solute systems of these species under different experimental conditions. The effects of contact time, pH change, initial phenol concentration, and heavy metal concentration on the adsorption capacity of HFB were investigated. The kinetics and equilibrium models of sorption of the components of the single and mixed solute systems on HFB were also studied. The experimental data were fitted to kinetic and equilibrium models. The batch experiments revealed that 360 min of contact time was sufficient to achieve equilibrium for the adsorption of both phenol and heavy metals. The adsorption of phenol and nickel by HFB followed the pseudo-second-order kinetic model, which was quite adequate for describing the adsorption mechanism. The equilibrium data for the adsorption of phenol and heavy metals fit well to the Langmuir model with regression coefficients of R 2 > 0.819. The maximum Langmuir adsorption capacities were 10.39, 12.13, 22.25, 2.24, 2.89, and 22.03 mg/g for phenol, Ni2+, Zn2+, Cu2+, Pb2+, and Cd2+, respectively. Moreover, HFB exhibited optimal sorption under slightly acidic conditions at pH 6. The HFB used in the present study exhibited higher adsorption capacity for the removal of phenol and heavy metals from aqueous solutions compared to documented sorbents. These results demonstrate that HFB is potentially useful for alleviating the harmful effects of phenol and heavy metal in wastewater treatment systems.  相似文献   

19.
Pollution by heavy metals presents an environmental concern, and their toxicity threats soil, water, animals and human health. Phytoremediation can be used as a solution to remediate contaminated soils. The aim of this study was to identify native plants collected from tailings: material of Pb–Zn mine sites of Fedj Lahdoum and Jebel Ressas (two abandoned mines located, respectively, in the northwest of Tunisia and in the south of Tunis City). The tolerance of plant to heavy metals (lead, zinc and cadmium) is evaluated. Soil samples were collected and analyzed for Pb, Zn and Cd concentration. The total soil Pb, Zn and Cd are, respectively, reached 6132 mg kg?1, 11,052 mg kg?1 and it doesn’t exceed 479 mg kg?1 for Cd. The highest content of Zn in plants was detected in shoots of Rumex bucephalophorus (1048 mg kg?1), and the highest Pb concentration was detected in roots of Chrysopogon zizanioides (381 mg kg?1), while for Cd Silene colorata it accumulated the highest content in roots (51 mg kg?1). From all plants, only 12 have a translocation factor for Pb which is higher than one. Among all plants, only 17 have a translocation factor that is higher than one for Zn, while for Cd only 13 plants indicate TF > 1. As for the biological absorption coefficient, all samples indicate a rate which is lower than one. These plants can be primarily hyper accumulators and useful in remediation of lead- and zinc-contaminated soils after further biochemistry researches in mechanism of accumulation and translocation of heavy metals in plants.  相似文献   

20.
Discharging different kinds of wastewater and polluted waters such as domestic, industrial and agricultural wastewaters into environment, especially to surface water, can cause heavy pollution of this body sources. With regard to increasing effluent discharge standards to the environment, high considerations should be made when selecting proper treatment processes. Any of chemical, biological and physical treatment processes have its own advantages and disadvantages. It should be kept in mind that economical aspects are important, too. In addition, employing environment-friendly methods for treatment is emphasized much more these days. Application of some waste products that could help in this regard, in addition to reuse of these waste materials, can be an advantage. Agricultural fibers are agricultural wastes and are generated in high amounts. The majority of such materials is generated in developing countries and, since they are very cheap, they can be employed as biosorbents in water and wastewater applications. Polluted surface waters, different wastewaters and partially treated wastewater may be contaminated by heavy metals or some organic matters and these waters should be treated to reduce pollution. The results of investigations show high efficiency of agricultural fibers in heavy metal and phenol removal. In this paper, some studies conducted by the author of this article and other investigators are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号