首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two large shallow earthquakes occurred in 1942 along the South American subduction zone inclose proximity to subducting oceanic ridges: The 14 May event occurred near the subducting Carnegie ridge off the coast of Ecuador, and the 24 August event occurred off the coast of southwestern Peru near the southern flank of the subducting Nazca ridge. Source parameters for these for these two historic events have been determined using long-periodP waveforms,P-wave first motions, intensities and local tsunami data.We have analyzed theP waves for these two earthquakes to constrain the focal mechanism, depth, source complexity and seismic moment. Modeling of theP waveform for both events yields a range of acceptable focal mechanisms and depths, all of which are consistent with underthrusting of the Nazca plate beneath the South American plate. The source time function for the 1942 Ecuador event has one simple pulse of moment release with a duration of 22 suconds, suggesting that most of the moment release occurred near the epicenter. The seismic moment determined from theP waves is 6–8×1020N·m, corresponding ot a moment magnitude of 7.8–7.9. The reported location of the maximum intensities (IX) for this event is south of the main shock epicenter. The relocated aftershcks are in an area that is approximately 200 km by 90 km (elongated parallel to the trench) with the majority of aftershocks north of the epicenter. In contrast, the 1942 Peru event has a much longer duration and higher degree of complexity than the Ecuador earthquake, suggesting a heterogeneous rupture. Seismic moment is released in three distinct pulses over approximately 74 seconds; the largest moment release occurs 32 seconds after rupture initiation. the seismic moment as determined from theP waves for the 1942 Peru event is 10–25×1020N·m, corresponding to a moment magnitude of 7.9–8.2. Aftershock locations reported by the ISS occur over a broad area surrounding the main shock. The reported locations of the maximum intensities (IX) are concentrated south of the epicenter, suggesting that at least part of the rupture was to the south.We have also examined great historic earthquakes along the Colombia-Ecuador and Peru segments of the South American subduction zone. We find that the size and rupture length of the underthrusting earthquakes vary between successive earthquake cycles. This suggests that the segmentation of the plate boundary as defined by earthquakes this century is not constant.  相似文献   

2.
—By rupturing more than half of the shallow subduction interface of the Nazca Ridge, the great November 12, 1996 Peruvian earthquake contradicts the hypothesis that oceanic ridges subduct aseismically. The mainshock’s rupture has a length of about 200 km and has an average slip of about 1.4 m. Its moment is 1.5 × 1028 dyne-cm and the corresponding M w is 8.0. The mainshock registered three major episodes of moment release as shown by a finite fault inversion of teleseismically recorded broadband body waves. About 55% of the mainshock’s total moment release occurred south of the Nazca Ridge, and the remaining moment release occurred at the southern half of the subduction interface of the Nazca Ridge. The rupture south of the Nazca Ridge was elongated parallel to the ridge axis and extended from a shallow depth to about 65 km depth. Because the axis of the Nazca Ridge is at a high angle to the plate convergence direction, the subducting Nazca Ridge has a large southwards component of motion, 5 cm/yr parallel to the coast. The 900–1200 m relief of the southwards sweeping Nazca Ridge is interpreted to act as a "rigid indenter," causing the greatest coupling south of the ridge’s leading edge and leading to the large observed slip. The mainshock and aftershock hypocenters were relocated using a new procedure that simultaneously inverts local and teleseismic data. Most aftershocks were within the outline of the Nazca Ridge. A three-month delayed aftershock cluster occurred at the northern part of the subducting Nazca Ridge. Aftershocks were notably lacking at the zone of greatest moment release, to the south of the Nazca Ridge. However, a lone foreshock at the southern end of this zone, some 140 km downstrike of the mainshock’s epicenter, implies that conditions existed for rupture into that zone. The 1996 earthquake ruptured much of the inferred source zone of the M w 7.9–8.2 earthquake of 1942, although the latter was a slightly larger earthquake. The rupture zone of the 1996 earthquake is immediately north of the seismic gap left by the great earthquakes (M w 8.8–9.1) of 1868 and 1877. The M w 8.0 Antofagasta earthquake of 1995 occurred at the southern end of this great seismic gap. The M w 8.2 deep-focus Bolivian earthquake of 1994 occurred directly downdip of the 1868 portion of that gap. The recent occurrence of three significant earthquakes on the periphery of the great seismic gap of the 1868 and 1877 events, among other factors, may signal an increased seismic potential for that zone.  相似文献   

3.
—Whereas the coast of Peru south of 10°S is historically accustomed to tsunamigenic earthquakes, the subduction zone north of 10°S has been relatively quiet. On 21 February 1996 at 21:51 GMT (07:51 local time) a large, tsunamigenic earthquake (Harvard estimate M w = 7.5) struck at 9.6°S, 79.6°W, approximately 130 km off the northern coast of Peru, north of the intersection of the Mendaña fracture zone with the Peru–Chile trench. The likely mechanism inferred from seismic data is a low-angle thrust consistent with subduction of the Nazca Plate beneath the South American plate, with relatively slow rupture characteristics. Approximately one hour after the main shock, a damaging tsunami reached the Peruvian coast, resulting in twelve deaths. We report survey measurements, from 7.7°S to 11°S, on maximum runup (2–5m, between 8 and 10°S), maximum inundation distances, which exceeded 500 m, and tsunami sediment deposition patterns. Observations and numerical simulations show that the hydrodynamic characteristics of this event resemble those of the 1992 Nicaragua tsunami. Differences in climate, vegetation and population make these two tsunamis seem more different than they were. This 1996 Chimbote event was the first large (M w >7) subduction-zone (interplate) earthquake between about 8 and 10°S, in Peru, since the 17th century, and bears resemblance to the 1960 (M w 7.6) event at 6.8°S. Together these two events are apparently the only large subduction-zone earthquakes in northern Peru since 1619 (est. latitude 8°S, est. M w 7.8); these two tsunamis also each produced more fatalities than any other tsunami in Peru since the 18th century. We concur with Pelayo and Wiens (1990, 1992) that this subduction zone, in northern Peru, resembles others where the subduction zone is only weakly coupled, and convergence is largely aseismic. Subduction-zone earthquakes, when they occur, are slow, commonly shallow, and originate far from shore (near the tip of the wedge). Thus they are weakly felt, and the ensuing tsunamis are unanticipated by local populations. Although perhaps a borderline case, the Chimbote tsunami clearly is another wake-up example of a "tsunami earthquake."  相似文献   

4.
—A finite-source rupture model of the July 30, 1995, M w = 8.1 Antofagasta (Northern Chile) subduction earthquake is developed using body and surface waves that span periods from 20 to 290s. A long-period (150–290s) surface-wave spectral inversion technique is applied to estimate the average finite-fault source properties. Deconvolutions of broadband body waves using theoretical Green’s functions, and deconvolutions of broadband fundamental mode surface waves using empirical Green’s functions provided by a large aftershock, yield effective source time functions containing periods from 20 to 200s for many directivity parameters. The source time functions are used in an inverse radon transform to image a one-dimensional spatial model of the moment rate history. The event produced a predominantly unilateral southward rupture, yielding strong directivity effects on all seismic waves with periods less than a few hundred seconds. The aftershock information, spectral analysis, and moment rate distribution indicate a rupture length of 180–200km, with the largest slip concentrated in the first 120km, a rupture azimuth of 205°± 10° along the Chilean coastline, and a rupture duration of 60–68s with a corresponding average rupture velocity of 3.0–3.2km/s. The overall rupture character is quite smooth, accentuating the directivity effects and reducing the shaking intensity, however there are three regions with enhanced moment rate distributed along the rupture zone near the epicenter, 50 to 80km south of the epicenter, and 110 to 140km south of the epicenter.  相似文献   

5.
The 1963 great Kurile earthquake was an underthrust earthquake occurred in the Kurile?CKamchatka subduction zone. The slip distribution of the 1963 earthquake was estimated using 21 tsunami waveforms recorded at tide gauges along the Pacific and Okhotsk Sea coasts. The extended rupture area was divided into 24 subfaults, and the slip on each subfault was determined by the tsunami waveform inversion. The result shows that the largest slip amount of 2.8?m was found at the shallow part and intermediate depth of the rupture area. Large slip amounts were found at the shallow part of the rupture area. The total seismic moment was estimated to be 3.9?×?1021?Nm (Mw 8.3). The 2006 Kurile earthquake occurred right next to the location of the 1963 earthquake, and no seismic gap exists between the source areas of the 1963 and 2006 earthquakes.  相似文献   

6.
— I studied crustal deformation in the Kanto district, central Japan, based on continuous GPS data. Horizontal as well as vertical displacement rate demonstrate significant interaction between the landward Kanto block and the Philippine Sea plate. Although the subduction effect of the Pacific plate is not apparent, it is reasonable to consider the entire Kanto district is displaced westward due to the interaction with the Pacific plate. The GPS velocity data were inverted to estimate the slip deficit distribution on the Sagami Trough subduction zone. The result delineates a strongly coupled region on the plate interface, part of which corresponds to the 1923 Kanto earthquake. The strongly coupled region is located shallower than 20 km. In addition, the plate interaction is laterally heterogeneous even in the same depth range, implying thermal structure is not the only factor controlling interplate coupling. The GPS data also detected a silent earthquake event on the interface of the Philippine Sea slab east of the Boso Peninsula in the middle of May, 1996. The silent rupture propagated over a 50 km * 50 km wide area during about a week. The maximum slip was approximately 50 mm and the released seismic moment was 4.7*1018Nm (M w 6.4). There was a small seismicity triggered by this silent event. The silent slip was located in the peripheral of the strongly coupled area, suggesting that frictional properties and/or stress conditions are inhomogeneous on the plate boundary interface.  相似文献   

7.
We analyze the waveforms generated by the January 12, 2010 Haiti earthquake (Mw=7.0) for its source characteristics. A 60 to 25 km source model is retrieved by the Kikuchi and Kanamori finite source inversion technique that uses broadband teleseismic body wave records. The derived rupture model points out unilateral rupture propagation commenced at the eastern side of the fault plane where the major seismic moment release occurred. The rupture front propagated westward and terminated at a site where the largest aftershocks occurred. Our estimates yield a seismic moment of Mo=8.17×1019 N m released on a 60 km-long fault plane. A patch at the eastern side of the ruptured fault plane inferred as a region of maximum moment release.  相似文献   

8.
A Mw 7.9 earthquake event occurred on 15 August 2007 off the coast of central Peru, 60 km west of the city of Pisco. This event is associated with subduction processes at the interface of the Nazca and South American plates, and was characterised by a complex source mechanism involving rupture on two main asperities, with unilateral rupture propagation to the southeast. The rupture process is clearly reflected in the ground motions recorded during this event, which include two separate episodes of strong shaking. The event triggered 18 accelerographic stations; the recordings are examined in terms of their characteristics and compared to the predictions of ground-motion prediction equations for subduction environments, using the maximum-likelihood-based method of Scherbaum et al. (Bull Seismol Soc Am 94(6):2164–2185, 2004). Additionally, macroseismic observations and damage patterns are examined and discussed in the light of local construction practices, drawing on field observations gathered during the post-earthquake reconnaissance missions.  相似文献   

9.
Recent results from Global Positioning System (GPS) measurements show deformation along the coast of Ecuador and Colombia that can be linked to the rupture zone of the earthquake in 1979. A 3D elastic boundary element model is used to simulate crustal deformation observed by GPS campaigns in 1991, 1994, 1996, and 1998. Deformation in Ecuador can be explained best by 50% apparent locking on the subduction interface. Although there have not been any historic large earthquakes (Mw>7) south of the 1906 earthquake rupture zone, 50% apparent elastic locking is necessary to model the deformation observed there. In Colombia, only 30% apparent elastic locking is occurring along the subduction interface in the 1979 earthquake rupture zone (Mw 8.2), and no elastic locking is necessary to explain the crustal deformation observed at two GPS sites north of there. There is no evidence from seismicity or plate geometry that plate coupling on the subduction zone is reduced in Colombia. However, simple viscoelastic models suggest that the apparent reduction in elastic locking can be explained entirely by the response of a viscous upper mantle to the 1979 earthquake. These results suggest that elastic strain accumulation is occurring evenly throughout the study area, but postseismic relaxation masks the true total strain rate.  相似文献   

10.
An interpretation of the type, size, and interrelations of sources is proposed for the three large Aleutian earthquakes of March 9, 1957, May 7, 1986, and June 10, 1996, which occurred in structures of the Andreanof Islands. According to our interpretation, the earthquakes were caused by steep reverse faults confined to different structural units of the southern slope of the Andreanof Islands and oriented along the strike of these structures. An E-W reverse fault that generated the largest earthquake of 1957 is located within the Aleutian Terrace and genetically appears to be associated with the development of the submarine Hawley Ridge. The western and eastern boundaries of this source are structurally well expressed by the Adak Canyon in the west (~177°W) and an abrupt change in isobaths in the east (~173°W). The character of the boundaries is reflected in the focal mechanisms. The source of the earthquake of 1957 extends for about 300 km, which agrees well with modern estimates of its magnitude (M w = 8.6). Because the earthquake of 1957 caused, due to its high strength, seismic activation of adjacent areas of the Aleutian island arc, its aftershock zone appreciably exceeded in size the earthquake source. Reverse faults that activated the seismic sources of the earthquakes of 1986 and 1996 were located within the southern slope of the Andreanof Islands, higher than the Aleutian Terrace, outside the seismic source of the 1957 earthquake. The boundaries of these sources are also well expressed in structures and focal mechanisms. According to our estimate, the length of the 1986 earthquake source does not exceed 130–140 km, which does not contradict its magnitude (M w = 8). The length of the 1996 earthquake source is ~100 km, which also agrees with the magnitude of the earthquake (M w = 7.8).  相似文献   

11.
Maximum earthquake size varies considerably amongst the subduction zones. This has been interpreted as a variation in the seismic coupling, which is presumably related to the mechanical conditions of the fault zone. The rupture process of a great earthquake indicates the distribution of strong (asperities) and weak regions of the fault. The rupture process of three great earthquakes (1963 Kurile Islands, MW = 8.5; 1965 Rat Islands, MW = 8.7; 1964 Alaska, MW = 9.2) are studied by using WWSSN stations in the core shadow zone. Diffraction around the core attenuates the P-wave amplitudes such that on-scale long-period P-waves are recorded. There are striking differences between the seismograms of the great earthquakes; the Alaskan earthquake has the largest amplitude and a very long-period nature, while the Kurile Islands earthquake appears to be a sequence of magnitude 7.5 events.The source time functions are deconvolved from the observed records. The Kurile Islands rupture process is characterized by the breaking of asperities with a length scale of 40–60 km, and for the Alaskan earthquake the dominant length scale in the epicentral region is 140–200 km. The variation of length scale and MW suggests that larger asperities cause larger earthquakes. The source time function of the 1979 Colombia earthquake (MW = 8.3) is also deconvolved. This earthquake is characterized by a single asperity of length scale 100–120 km, which is consistent with the above pattern, as the Colombia subduction zone was previously ruptured by a great (MW = 8.8) earthquake in 1906.The main result is that maximum earthquake size is related to the asperity distribution on the fault. The subduction zones with the largest earthquakes have very large asperities (e.g. the Alaskan earthquake), while the zones with the smaller great earthquakes (e.g. Kurile Islands) have smaller scattered asperities.  相似文献   

12.
At GMT time 13:19, August 8, 2017, an Ms7.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5–20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152°, 74° and 8°, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 km. The co-seismic rupture mainly concentrates at depths of 3–13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 66°–89° from northwest to southeast and the average dip angle measures ~84°. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.  相似文献   

13.
The refinement of the accuracy and resolution of the monthly global gravity field models from the GRACE satellite mission, together with the accumulation of more than a decade-long series of these models, enabled us to reveal the processes that occur in the regions of large (Mw≥8) earthquakes that have not been studied previously. The previous research into the time variations of the gravity field in the regions of the giant earthquakes, such as the seismic catastrophes in Sumatra (2004) and Chile (2010), and the Tohoku mega earthquake in Japan (2011), covered the coseismic gravity jump followed by the long postseismic changes reaching almost the same amplitude. The coseismic gravity jumps resulting from the lower-magnitude events are almost unnoticeable. However, we have established a long steady growth of gravity anomalies after a number of such earthquakes. For instance, in the regions of the subduction earthquakes, the growth of the positive gravity anomaly above the oceanic trench was revealed after two events with magnitudes Mw=8.5 in the Sumatra region (the Nias earthquake of March 2005 and the Bengkulu event of September 2007 near the southern termination of Sumatra Island), after the earthquake with Mw=8.5 on Hokkaido in September 2007, a doublet Simushir earthquake with the magnitudes Mw = 8.3 and 8.1 in the Kuriles in November 2006 and January 2007, and after the earthquake off the Samoa Island in September 2009 (Mw=8.1). The steady changes in the gravity field have also been recorded after the earthquake in the Sichuan region (May 2008, Mw = 8.0) and after the doublet event with magnitudes 8.6 and 8.2, which occurred in the Wharton Basin of the Indian Ocean on April 11, 2012. The detailed analysis of the growth of the positive anomaly in gravity after the Simushir earthquake of November 2006 is presented. The growth started a few months after the event synchronously with the seismic activation on the downdip extension of the coseismically ruptured fault plane zone. The data demonstrating the increasing depth of the aftershocks since March 2007 and the approximately simultaneous change in the direction and average velocity of the horizontal surface displacements at the sites of the regional GPS network indicate that this earthquake induced postseismic displacements in a huge area extending to depths below 100 km. The total displacement since the beginning of the growth of the gravity anomaly up to July 2012 is estimated at 3.0 m in the upper part of the plate’s contact and 1.5 m in the lower part up to a depth of 100 km. With allowance for the size of the region captured by the deformations, the released total energy is equivalent to the earthquake with the magnitude Mw = 8.5. In our opinion, the growth of the gravity anomaly in these regions indicates a large-scale aseismic creep over the areas much more extensive than the source zone of the earthquake. These processes have not been previously revealed by the ground-based techniques. Hence, the time series of the GRACE gravity models are an important source of the new data about the locations and evolution of the locked segments of the subduction zones and their seismic potential.  相似文献   

14.
The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is ~ 8.0 × 1018 N·m (Mw?≈?6.5), and the centroid depth is ~ 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5–15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes >?6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is ~ 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in ~ 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 Mw7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.  相似文献   

15.
The 9 March 1957 Aleutian earthquake has been estimated as the third largest earthquake this century and has the longest aftershock zone of any earthquake ever recorded—1200 km. However, due to a lack of high-quality seismic data, the actual source parameters for this earthquake have been poorly determined. We have examined all the available waveform data to determine the seismic moment, rupture area, and slip distribution. These data include body, surface and tsunami waves. Using body waves, we have estimated the duration of significant moment release as 4 min. From surface wave analysis, we have determined that significant moment release occurred only in the western half of the aftershock zone and that the best estimate for the seismic moment is 50–100×1020 Nm. Using the tsunami waveforms, we estimated the source area of the 1957 tsunami by backward propagation. The tsunami source area is smaller than the aftershock zone and is about 850 km long. This does not include the Unalaska Island area in the eastern end of the aftershock zone, making this area a possible seismic gap and a possible site of a future large or great earthquake. We also inverted the tsunami waveforms for the slip distribution. Slip on the 1957 rupture zone was highest in the western half near the epicenter. Little slip occurred in the eastern half. The moment is estimated as 88×1020 Nm, orM w =8.6, making it the seventh largest earthquake during the period 1900 to 1993. We also compare the 1957 earthquake to the 1986 Andreanof Islands earthquake, which occurred within a segment of the 1957 rupture area. The 1986 earthquake represents a rerupturing of the major 1957 asperity.  相似文献   

16.
A method of body-wave inversion is developed in an attempt to extract the information about asperities or barriers in a fault zone. A sequence of point sources, each being characterized with the seismic moment, the onset time and the location, are iteratively derived from observed records at multi-stations, where the two-dimensional extent of the source location is taken into account. A modification is made of the iterative method of Kikuchi and Kanamori on the formulation of inversion procedure to facilitate the computation.Using this method, we analyse long period P waves of the Tokachi-Oki earthquake of 1968 (Mw = 8.2) and obtain several significant subevents with time durations of ~ 10 s. Their spatio-temporal distribution shows that the rupture process consists of three characteristic stages: (A) a stage of introductory rupture, (B) a stage of main rupture and (C) a stage of aftershocks. The main rupture takes place in the form of clustering around a few sites of the fault plane. The largest subevent occurs in the northwestern corner. The stress drop associated with this event is estimated to be ~ 200 bars, one order of magnitude higher than the stress drop averaged over the entire fault plane. The sum of the seismic moments of the individual subevents amounts to 2.3 × 1028 dyn. cm which approximately coincides with the one estimated from the analysis of long-period surface waves. This implies that the source of the Tokachi-Oki earthquake consists of several major subevents with time durations of ~ 10 s in addition to other minor subevents.  相似文献   

17.
Strong ground motions are estimated for the Pacific Northwest assuming that large shallow earthquakes, similar to those experienced in southern Chile, southwestern Japan, and Colombia, may also occur on the Cascadia subduction zone. Fifty-six strong motion recordings for twenty-five subduction earthquakes ofM s7.0 are used to estimate the response spectra that may result from earthquakesM w<81/4. Large variations in observed ground motion levels are noted for a given site distance and earthquake magnitude. When compared with motions that have been observed in the western United States, large subduction zone earthquakes produce relatively large ground motions at surprisingly large distances. An earthquake similar to the 22 May 1960 Chilean earthquake (M w 9.5) is the largest event that is considered to be plausible for the Cascadia subduction zone. This event has a moment which is two orders of magnitude larger than the largest earthquake for which we have strong motion records. The empirical Green's function technique is used to synthesize strong ground motions for such giant earthquakes. Observed teleseismicP-waveforms from giant earthquakes are also modeled using the empirical Green's function technique in order to constrain model parameters. The teleseismic modeling in the period range of 1.0 to 50 sec strongly suggests that fewer Green's functions should be randomly summed than is required to match the long-period moments of giant earthquakes. It appears that a large portion of the moment associated with giant earthquakes occurs at very long periods that are outside the frequency band of interest for strong ground motions. Nevertheless, the occurrence of a giant earthquake in the Pacific Northwest may produce quite strong shaking over a very large region.  相似文献   

18.
On 25 April 2015, an M w 7.8 earthquake occurred on the Main Himalaya Thrust fault with a dip angle of ~ 7° about 77 km northwest of Kathmandu, Nepal. This Nepal Gorkha event is the largest one on the Himalayan thrust belt since 1950. Here we use the compressive sensing method in the frequency domain to track the seismic radiation and rupture process of this event using teleseismic P waves recorded by array stations in North America. We also compute the distribution of static shear stress changes on the fault plane from a coseismic slip model. Our results indicate a dominant east-southeastward unilateral rupture process from the epicenter with an average rupture speed of ~3 km s?1. Coseismic radiation of this earthquake shows clear frequency-dependent features. The lower frequency (0.05–0.3 Hz) radiation mainly originates from large coseismic slip regions with negative coseismic shear stress changes. In comparison, higher frequency (0.3–0.6 Hz) radiation appears to be from the down-dip part around the margin of large slip areas, which has been loaded and presents positive coseismic shear stress changes. We propose an asperity model to interpret this Nepal earthquake sequence and compare the frequency-dependent coseismic radiation with that in subduction zones. Such frequency-dependent radiation indicates the depth-varying frictional properties on the plate interface of the Nepal section in the main Himalaya thrust system, similar to previous findings in oceanic subduction zones. Our findings provide further evidence of the spatial correlation between changes of static stress status on the fault plane and the observed frequency-dependent coseismic radiation during large earthquakes. Our results show that the frequency-dependent coseismic radiation is not only found for megathrust earthquakes in the oceanic subduction environment, but also holds true for thrust events in the continental collision zone.  相似文献   

19.
In the hours following the 2011 Honshu event, and as part of tsunami warning procedures at the Laboratoire de Géophysique in Papeete, Tahiti, the seismic source of the event was analyzed using a number of real-time procedures. The ultra-long period mantle magnitude algorithm suggests a static moment of 4.1 × 1029 dyn cm, not significantly different from the National Earthquake Information Center (NEIC) value obtained by W-phase inversion. The slowness parameter, $\Uptheta = -5.65, $ is slightly deficient, but characteristic of other large subduction events such as Nias (2005) or Peru (2001); it remains significantly larger than for slow earthquakes such as Sumatra (2004) or Mentawai (2010). Similarly, the duration of high-frequency (2–4 Hz) P waves in relation to seismic moment or estimated energy, fails to document any slowness in the seismic source. These results were confirmed in the ensuing weeks by the analysis of the lowest-frequency spheroidal modes of the Earth. A dataset of 117 fits for eight modes (including the gravest one, 0 S 2, and the breathing mode, 0 S 0) yields a remarkably flat spectrum, with an average moment of 3.5 × 1029 dyn cm (*/1.07). This behavior of the Tohoku earthquake explains the generally successful real-time modeling of its teleseismic tsunami, based on available seismic source scaling laws. On the other hand, it confirms the dichotomy, among mega-quakes (M 0 > 1029 dyn cm) between regular events (Nias, 2005; Chile, 2010; Sendai, 2011) and slow ones (Chile, 1960; Alaska, 1964; Sumatra, 2004; and probably Rat Island, 1965), whose origin remains unexplained.  相似文献   

20.
The source mechanism of a large (Ms ? 7.2) earthquake that occurred in the oceanic plate at the junction of the Tonga—Kermadec trench systems with the aseismic Louisville ridge is found by inverting long-period vertical-component Rayleigh waves recorded by the IDA network. The solution is an almost-pure normal fault, on a plane striking roughly parallel to the trench axis, with seismic moment of 1.7 × 1027 dyn cm, and thus is among the ten largest documented shallow normal-fault earthquakes. A point-source depth of 20 km for the event is resolved by modeling teleseismic body waves; the actual rupture may have extended deeper, to 30 or 40 km. The earthquake was a multiple event, consisting of two sources separated by 16 s. A rupture velocity of 3.5 km s?1 is inferred. The earthquake can be interpreted as tensional failure in the shallow portion of the downgoing plate caused by the gravitational pull of the slab. The Louisville ridge may be creating a local degree of decoupling of the oceanic plate from the overriding plate, and/or a zone of extension within the slab, which could enhance the effect of the gravitational forces in the shallower part of the downgoing plate. In particular, the earthquake could be associated with the break-up of the leading seamount of the ridge, which is currently right at the trench. Alternatively, the earthquake may have been caused by stresses associated with the bending of the plate prior to subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号