首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is to evaluate the ability of a European chemistry transport model, ‘CHIMERE’ driven by the US meteorological model MM5, in simulating aerosol concentrations [dust, PM10 and black carbon (BC)] over the Indian region. An evaluation of a meteorological event (dust storm); impact of change in soil related parameters and meteorological input grid resolution on these aerosol concentrations has been performed. Dust storm simulation over Indo-Gangetic basin indicates ability of the model to capture dust storm events. Measured (AERONET data) and simulated parameters such as aerosol optical depth (AOD) and Angstrom exponent are used to evaluate the performance of the model to capture the dust storm event. A sensitivity study is performed to investigate the impact of change in soil characteristics (thickness of the soil layer in contact with air, volumetric water, and air content of the soil) and meteorological input grid resolution on the aerosol (dust, PM10, BC) distribution. Results show that soil parameters and meteorological input grid resolution have an important impact on spatial distribution of aerosol (dust, PM10, BC) concentrations.  相似文献   

2.
In this paper, we report some salient features from a suit of special experiments that have been conducted over a coastal site (Mumbai) during February 23–March 03, 2010, encompassing an Indian festival, namely Holi, using solar radiometers and pyranometer. The results of the analysis of observations at the experimental site show higher (more than double) aerosol optical depth, water vapor, and lower down-welling short-wave radiative flux during the festival period. This is considered to be due to anthropogenic activities and associated meteorological conditions at the experimental location. To illustrate further, Angstrom parameters (alpha, denoting the aerosol size distribution, and beta, representing the loading) are examined. These parameters are found to be greater on Holi day as compared to those on the normal (control, pre-, and post-Holi) days, suggesting an increase in accumulation mode (smaller size) particle loading. The aerosol size spectra exhibited bimodal/power-law distribution with a dominant peak, modulated by anthropogenic activities, involving local and long-range transport of dust and smoke (emanated from biomass-burning) aerosols, which is consistent with MODIS satellite observations. The aerosol direct radiative forcing estimation indicated cooling at the bottom of the atmosphere.  相似文献   

3.
Electromagnetic radiation, in its passage through the atmosphere, is attenuated by absorption and scattering by atmospheric gases, dust and aerosols. The most important absorber is water vapour and the most significant parameter in atmospheric absorption studies is the total precipitable water in the atmosphere. The present paper summarises the results of a study made to compute the total precipitable water in the atmosphere over India using radiosonde and other data, as part of a programme for the computation of direct, global and diffuse solar radiation at the ground from the solar constant. Using values of air temperature and dew point from the ground up to 250 mb at 19 radiosonde stations and surface water vapour mixing ratio values at 105 surface observatories in India, precipitable water amounts have been computed for 124 stations, for each month and for the whole year. The paper describes the techniques used to extend the total precipitable water amounts derived from radiosonde data at 19 stations to 124 stations covering the major climatic zones in the country and presents the results in the form of 12 maps showing the spatial and temporal distribution of total precipitable water over India  相似文献   

4.
X-ray Diffraction of Dust Particles in Spring Beijing   总被引:1,自引:1,他引:0  
X-ray diffractometry was utilized to study the mineralogical characteristics of the inhalable particles (PM10) sampled during two dust storms in Beijing city on March 18th and May 21st, 2008. We confirm, for the first time, that there stably exists ammonium chloride in the atmosphere when temperature is low. The total sulfates particles were affected by relative humidity. Both species and concentration of sulfates decreased first and then grew back by the end of each dust storm. Koninckite, a phosphate mineral never reported as particulate aerosol before, was identified. Meanwhile, our result shows that a chemical modification on dust minerals occurs during long range transportation. PM10 samples collected during the period of dust storms were dominated by crustal minerals such as quartz, illite/ smectite, illite, chlorite, feldspar and calcite, and were notably higher in concentration than that in normal periods of time. The amounts of total sulfates, calcite and feldspar altered in each dust storm. It is derived from 24-hour isentropic backward trajectories that two dust events in spring 2008 originated in different sources.  相似文献   

5.
The spatial and temporal characteristics of aerosol optical properties (AOP) were analyzed in order to find out the hotspot aerosol sources over Iraq and surrounding regions. The correlation of AOP with the frequency of dust events (dust storm (DS), rising dust (RD), suspended dust (SD)) over 12 Iraqi stations is evaluated during the study period (January 2005–December 2014). The AOP: aerosol absorption optical depth (AAOD), aerosol extinction optical depth (AOD), and aerosol single scattering albedo (SSA) at 388 and 500 nm and aerosol index (AI), are derived from the Ozone Monitoring Instrument (OMI) on board the Aura satellite. Three well-known spatial interpolation techniques: inverse distance weighting, radial basis function with three sub-types, and kriging with three sub-types, are examined in ArcGIS software. Statistical analysis is applied to compute the station probability of dust events and its correlation with AOP. Results showed that the spline with the lowest RMSE and MPE near zero is the optimum method for estimating AOP. The spatial mean of AAOD, AOD, and AI (SSA) have the same pattern with high (low) mean values over the south and northwest of Iraq, Kuwait, and the northeast of Saudi Arabia. The seasonal variability of AAOD and AOD over the Iraqi stations showed that high (low) values occurred during spring and summer (winter) and concluded that AAOD is a responsible component for variation in AOD. DS and RD probability is higher over stations in the middle and south of Iraq than the stations in the north. High SD probability is over Mosul, Baghdad, and Nasiriya stations. The correlation of AOP with dust events suggests that the AAOD component is more important in the study of DS than SSA and AI while AI is a good index for the study of RD and SD in the study region.  相似文献   

6.
South-west Asia including the Middle East is one of the most prone regions to dust storm events. In recent years, there was an increase in the occurrence of these environmental and meteorological phenomena. Remote sensing could serve as an applicable method to detect and also characterise these events. In this study, two dust enhancement algorithms were used to investigate the behaviour of dust events using satellite data, compare with numerical model output and other satellite products and finally validate with in-situ measurements. The results show that the use of thermal infrared algorithm enhances dust more accurately. The aerosol optical depth from MODIS and output of a Dust Regional Atmospheric Model (DREAM8b) are applied for comparing the results. Ground-based observations of synoptic stations and sun photometers are used for validating the satellite products. To find the transport direction and the locations of the dust sources and the synoptic situations during these events, model outputs (HYSPLIT and NCEP/NCAR) are presented. Comparing the results with synoptic maps and the model outputs showed that using enhancement algorithms is a more reliable way than any other MODIS products or model outputs to enhance the dust.  相似文献   

7.
有关中国黄土高原黄土物质的源区及其输送方式的再评述   总被引:4,自引:0,他引:4  
张小曳 《第四纪研究》2007,27(2):181-186
仅通过对黄土的研究来认识黄土物质的源地和输送方式、沉降过程往往需要假设和推测一些问题,不够直接和全面,借助对沙漠和大气中沙尘粒子本身的研究则可以更清晰地认识它们.文章在以往对黄土物质源区、输送和沉积过程研究的基础上,对有关这些问题的研究进展,特别是2000~2006年以来的进展给出了进一步的评述.结果表明:蒙古源区、以塔克拉玛干沙漠为主体的中国西部沙漠源区和以巴丹吉林沙漠为中心的中国北部沙漠源区贡献了亚洲沙尘释放总量的约70%,它们可视为亚洲沙尘的3个贡献量最大的源区,也可视为是黄土高原黄土物质的主要源地;有关亚洲沙尘的输送,在接近其源区的区域其沙尘浓度峰值在1km及其以下,在中国内陆其峰值通常在1~3km高度,在日本等东亚区域在2~4km高度,在太平洋中部峰值位于4~5km高度,在美国西部在5~7km的位置.通常,亚洲沙尘的区域尺度输送主要受近地面层东亚冬季风的控制,沙尘穿越太平洋的跨洲输送模式与全球尺度的大气环流变化紧密相关,特别是受中纬度西风带的影响.关于黄土高原黄土物质的沉降和堆积,近地面层东亚冬季风起到的是控制性的作用,沙尘在黄土高原的沉降以干沉降为主.晚第四纪黄土-古土壤中的90%以上是亚洲沙尘粒子的沉积物,不到10%受到了再作用过程的影响.  相似文献   

8.
利用太阳光度计CE318资料,对新疆地区3个观测站点(阿克达拉、乌鲁木齐、塔中)所代表的草场、城市和沙漠下垫面的440 nm波长处气溶胶光学厚度(AOD)和440~870 nm之间的Angstrom波长指数(AE)进行了统计分析,结果表明:三个站点的AOD年均值塔中站最大、乌鲁木齐站次之、阿克达拉站最小。其中阿克达拉站点的AOD全年变化不大,其月均值均小于0.3;乌鲁木齐站点AOD则表现出明显的季节性变化,冬春季的AOD月均值是夏秋季节的2.17倍;塔中站全年的AOD表现为单峰型,大值时段主要集中在3-7月。三个站点的AE年均值阿克达拉站最大、乌鲁木齐站次之、塔中站最小。阿克达拉和乌鲁木齐站点的AOD以人为排放等小粒径气溶胶为主,塔中站的AOD主要为沙尘等大粒径气溶胶。从年际变化来看,乌鲁木齐站AOD总体呈下降趋势,塔中站和阿克达拉站AOD总体呈上升趋势。乌鲁木齐霾天气的AOD日均值分布在0.35~1.21之间,塔中站沙尘天气的AOD日均值范围为0.30~2.05。  相似文献   

9.
The location of Central Asia,almost at the center of the global dust belt region,makes it susceptible for dust events.The studies on atmospheric impact of dust over the region are very limited despite the large area occupied by the region and its proximity to the mountain regions(Tianshan,Hindu Kush-Karakoram-Himalayas,and Tibetan Plateau).In this study,we analyse and explain the modification in aerosols'phys-ical,optical and radiative properties during various levels of aerosol loading observed over Central Asia utilizing the data collected during 2010-2018 at the AERONET station in Dushanbe,Tajikistan.Aerosol epi-sodes were classified as strong anthropogenic,strong dust and extreme dust.The mean aerosol optical depth(AOD)during these three types of events was observed a factor of~3,3.5 and 6.6,respectively,higher than the mean AOD for the period 2010-2018.The corresponding mean fine-mode fraction was 0.94,0.20 and 0.16,respectively,clearly indicating the dominance of fine-mode anthropogenic aerosol during the first type of events,whereas coarse-mode dust aerosol dominated during the other two types of events.This was corroborated by the relationships among various aerosol parameters(AOD vs.AE,and EAE vs.AAE,SSA and RRI).The mean aerosol radiative forcing(ARF)at the top of the atmosphere(ARFTOA),the bottom of the atmosphere(ARFBOA),and in the atmosphere(ARFATM)were-35±7,-73±16,and 38±17 Wm-2 during strong anthropogenic events,-48±12,-85±24,and 37±15 Wm-2 during strong dust event,and-68±19,-117±38,and 49±21 Wm-2 during extreme dust events.Increase in aerosol loading enhanced the aerosol-induced atmospheric heating rate to 0.5-1.6 K day-1(strong anthropogenic events),0.4-1.9 K day-1(strong dust events)and 0.8-2.7 K day 1(extreme dust events).The source regions of air masses to Dushanbe during the onset of such events are also identified.Our study con-tributes to the understanding of dust and anthropogenic aerosols,in particular the extreme events and their disproportionally high radiative impacts over Central Asia.  相似文献   

10.
The paper addresses influence of dust particles on the aerosol loading over the major deserts in the northern hemisphere. The role of dust aerosols in the total aerosol concentration and size distribution of the particles are analysed. It is observed that the aerosol loading is high in the northern hemisphere of which the deserts and adjoining areas in Asia and Africa play a leading role. Over the entire oceanic region, except some parts of the Atlantic Ocean near to the West coast of Africa and the Arabian Sea, aerosol loading is less. The Sahara Desert is the prominent source of dust aerosols throughout the year. The deserts of Asia are also prominent sources of dust aerosols on a global basis. Above 70% of the total aerosol optical depth (AOD) is contributed by the dust particles, reaching to around 90% during spring months March, April and May over the Sahara Desert, which is the major source of dust aerosols. Goddard Chemistry Aerosol Radiation and Transport model is used to estimate the dust aerosol concentration over the deserts of Asia and Africa. The model output almost agrees with the regions of dust loading obtained from the Envisat/SCIAMACHY. Hence, the model is reliable in estimating the dust aerosol loading over the major dust aerosol sources. The major portion of the total dust loading belongs to coarse mode particles.  相似文献   

11.
Dust storms are strongly and negatively associated with the annual cycle of rainfall and coincide with the west and southwesterly winds in west and south west of Iran. Accuracy assessment of particulate matter products of moderate resolution image spectroradiometer was studied in this research. Moderate resolution image spectroradiometer products consist of aerosol optical thickness, its corresponding image red, green and blue and moderate resolution image spectroradiometer/ terra calibrated radiances 5 minutes L1B swath 1 km, which shows the environmental information at terrestrial, atmospheric and ocean phenomenology. Daily aerosol optical thickness data retrieved from moderate resolution image spectroradiometer from May 2009 to May 2010 were compared with the amount of particulate matter measured at ground in Sanandaj, Iran, using non-linear correlation coefficient. Results showed that the moderate resolution image spectroradiometer image / terra calibrated radiances 5 minutes L1B swath 1 km is able to detect dust storms distribution and their blowing direction over study area clearly. The air quality conditions obtained in with dust storm period were unhealthy and correlation coefficients between moderate resolution image spectroradiometer aerosol optical thickness and particulate matter concentration in this period were higher than without dust storm period. The moderate resolution image spectroradiometer aerosol optical thickness values lower than 0.1 were acquired uncertainty level. Comparison of moderate resolution image spectroradiometer images/ terra calibrated radiances 5 minutes L1B swath 1 km and image red, green and blue showed that moderate resolution image spectroradiometer has limitation in retrieval of aerosol optical thickness from the dust storm with high concentration of particulate matter. This study reveals that the algorithm which is applied to refine the aerosol optical thickness is not able to recognize the amount of particulate matter in low and very high concentrations sensitively. No study has previously been conducted to investigate the accuracy of the moderate resolution image spectroradiometer particulate matter products.  相似文献   

12.
Daniali  Mohamad  Karimi  Neamat 《Natural Hazards》2019,97(1):259-281

Dust storms are yet quite frequent in various parts of the world, particularly ancient Mesopotamia (approximately corresponding to most parts of Iraq as well as certain surrounding regions toward its north). To add to the ongoing difficulty, monitoring dust patterns has been proven to be a rather difficult endeavor given the absence of reliable ground-based monitoring stations in the corresponding area. Additionally, western provinces of Iran, especially Khuzestan in the southwest of Iran, have been severely affected by dust storms carried by the westerly winds, blown through neighboring countries in ancient Mesopotamia. This study proceeds to employ aerosol optical depth (AOD), extracted from the MODerate-resolution Imaging Spectroradiometer onboard the Terra spacecraft, to assess spatial dust variations between 2001 and 2017 over the Khuzestan province and ancient Mesopotamia. The variations were also correlated with the temporal dust changes in the Khuzestan province. Frequency of occurrence for AOD?>?1 was used to identify and categorize major dust sources in the aforementioned regions. The findings were indicative of an increasing trend in the annual AODs of the Khuzestan province, which eventually led to a significant increase from 2008 toward the end of 2012, but decreased again in the following years. Correspondingly, the entire time period (2001–2017) was further divided into three sub-periods: the first time period spanning from 2001 to 2007, followed by the second from 2008 to 2012 and finally a third time period from 2013 to 2017. Dust source identification was speculative of numerous dust spots in Iraq, Syria, Kuwait and also the southern parts of Khuzestan province which have become more active in recent years. Additionally, a large active dust spot was pinpointed between the northwest Iraq and eastern Syria border which has become extremely active during the second time period, possibly due to a severe drought in the Fertile Crescent.

  相似文献   

13.
利用青海玉树国家基本气象观测站1961-2010年的总辐射常规观测资料, 分析了玉树地区总辐射的长期变化趋势. 结果表明: 玉树地区总辐射在1961-2010年期间总体呈现减弱趋势, 其变化经历了增强变"亮"-减弱变"暗"-增强变"亮"-震荡回落4个阶段; 春、夏季的总辐射变化趋势对年际变化趋势有主导作用. 小波分析表明, 玉树地区近50 a的总辐射变化过程中, 存在多时间尺度周期的变化特征; 长期变化趋势和国内其他站点的变化趋势相比均表现出减弱的趋势, 但各站点减弱趋势倾向率不同. 最后, 对比分析了总辐射和同期气象要素、MODIS反演的气溶胶AOD之间的关系.  相似文献   

14.
沙与尘虽然都是岩石物理风化的产物, 但在风力作用下, 习性截然不同。拜格诺用严格的物理实验证明, 尘粒能随风远走高飞, 而沙粒却只能在地面附近跳跃前进。从北方侵袭华北平原的所谓沙尘暴, 实质上都是尘暴。对历次重大天气事件沉积物的分析, 也完全证明了这一点。因此, 尘暴物质的源头不是来自有沙, 而是有尘的地方; 从而可以使人们采取正确的治理方法。   相似文献   

15.
In order to examine the seasonal characteristics of the dust events over western parts of Iran, surface observations from 27 meteorological stations for the period 1951–2014 were analyzed to obtain spatial distributions and temporal variations and trend of dusty day frequency (DDF). Trends of DDF were analyzed by Mann–Kendall and Sen’s estimator of slope nonparametric statistics. Three meteorological stations were selected in north (Tabriz), middle (Kermanshah), and south of the study area (Ahwaz) as reference stations for detecting the regional differences of DDFs. The results showed that DDF is a variable season by season but in general, DDF increases from north to south and from east to west of Iran. The maximum of DDF is monitored in May, June, and July. There are tangible seasonal increasing–decreasing periods in which these changes are logically related with seasonal changes. Regardless of the existence of the maximum DDF in south and southwest of study area, the most intensive increasing DDF trend is calculated in west middle areas. The most widespread and intensive increasing DDF pattern in west of Iran is observed when it is spring. In this case, the dust storms replaced the rainfalls. Distance from dust sources, major movement ways of dust transporting synoptic systems, regional effective wind activity (such as Shamal wind), and arrangement of high mountains are the known factors affecting frequency variation, distribution, and rate of the trend of all the dust phenomena in west of Iran.  相似文献   

16.
用气象卫星遥感监测沙尘暴的方法和初步结果   总被引:38,自引:2,他引:38       下载免费PDF全文
本文在简要介绍气象卫星探测特点的基础上,着重讨论了利用NOAA卫星、FY-1C卫星和GMS-5及FY-2B卫星上的星载扫描辐射仪监测沙尘暴的原理和方法.最后以2000年4月6~7日发生在我国内蒙古地区至华北一带的强沙尘暴为例,说明用这种手段不仅能监测到沙尘暴的发生,还能有效地监测其发展和演变,是监测和预警沙尘暴的重要手段和依据.  相似文献   

17.
Based on data from ground-based air quality stations, space–time variations of six principal atmospheric pollutants, such as particulate matter (PM2.5 and PM10) and gas pollutants (SO2, NO2, СО, and O3), obtained from January 1, 2014 to December 31, 2017 in the city of Lanzhou, have been studied. Average total concentrations of PM2.5 and PM10 were 53.2?±?26.91 and 124.54?±?82.33 µg/m3, respectively; however, the results showed that in 75.53% and 84.85% days, concentrations of these pollutants exceeded Chinese National Ambient Air Quality Standard and in 100% days exceeded World Health Organization guidelines standards. Daily mean values of aerosol optical depth and Ångström exponent based on data, received by satellite Moderate Resolution Imaging Spectroradiometer, show a broad range of values for aerosol optical depth (from 0.018 to 1.954) and Ångström exponent (from 0.003 to 1.8). Results of principal components analysis revealed three factor loadings. Thus, Factor 1 has the relevant loadings for PM2.5, PM10, CO, SO2, and NO2 (36%) and closely associated with transport emissions and industrial sources, which contribute to air pollution in Lanzhou. Factor 2 was heavily loaded with temperature and visibility (16.94%). Factor 3 consisted of relative humidity (14.11%). Cluster analysis revealed four subgroups: cluster 1 (PM2.5, NO2, SO2), cluster 2 (CO), cluster 3 (PM10) and cluster 4 (relative humidity, visibility, temperature, O3, wind speed), which were compliant with results, obtained from principal components analysis. Positive correlation was found among all pollutants, other than O3. According to processed backward trajectories obtained by Hybrid Single-Particle Lagrangian Integrated Trajectory model, it was found that movement of air masses occur from north, northwest, and west directions—the location of principal natural sources of aerosols.  相似文献   

18.
In this research, the frequency of dust storms was prepared at 87 synoptic stations for the period of 1987–2013. These data were classified by means of Fuzzy c-means clustering algorithm. Satellite images of MODIS and brightness temperature index were also used for detection and tracking dust storm of 30 Jun 4 July 2008. The results indicated that Iran is classified in five clusters by the dust-storm-frequencies from which, cluster 5 is reclassified in three clusters because of its wide range. The maximum number of days with dust storms was observed in cluster 1 that includes only Zabol station with the frequency of 790 days with the duration 1987–2013. The minimum number of days with dust storms was observed in cluster 5-3 that includes the stations located in portions of North, Northwest, Northeast Iran and the higher elevations of the Zagros in western Iran. A case study about a severe dust storm in Iran using satellite images indicate that brightness temperature index (BTI) is a desired index for detection and monitoring of dust storms. The source of the investigated dust storms is Iraq and South of the Arabian Peninsula that had influenced the western half of Iran in several days. The frequency of dust storms increased markedly in the west, southwest of Iran and Persian Gulf around as main receptors from emerging dusty areas but it increased slightly in the eastern half of Iran.  相似文献   

19.
Aerosol index data from the total ozone mapping spectrometer satellite and reanalysis data from the National Center for Environmental Prediction and the National Center for Atmospheric Research are useful in the study of synoptic properties of the dust storms that carry dust from North Africa to Asia during the spring season for the period 1979 to 2006. In this study, we analyzed the synoptic properties of dust cases that pass through the transition zone between North Africa and Asia. We identified the dust cases to study by looking, inside transition zone, at events with an aerosol index greater than 2. We then divided the identified cases, depending on the spread and strength of the dust inside the transition zone, into seven categories ranging from weak events to moderate events to violent events. We found the common synoptic characteristics in all these categories as follows: The high pressure belt located over northern Africa allows the low pressure belt located over the South African Sahara to move northward; a pressure gradient between these two atmospheric systems directs from south to north; an increase in the pressure gradient leads to increased in both of the event’s dust and the amount of dust moves to North Africa from the Sahara; an additional pressure gradient between the western Azores high pressure system and the low pressure system located over the Arabian Peninsula directs from west to east; the stronger the pressure gradient, the greater the amount of dust in the event and moving a large amount of dust from Northeast Africa to Asia. To verify that these characteristics capture the essence of dust events from North Africa to Asia, we checked if they were also common to two additional extremes categories and two extremes events. The results confirmed the continued existence of these common characteristics.  相似文献   

20.
本次研究利用MODIS、CALIPSO等卫星观测资料以及MERRA-2再分析资料分析了2007–2017年撒哈拉地区气溶胶光学厚度的空间分布特征.结果表明,撒哈拉地区气溶胶光学厚度的空间分布具有明显的季节变化,夏季沙尘气溶胶光学厚度高值区位于撒哈拉北部地区,高达0.6以上;而冬季沙尘气溶胶光学厚度高值区位于撒哈拉南部地...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号