首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding of the landscape response to agricultural practices mainly in relation to soil trace metals requires particular attention. Consistent with this, the trend and possible pollution of total and DTPA fraction of Mn, Zn, Cu, and Cd in the agricultural soils developed on different landscape positions involving piedmont alluvial plain (PAP), river alluvial plain (RAP), plateau (PL), and lowland (LL) were investigated. The content of the metal in different soil profiles, grouped by landscape positions, varied in the following orders: total and DTPA-Mn as LL > PAP > RAP > PL, total Zn and Cu as PAP > RAP > LL > PL, total Cd as RAP > PAP > PL > LL, DTPA-Zn as RAP > PAP > PL > LL, and DTPA-Cu as RAP > LL > PL > PAP. A wide variation in the total fraction of Mn (89–985 mg kg?1), Zn (24–152 mg kg?1), Cu (8–27 mg kg?1), and Cd (0.6–1.7 mg kg?1) and in the DTPA fraction of Mn (1.2–11 mg kg?1), Zn (0.3–4.4 mg kg?1), Cu (0.3–3 mg kg?1), Cd (0.03–0.09 mg kg?1) observed as a result of the effects of agricultural practices and landscape properties. The values of both total and DTPA-extractable Mn, Zn, and Cu were enriched in the AP horizon probably due to anthropogenic activities particularly successive use of agrochemical compounds and manure during numerous years. Using soil pollution indices [single pollution (PI) and comprehensive pollution (PIN)], the study soils were categorized mainly as low to moderate pollution and Zn was identified as the major element affecting on the yield of these indices.  相似文献   

2.
The heavy metal content of particulate matter was investigated in the city of Guangzhou in southern China. Samples of urban foliage near 36 pedestrian bridges were analyzed to determine their Zn, Pb, Cu, Cr, V, Ni, and Co contents after digestion in a mixture of strong acids composed of HNO3, HCl, HF, and HClO4. The results revealed a severe heavy metal pollution compared with the background levels in Chinese soils, except for Co and V. The mean concentrations of Zn (1,024 mg kg?1), Pb (233 mg kg?1), Cu (203 mg kg?1), Cr (118 mg kg?1), V (41.9 mg kg?1), Ni (41.4 mg kg?1), and Co (11.3 mg kg?1) in urban dust were higher than the reference levels, and were highest in samples located near high-traffic areas. Multivariate statistical methods (correlation analysis, principal-components analysis, and clustering analysis) were used to identify the possible sources of the metals. Three main pollutant sources are assigned: Zn, Cu and Ni levels were strongly correlated and were possibly related to combustion processes and vehicles; Pb, Cr and Co were mainly derived from traffic sources, combined with soil sources; and V mainly originated from natural sources.  相似文献   

3.
The concentration and dynamic of soil trace metals in natural ecosystems, in particularly, is dependent on the lithology of parent rock as well as topography and geopedological processes. To ascertain more knowledge for this dependency, soils on three parent rocks involving peridotite, pegmatite, and dolerite in two contrasting topography aspects were investigated. The total values of Fe, Mn, Zn, Cu, and Ni were determined and compared for different soil pedons. The concentration of Fe, Mn, and Ni were highest in soils developed from peridotite (127, 1.8 g kg?1, and 218 mg kg?1, respectively), intermediate in soils derived from dolerite (81, 1.3 g kg?1, and 166 mg kg?1, respectively), and least in soil developed from pegmatite (50, 0.23 g kg?1, and 20 mg kg?1, respectively). The values of Zn and Cu, originated from different parent rocks, were in order of dolerite (78 mg kg?1) > peridotite (77 mg kg?1) > pegmatite (28 mg kg?1) and pegmatite (121 mg kg?1) > peridotite (111 mg kg?1) > dolerite (28 mg kg?1), respectively. For most of the studied pedons, profile metals distribution differed among the soils: The values of Fe, Cu, and Ni were enriched in the cambic horizons mainly as result of release, mobilization, and redistribution of the studied metals during geopedological processes, whereas those of Zn and Mn were concentrated in the surface horizons. Probably due to greater weathering rate of trace metal-bearing rocks on north-facing slope, the content of the trace metals along with the geoaccumulation index (I geo) and the degree of soil contamination (C d) were higher than on south-facing slope. Based on assessment of soil pollution indices, the soils were categorized as unpolluted [I geo ≤ 0 (class 0)], unpolluted to moderately polluted levels [0 < I geo < 1 (class 1)], and very low [C d < 1.5 (class 0)] to low degree of contamination [1.5 < C d < 2 (class 1)].  相似文献   

4.
Aljustrel mine is located in SW Portugal, in the western sector of the Iberian Pyrite Belt. The Aljustrel village was developed around the exploitations of massive polymetallic sulphides that occur in the area (4 orebodies mined, 2 in exploration phase). The pyrite ore was extensively exploited from 1850 to 1993, when production was discontinued. A mining restart occurred in 2008, only during a few months. The objectives of the study were to assess the levels of soil contamination, to determine associations between the different chemical elements and their spatial distribution, as well as to identify possible sources of contamination that can explain the spatial patterns of soil pollution in the area. Principal component analysis combined with spatial interpretation successfully grouped the elements according to their sources and provided evidence about their geogenic or anthropogenic origin. From this study, it is possible to conclude that soils around Algares/Feitais tailing deposits, Estéreis and Águas Claras mine dams and S. João mine show severe contamination. The highest concentrations of As (up to 3,936 mg kg?1) and certain heavy metals (up to 321.7 mg kg?1 for Bi, 5,414 mg kg?1 for Cu, 20,000 mg kg?1 for Pb, 980.6 mg kg?1 for Sb, and 22 mg kg?1 Cd) were obtained near Algares area while the highest concentration of Cd (up to 61.6 mg kg?1) and Zn (up to 20,000 mg kg?1) were registered in samples collected in the S. João area. The highest pollution load index (>4.0) was recorded at the Algares area where the metal concentrations exceed typical soil background levels by as much as two orders of magnitude.  相似文献   

5.
Pollution from mining activities is a significant problem in several parts of the Republic of Macedonia. A geochemical study of the surficial sediments of Lake Kalimanci in the eastern part of the Republic of Macedonia was carried out to determine their elemental compositions and to evaluate the pollution status of lake sediments by employing an enrichment factor (EF). The major and trace element contamination in surficial lake sediments was studied to assess the effects of metalliferous mining activities. The mean concentrations of major elements (wt%) Si 23.5, Al 7.9, Fe 6.6, Mg 1.3, Ca 3.8, Na 1.1, K 2.3, Ti 0.4, P 0.2, Mn 0.6 and trace elements ranged within Mo 1.0–4.6 mg kg?1, Cu 144.4–1,162 mg kg?1, Pb 1,874–16,300 mg kg?1, Zn 2,944–20,900 mg kg?1, Ni 21.7–79.3 mg kg?1, Cd 16.5–136 mg kg?1, Sb 0.6–3.6 mg kg?1, Bi 3.0–24,3 mg kg?1 and Ag 1.4–17.3 mg kg?1. The EF ranged within 0.12–590.3. Among which, Cd, Pb, Zn and As have extremely severe enrichment. The data indicate that trace elements had extremely high concentrations in Lake Kalimanci surficial sediments owing to the anthropogenic addition of contaminants.  相似文献   

6.
Heavy metals are constantly emitted into the environment and pose a major threat to human health, particularly in urban areas. The threat is linked to the presence of Cd, Cr, Cu, Ni, Pb, and Zn in street dust, which consists of mineral and organic particles originating from the soil, industrial emitters, motor vehicles, and fuel consumption. The study objective was to determine the level of street dust contamination with trace metals in Lublin and to indicate their potential sources of origin. The analyses were carried out with an energy-dispersive X-ray fluorescence spectrometer. The sampling sites (49) were located within the city streets characterised by varying intensity of motor traffic. The following mean content values and their variation (SD) were determined: Cd: 5.1?±?1.7 mg kg?1, Cr: 86.4?±?23.3 mg kg?1, Cu: 81.6?±?69.2 mg kg?1, Ni: 16.5?±?3.9 mg kg?1, Pb: 44.1?±?16.4 mg kg?1, and Zn: 241.1?±?94.6 mg kg?1. The level of pollution was assessed with several widely used geochemical indices (geoaccumulation index, enrichment factor, pollution index, index of ecological risk, and potential ecological risk index). For most of the indices, the mean (median) values are arranged in the following manner: Zn?>?Cu(or Cd)?>?Pb?>?Ni?>?Cr. In general, street dust in Lublin does not show pollution with Cr, Ni, and Pb. Igeo and EF indices show moderate levels for Cu, Cd, and Zn; their presence in street dust is linked with anthropogenic factors (motor traffic). A significant threat is posed by Cd, and more than half of the samples show considerable pollution with cadmium (median for the index of ecological risk: 151). The spatial pattern of indices and the results of statistical analyses (CA, PCA) indicate three groups of elements: (1) Cr and Ni: natural origin; (2) Pb: mixed origin; and (3) Cd, Cu, and Zn: anthropogenic origin (mainly motor vehicle traffic). Higher content values for metals of anthropogenic origin in street dust indicate that it is a source of pollution of soil and air in the city.  相似文献   

7.
In this work, the total and each fraction concentration of toxic metals (Pb, Zn, Cu and Cd) in soils as well as in plants from a typical metallurgical industrial area in southwest of China were determined. The obtained experimental results demonstrated that the total toxic metal content in contaminated soils was in the order of Zn > Pb > Cu > Cd. Modified microwave-assisted extraction showed that the distributions of each fraction of toxic metals in soils were different and some soil properties may play a role in the fraction distributions. The content of Cu, Zn, Cd and Pb in different vegetables ranged from 9.82 ± 1.02 to 39.3 ± 1.13 mg kg?1, 1,321 ± 10.50 to 3,153 ± 11.30 mg kg?1, 4.47 ± 0.21 to 18.9 ± 0.37 mg kg?1 and 28 ± 1.2 to 102 ± 1.5 mg kg?1, respectively. And the accumulation of toxic metals in plants was in the order of Cd > Zn > Cu > Pb. The bioconcentration factor (BCF) values of Cd, Zn, Cu and Pb in the different tissues of plants were in the range of 0.03–0.43, 0.027–0.35, 0.014–0.12 and 0.004–0.051, respectively. The distribution of each toxic metal in plants indicated that the ability for plants to accumulate toxic metals in different tissues followed the sequence of leaf > stem.  相似文献   

8.
The goal of this study was to evaluate the soil properties and their modifications within the rhizosphere of spontaneous vegetation as key factors to assess the phytomanagement of a salt marsh polluted by mining wastes. A field survey was performed based on a plot sampling design. The results provided by the analyses of rhizospheric soil (pH, electrical conductivity (EC), organic carbon, total nitrogen, etc.) and metal(loid)s’ phytoavailability (assessed by EDTA) were discussed and related to plant metal uptake. The averages of pH and EC values of the bulk soil and rhizospheric samples were in the range of neutral to slightly alkaline (pH 7–8) to saline (>2 dS m?1), respectively. Heavy metal and As concentrations (e.g. ~600 mg kg?1 As, ~50 mg kg?1 Cd, ~11,000 mg kg?1 Pb) were higher in the rhizosphere for both total and EDTA-extractable fraction. Phragmites australis uptaked the highest concentrations in roots (e.g. ~66 mg kg?1 As, ~1,770 mg kg?1 Zn) but not in shoots, for which most of plant species showed low values for Zn (<300 mg kg?1) but not for Cd (>0.5 mg kg?1) or Pb (~20–40 mg kg?1). Vegetation distribution in the studied salt marsh looked to be more affected by salinity than by metal pollution. The free availability of water for plants and the incoming nutrient-enriched effluents which flow through the salt marsh may have hindered the metal(loid)s’ phytotoxicity. The phytomanagement of these polluted areas employing the spontaneous vegetation is a good option in order to improve the ecological indicators and to prevent the transport of pollutants to nearby areas.  相似文献   

9.
Bio-concentration of elements such as Mo, As, Se, Fe, Cu, Zn, Ni and Pb was analyzed in spring onion (Allium fistulosum L.) in three different locations of central Punjab, Pakistan. At location GW, relatively low level of hazardous elements was found in spring onion, suggesting that groundwater is a safe source of water for irrigating food crops. The pH of soil at wastewater irrigation was found less acidic (pH 7.4) than the other sites. The range of concentration in the different samples of spring onion was as follows: 6.15–8.16 mg kg?1 for Mo, 2.77–4.28 mg kg?1 for As, 0.395–0.705 mg kg?1 for Se, 36.73–48.17 mg kg?1 for Fe, 10.58–16.26 mg kg?1 for Cu, 28.87–39.79 mg kg?1 for Zn, 6.66–8.75 mg kg?1 for Ni and 4.33–6.09 mg kg?1 for Pb, respectively. High bio-concentration of Zn (15.37) from soil to spring onion was found at canal water irrigated location. The estimated daily intake of metal for spring onion was less, but the health risk index was higher than 1 for Mo, As, Cu, Pb and Ni, respectively. This was due to higher proportion of spring onion in diet, which consequently increased the health risk index for metals. Therefore, it is recommended to avoid growing vegetables in untreated urban and rural wastewater containing elevated amounts of metals.  相似文献   

10.
Street dust from 29 locations, in some of the busiest parts of north and south Kolkata, was analysed for heavy metal composition. The decreasing order of average metal concentrations (mg kg?1) found was Mn (390) > Pb (380) > Zn (300) > As (96) > Cu (61) > Cr (40) > Co (13) > Ag (2.1). The heavy metal composition of the Kolkata dust was compared with reported data for other cities. Enrichment factors of Pb and As were high. Multivariate statistical analysis of the heavy metals and analysis of lead isotopic ratios of the dust revealed a predominant anthropogenic influence in the contamination. The range of lead isotopic ratios found in the dust was between 0.8789 and 0.8998 with a mean Pb concentration of 383 mg kg?1. The three Pb isotope plots of street dust, diesel and rainwater clustered linearly, while coal did not fit into this trend. The highest 207/206 lead isotopic ratio obtained was from diesel with a mean value of 0.9015, followed by the rainwater sample. The application of the binary mixing model showed that about 66.86% of lead contamination in the street dust was sourced from the atmosphere. The two components extracted by the principal component analysis explained 64.34% of the total variance. Vehicular and industrial emissions appeared to be an important contributor to the accumulation of heavy metals in the dust. The health risk assessment study of the dust indicated carcinogenic risk associated with As and Cr.  相似文献   

11.
The results of investigations (SEM/EDS and AAS) of a peat deposit, spanning 13,000 years of peat accumulation, are shown. The peat deposit is located in a region of shallow occurrence of Zn–Pb ores, near Tarnowskie Góry town, within the Cracow–Silesia district (southern Poland). Exploitation of lead, silver and iron during the medieval times (Twelfth and thirteenth century) was confirmed by historical documents whereas there are no unambiguous data showing that there was metal mining during the Romanian or earlier times in the region. The peat deposit is located within the influence of atmospheric Pb and Zn emission from a nearby Zn–Pb smelter. Two vertical peat profiles were investigated (120 and 140 cm depth of profile) showing variable concentrations of Zn up to 713 mg kg?1, Pb up to 317 mg kg?1, Cd up to 13 mg kg?1 and Tl up to 31 mg kg?1. The highest concentrations were recorded for the uppermost peat layers. SEM and EDS investigations revealed the occurrence of metalbearing, submicroscopic mineral components: Fe, Mn, Ti and Zn oxides and Zn and Pb carbonates. The top layer of the deposit contained Zn, Pb and Cd sulphides. The occurrence of aggregates of Au–Ag, Cu–Zn and Au–Ag–Cu alloys can be possibly related to pre-historical mining and smelting or be explained by geochemical transformations. The preservation of carbonates and oxides in the peat is discussed, indicating a generally neutral to alkaline peat water chemistry and maintenance of an oxidized environment in the fen.  相似文献   

12.
The contents of Co, Cr, Cu, Mn, Ni, Pb and Zn in the dust samples collected from Changqing industrial park of Baoji city, NW China, were measured by XRF, while As and Hg in the dust samples were analyzed by AFS. Geo-accumulation index (I geo), pollution index (PI) and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of dust. The health risk due to exposure to heavy metals in dust was analyzed by the Health Risk Assessment Model of US EPA. The results show that the arithmetic means of As, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn are 23.3, 16.4, 1591.8, 178.2, 0.243, 346.5, 40.2, 1,586.2 and 1,918.8 mg kg?1, respectively, which are higher than the background values of Shaanxi soil, especially for Cr, Cu, Hg, Pb, and Zn. The mean values of I geo reveal the order of Pb > Zn > Cr > Hg > Cu > As > Co > Ni > Mn. The high I geo of Cr, Cu, Hg, Pb and Zn in dust indicates that there is considerable pollution from Cr, Cu, Hg, Pb and Zn, while the low I geo of As, Co, Mn and Ni presents no pollution in dust. The assessment results of PI support the results of I geo, and IPI indicates heavy metals in dust polluted seriously. The health risk assessment shows that ingestion of dust particles is the route for exposure to heavy metals from dust, followed by dermal adsorption. Exposure to As, Cr and Pb from dust may pose a potential health threat to children and adults. The risk of cancer from As, Co, Cr and Ni due to dust exposure is low.  相似文献   

13.
Industrial development, intensive agriculture and fast urbanization have caused the metal contents of soils to increase to many times the allowable limits. To assess this impact on urban and rural soils, we quantified the Cd, Cr, Cu, Pb, Ni and Zn contents of 258 soil samples from the Recife metropolitan region (RMR). The objectives of the study were to estimate the probability of ecological risk, to determine the spatial pattern of the metals’ accumulation in the soil and to identify potential sources for the metals using a multivariate geostatistical approach. Mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in soils were 65.2, 17.9, 16.5, 12.8, 6.3 and 1.5 mg kg?1, respectively. The results demonstrated that the Cd was anthropogenic in origin, the Cr and Ni were lithogenic (natural) in origin and the Cu, Pb and Zn were mixed in origin. Cd contaminated 91% of the samples; the median content of Cd (1.4 mg kg?1) was three times the quality reference value for soil. The Cd contents of sugarcane fields exceeded the allowable limit (3.0 mg kg?1) for agricultural areas. The spatial variability of the metals in the RMR showed that metallurgy, cement production, vehicle exhaust and vehicular traffic were the main sources of metals in urban areas, while phosphate-based fertilizers were the main sources in rural areas. More than 80% of the metropolitan region surveyed in the study was at moderate to high ecological risk.  相似文献   

14.
Pollution by heavy metals presents an environmental concern, and their toxicity threats soil, water, animals and human health. Phytoremediation can be used as a solution to remediate contaminated soils. The aim of this study was to identify native plants collected from tailings: material of Pb–Zn mine sites of Fedj Lahdoum and Jebel Ressas (two abandoned mines located, respectively, in the northwest of Tunisia and in the south of Tunis City). The tolerance of plant to heavy metals (lead, zinc and cadmium) is evaluated. Soil samples were collected and analyzed for Pb, Zn and Cd concentration. The total soil Pb, Zn and Cd are, respectively, reached 6132 mg kg?1, 11,052 mg kg?1 and it doesn’t exceed 479 mg kg?1 for Cd. The highest content of Zn in plants was detected in shoots of Rumex bucephalophorus (1048 mg kg?1), and the highest Pb concentration was detected in roots of Chrysopogon zizanioides (381 mg kg?1), while for Cd Silene colorata it accumulated the highest content in roots (51 mg kg?1). From all plants, only 12 have a translocation factor for Pb which is higher than one. Among all plants, only 17 have a translocation factor that is higher than one for Zn, while for Cd only 13 plants indicate TF > 1. As for the biological absorption coefficient, all samples indicate a rate which is lower than one. These plants can be primarily hyper accumulators and useful in remediation of lead- and zinc-contaminated soils after further biochemistry researches in mechanism of accumulation and translocation of heavy metals in plants.  相似文献   

15.
This paper aims at determining of inorganic leachate contamination for a capped unsanitary landfill in the absence of hydrogeological data. The 2D geoelectrical resistivity imaging, soil physicochemical characterization, and surface water analysis were used to determine contamination load and extent of selective heavy metal contamination underneath the landfill. The positions of the contaminated subsoil and groundwater were successfully delineated in terms of low resistivity leachate plumes of <10 Ωm. Leachate migration towards the reach of Kelang River could be clearly identified from the resistivity results and elevated concentrations of Fe in the river downslope toe of the site. Concentration of Fe, Mn, Ca, Na, K, Mg, Cu, Cr, Co, Ni, Zn, and Pb was measured for the subsoil samples collected at the downslope (BKD), upslope (BKU), and the soil-waste interface (BKI), of the landfill. The concentration levels obtained for most of the analyzed heavy metals significantly exceed the normal range in typical municipal solid waste landfill sites. The measured heavy metal contamination load in the subsoil is in the following order Fe ? Mn > Zn > Pb > Cr > Cu. Taking into consideration poor physical and chemical characteristics of the local soil, these metals first seem to be attenuated naturally at near surface then remobilize unavoidably due to the soil acidic environment (pH 4.2-6.18) which in turn, may allow an easy washing of these metals in contact with the shallow groundwater table during the periodic fluctuation of the Kelang River. These heavy metals are believed to have originated from hazardous industrial waste that might have been illegally dumped at the site.  相似文献   

16.
Heavy metals are known to pose a potential threat to terrestrial and aquatic flora and fauna. Due to increasing human influence, heavy metal concentrations are rising in many mangrove ecosystems. Therefore, an assessment of heavy metal (Cd, Cr, Cu, Ni, Pb, Fe, Mn, and Zn) concentrations was conducted within the bulk soil and rhizosphere soil of Avicennia marina at the Pichavaram Mangrove Forest in India. The rhizosphere soil showed higher concentrations of metals than the bulk soil. Compared to the bulk soil, the metals Cd, Fe, Mn, and Zn were 6.0–16.7% higher, whereas Cr, Cu, Ni, and Pb were 1.7–2.8% higher concentration. Among the three selected sampling sites (dense mangrove forest, estuarine region, and sea region), the sea region had the highest concentration of all heavy metals except Zn. The trend of the mean metal concentration was Fe > Mn > Cr > Ni > Cu > Pb > Zn > Cd. Heavy metals concentrations elevated by the 2004 tsunami were persistent even after 4 years, due to sedimentary soil processes, the rhizosphere effect of mangroves, and anthropogenic deposition. Analysis of the heavy metal-resistant bacteria showed highest bacterial count for Cr-resistant bacteria and rhizosphere soil. The maximum level of heavy metal-resistant bacteria was observed at the site with the highest heavy metal contamination. The heavy metal-resistant bacteria can be used as indicator of heavy metal pollution and furthermore in bioremediation.  相似文献   

17.
Pu  Wanqiu  Sun  Jiaqi  Zhang  Fangfang  Wen  Xingyue  Liu  Wenhu  Huang  Chengmin 《中国地球化学学报》2019,38(5):753-773

Metallic ore mining causes heavy metal pollution worldwide. However, the fate of heavy metals in agrosystems with long-term contamination has been poorly studied. Dongchuan District (Yunnan, southwest China), located at the middle reaches of the Xiaojiang River, is a well-known 2000-year-old copper mining site. In this work, a survey on soil heavy metal contents was conducted using a handheld X-ray fluorescence instrument to understand the general contamination of heavy metals in the Xiaojiang River Basin. Furthermore, river water, soil, and rice samples at six sites along the fluvial/alluvial fans of the river were collected and analyzed to implement an environmental assessment and an evaluation of irrigated agrosystem. V, Zn, and Cu soil levels (1724, 1047, and 696 mg·kg−1, respectively) far exceeded background levels. The geo-accumulation indexes (Igeo) showed that cultivated soils near the mining sites were polluted by Cd and Cu, followed by Zn, V, Pb, Cr, Ni, and U. The pollution index (Pi) indicated that rice in the area was heavily polluted with Pb, Cr, Cd, Ni, Zn, and Cu. The difference in orders of metal concentrations between the soil and rice heavy metal contamination was related to the proportion of bioavailable heavy metals in the soil. The crop consumption risk assessment showed that the hazard quotient exceeded the safe threshold, indicating a potential carcinogenic risk to consumers. The Nemerow integrated pollution index and health index indicated that the middle of the river (near the mining area) was the heaviest polluted site.

  相似文献   

18.
The risk of Pb, Zn and Cd mobility is evaluated in soils from a depleted mine at Rubiais (Lugo, Spain). This area is under special protection because of its outstanding natural value. Soils from nine different areas were selected: at the mining zone (R1, R2, R3), at minespoils (R4, R5, R6) and soils developed on the settling pond (R7, R8, R9). A control soil (RC) was sampled outside the mine. The objectives are (i) to study the characteristics of soils with high influence on metal retention, (ii) to determine the content of Pb, Zn and Cd comparing it with the generic reference levels, and (iii) to evaluate the distribution and the interactions between the metals and the soil geochemical phases by means of sequential chemical extraction, X-ray diffraction, field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy (FE-SEM/EDS) and time of flight secondary ion mass spectrometry (TOF–SIMS). The concentration of Pb, Zn and Cd ranges 850–6,761, 1,754–32,287 and 1.8–43.7 mg kg?1, respectively, and the highest proportion is in the residual fraction. The Mn oxides highly influence the retention of Cd while Pb retention is mainly influenced by Fe oxides. Zn is uniformly distributed amongst the residual fraction and the Fe and Mn oxides. TOF–SIMS and SEM/EDS techniques confirm the fractionation results, showing how Pb and Zn are as sulphide and associated with Fe and Mn oxides. Nevertheless, care should be taken since oxides and sulphides could suffer sulphide oxidation processes or alteration of the oxides causing leaching and the contamination of the protected ecosystem.  相似文献   

19.
To determine radioactivity and trace metal levels, surface sediments were collected from two important areas (?zmir Bay and Didim) in the Aegean Sea region of Turkey, and were analyzed for concentrations of 210Po, 210Pb and trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn). The average 210Po and 210Pb massic activities in sediments varied in the range of 24 ± 5 to 126 ± 6 Bq kg?1 dry wt. and 18 ± 3 to 59 ± 4 Bq kg?1 dry wt., respectively. Izmir Bay exhibited the highest polonium activities in sediments, likely due to specific sedimentation processes and other sediment characteristics. The trace metal results showed that the Izmir Bay is facing trace metal pollution. The metal concentrations in sediment samples are low compared to those from the other neighboring marine environments.  相似文献   

20.
The goal of the paper was to determine the activity of 137Cs and 40K radionuclides as well as heavy metals Zn, Cr, Pb in soil samples taken from the Tatra National Park in the south of Poland. The samples were obtained as cores (10 cm in diameter) from the top 10-cm layer of the soil. Each sample was divided into three subsamples (a, b and c), where a was the subsample closest to the surface and c was the deepest one. Activity of the radionuclides was determined by means of gamma spectrometry, while analysis of heavy metals was performed (after microwave digestion) using atomic absorption spectrometry technique. The highest activity of cesium-137 was detected (5112 ± 120 Bq kg?1) in the “a” layer of the core with the peak concentration of cesium-137 (14,452 ± 278 Bq m?2) in the whole soil core. The highest detected concentration of heavy metals was: Zn—52.8 ± 4.4 mg kg?1, Pb—260.1 ± 9.4 mg kg?1, Cr—52.8 ± 4.4 mg kg?1, respectively. Cluster analysis and principal component analysis were used to examine the obtained data. Application of statistical analysis tools allowed specifying the interdependencies between the examined variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号