首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this paper is to compare the spectral features of the recently derived Group Sunspot Numbers (R G) and the traditional Wolf Sunspot Numbers (R Z) for the 1700–1995 period. In order to study the spectral features of both time series, two methods were used, including: (a) the multitaper analysis and (b) the wavelet analysis. Well-known features of the solar variability, such as the 98.6-yr (Gleissberg cycle), 10–11-yr (Schwabe cycle) and 5-yr (second solar harmonic) periodicities were identified with high confidence using the multitaper analysis. Also observed was a larger amount of power spread in high frequencies for R Z than for R G spectra. Furthermore, a multitaper analysis of two subsets, A (1700–1850) and B (1851–1995), has indicated that the main differences occurred in the first subset and seem to be due to uncertainties in the early observations. The wavelet transform, which allows observing the spectra evolution of both series, showed a strong and persistent 10–11-yr signal that remained during the whole period. The Meyer Wavelet Transform was applied to both R Z and R G. This study indicates that the main spectral characteristics of both series are similar and that their long-term variability has the same behavior.  相似文献   

2.
3.
Vaquero  J.M.  Gallego  M.C.  Sánchez-Bajo  F. 《Solar physics》2004,221(1):179-189
In this work, a procedure to elaborate a homogeneous sunspot area series using the Royal Greenwich Observatory/USAF/NOAA data (from 1874 to the present) and the De la Rue and co-workers data (from 1832 to 1868) is presented. These two data series correspond to time intervals that do not overlap and a direct comparison between them could not be carried out. We used the International Sunspot Number (Ri) and the Group Sunspot Number (RG) as a link between the two original series. Thus, two homogeneous sunspot area series have been built using a simple mathematic procedure based on linear relations.  相似文献   

4.
Rigozo  N.R.  Echer  E.  Vieira  L.E.A.  Nordemann  D.J.R. 《Solar physics》2001,203(1):179-191
A reconstruction of sunspot numbers for the last 1000 years was obtained using a sum of sine waves derived from spectral analysis of the time series of sunspot number R z for the period 1700–1999. The time series was decomposed in frequency levels using the wavelet transform, and an iterative regression model (ARIST) was used to identify the amplitude and phase of the main periodicities. The 1000-year reconstructed sunspot number reproduces well the great maximums and minimums in solar activity, identified in cosmonuclides variation records, and, specifically, the epochs of the Oort, Wolf, Spörer, Maunder, and Dalton Minimums as well the Medieval and Modern Maximums. The average sunspot number activity in each anomalous period was used in linear equations to obtain estimates of the solar radio flux F 10.7, solar wind velocity, and the southward component of the interplanetary magnetic field.  相似文献   

5.
Recently, new estimates of the solar cycle length (SCL) have been calculated using the Zurich Sunspot Number (RZ) and the Regression-Fourier-Calculus (RFC)-method, a mathematically rigorous method involving multiple regression, Fourier approximation, and analytical expressions for the first derivative. In this short contribution, we show estimates of the solar cycle length using the RFC-method and the Group Sunspot Number (RG) instead the RZ. Several authors have showed the advantages of RG for the analysis of sunspot activity before 1850. The use of RG solves some doubtful solar cycle length estimates obtained around 1800 using RZ.  相似文献   

6.
Group Sunspot Numbers: A New Solar Activity Reconstruction   总被引:1,自引:0,他引:1  
In this paper, we construct a time series known as the Group Sunspot Number. The Group Sunspot Number is designed to be more internally self-consistent (i.e., less dependent upon seeing the tiniest spots) and less noisy than the Wolf Sunspot Number. It uses the number of sunspot groups observed, rather than groups and individual sunspots. Daily, monthly, and yearly means are derived from 1610 to the present. The Group Sunspot Numbers use 65941 observations from 117 observers active before 1874 that were not used by Wolf in constructing his time series. Hence, we have calculated daily values of solar activity on 111358 days for 1610–1995, compared to 66168 days for the Wolf Sunspot Numbers. The Group Sunspot Numbers also have estimates of their random and systematic errors tabulated. The generation and preliminary analysis of the Group Sunspot Numbers allow us to make several conclusions: (1) Solar activity before 1882 is lower than generally assumed and consequently solar activity in the last few decades is higher than it has been for several centuries. (2) There was a solar activity peak in 1801 and not 1805 so there is no long anomalous cycle of 17 years as reported in the Wolf Sunspot Numbers. The longest cycle now lasts no more than 15 years. (3) The Wolf Sunspot Numbers have many inhomogeneities in them arising from observer noise and this noise affects the daily, monthly, and yearly means. The Group Sunspot Numbers also have observer noise, but it is considerably less than the noise in the Wolf Sunspot Numbers. The Group Sunspot Number is designed to be similar to the Wolf Sunspot Number, but, even if both indices had perfect inputs, some differences are expected, primarily in the daily values.  相似文献   

7.
In this paper, we construct a time series known as the Group Sunspot Number. The Group Sunspot Number is designed to be more internally self-consistent (i.e., less dependent upon seeing the tiniest spots) and less noisy than the Wolf Sunspot Number. It uses the number of sunspot groups observed, rather than groups and individual sunspots. Daily, monthly, and yearly means are derived from 1610 to the present. The Group Sunspot Numbers use 65941 observations from 117 observers active before 1874 that were not used by Wolf in constructing his time series. Hence, we have calculated daily values of solar activity on 111358 days for 1610–1995, compared to 66168 days for the Wolf Sunspot Numbers. The Group Sunspot Numbers also have estimates of their random and systematic errors tabulated. The generation and preliminary analysis of the Group Sunspot Numbers allow us to make several conclusions: (1) Solar activity before 1882 is lower than generally assumed and consequently solar activity in the last few decades is higher than it has been for several centuries. (2) There was a solar activity peak in 1801 and not 1805 so there is no long anomalous cycle of 17 years as reported in the Wolf Sunspot Numbers. The longest cycle now lasts no more than 15 years. (3) The Wolf Sunspot Numbers have many inhomogeneities in them arising from observer noise and this noise affects the daily, monthly, and yearly means. The Group Sunspot Numbers also have observer noise, but it is considerably less than the noise in the Wolf Sunspot Numbers. The Group Sunspot Number is designed to be similar to the Wolf Sunspot Number, but, even if both indices had perfect inputs, some differences are expected, primarily in the daily values.  相似文献   

8.
Duhau  S. 《Solar physics》2003,213(1):203-212
A non-linear coupling function between sunspot maxima and aa minima modulations has been found as a result of a wavelet analysis of geomagnetic index aa and Wolf sunspot number yearly means since 1844. It has been demonstrated that the increase of these modulations for the past 158 years has not been steady, instead, it has occurred in less than 30 years starting around 1923. Otherwise sunspot maxima have oscillated about a constant level of 90 and 141, prior to 1923 and after 1949, respectively. The relevance of these findings regarding the forecasting of solar activity is analyzed here. It is found that if sunspot cycle maxima were still oscillating around the 141 constant value, then the Gnevyshev–Ohl rule would be violated for two consecutive even–odd sunspot pairs (22–23 and 24–25) for the first time in 1700 years. Instead, we present evidence that solar activity is in a declining episode that started about 1993. A value for maximum sunspot number in solar cycle 24 (87.5±23.5) is estimated from our results.  相似文献   

9.
Since January 1981, the Royal Observatory of Belgium (ROB) has operated the Sunspot Index Data Center (SIDC), the World Data Center for the Sunspot Index. From 2000, the SIDC obtained the status of Regional Warning Center (RWC) of the International Space Environment Service (ISES) and became the “Solar Influences Data analysis Center”. As a data analysis service of the Federation of Astronomical and Geophysical data analysis Services (FAGS), the SIDC collects monthly observations from worldwide stations in order to calculate the International Sunspot Number, R i . The center broadcasts the daily, monthly, yearly sunspot numbers, with middle-range predictions (up to 12 months). Since August 1992, hemispheric sunspot numbers are also provided. Deceased.  相似文献   

10.
Three wavelet functions: the Morlet wavelet, the Paul wavelet, and the DOG wavelet have been respectively performed on both the monthly Wolf sunspot numbers (Rz) from January 1749 to May 2004 and the monthly group sunspot numbers (Rg) from June 1795 to December 1995 to study the evolution of the Gleissberg and Schwabe periods of solar activity. The main results obtained are (1) the two most obvious periods in both the Rz and Rg are the Schwabe and Gleissberg periods. The Schwabe period oscillated during the second half of the eighteenth century and was steady from the 1850s onward. No obvious drifting trend of the Schwabe period exists. (2) The Gleissberg period obviously drifts to longer periods the whole consideration time, and the drifting speed of the Gleissberg period is larger for Rz than for Rg. (3) Although the Schwabe-period values for Rz and Rg are about 10.7 years, the value for Rz seems slightly larger than that for Rg. The Schwabe period of Rz is highly significant after the 1820s, and the Schwabe period of Rg is highly significant over almost the whole consideration time except for about 20 years around the 1800s. The evolution of the Schwabe period for both Rz and Rg in time is similar to each other. (4) The Gleissberg period in Rz and Rg is highly significant during the whole consideration time, but this result is unreliable at the two ends of each of the time series of the data. The evolution of the Gleissberg period in Rz is similar to that in Rg.  相似文献   

11.
Vaquero  J.M. 《Solar physics》2004,219(2):379-384
The solar observations performed by the Mexican astronomer J. A. Alzate during the year 1784 are analysed in this work. These observations are very valuable for the reconstruction of solar activity because Hoyt and Schatten (1998), who defined the Group Sunspot Number (R G), only found five observations during this year — all performed by J. C. Staudacher. Using conjointly the data provided by Alzate and Staudacher for 1784, one can determine a value of R G equal to 0.3±0.1 with eighty records for that year.  相似文献   

12.
The Zürich sunspot relative number R z series has been analysed by the cyclogram method. The amplitude and the frequency variations of the Fourier 11 yr component between 1700–1983 A.D., were determined in a continuous way.Four distinct time intervals with significantly different characteristics of the periodicities are observed and discussed.Their second harmonics are also considered. The periodicity changes are contemporary to those of the 11 yr cycles.Around the year 1903 it seems that an important event has happened in the Sun. In fact the 11.4 yr cycle periodicity, that was very stable since at least 1825 started to change gradually to smaller values and similarly it happened to the second harmonic which also stopped and abruptly changed of phase of 90°.  相似文献   

13.
Wavelet Analysis of solar,solar wind and geomagnetic parameters   总被引:3,自引:0,他引:3  
Prabhakaran Nayar  S.R.  Radhika  V.N.  Revathy  K.  Ramadas  V. 《Solar physics》2002,208(2):359-373
The sunspot number, solar wind plasma, interplanetary magnetic field, and geomagnetic activity index A p have been analyzed using a wavelet technique to look for the presence of periods and the temporal evolution of these periods. The global wavelet spectra of these parameters, which provide information about the temporal average strength of quasi periods, exhibit the presence of a variety of prominent quasi periods around 16 years, 10.6 years, 9.6 years, 5.5 years, 1.3 years, 180 days, 154 days, 27 days, and 14 days. The wavelet spectra of sunspot number during 1873–2000, geomagnetic activity index A p during 1932–2000, and solar wind velocity and interplanetary magnetic field during 1964–2000 indicate that their spectral power evolves with time. In general, the power of the oscillations with a period of less than one year evolves rapidly with the phase of the solar cycle with their peak values changing from one cycle to the next. The temporal evolution of wavelet power in R z, v sw, n, B y, B z, |B|, and A p for each of the prominent quasi periods is studied in detail.  相似文献   

14.
We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the amplitudes of the three periods is studied. The results show that around 1750 and 1800, the amplitude of the 53-yr period was much higher than that of the the 11-yr period, that the ca. 53-yr period was apparent only for the interval from 1725 to 1850, and was very low after 1850, that around 1750, 1800 and 1900, the amplitude of the 101-yr period was higher than that of the 11-yr period and that, from 1940 to 2000, the 11-yr period greatly dominates over the other two periods.  相似文献   

15.
An Estimate for the Size of Sunspot Cycle 24   总被引:1,自引:0,他引:1  
R. P. Kane 《Solar physics》2013,282(1):87-90
For the sunspot cycles in the modern era (cycle?10 to the present), the ratio of R Z(max)/R Z(36th month) equals 1.26±0.22, where R Z(max) is the maximum amplitude of the sunspot cycle?using smoothed monthly mean sunspot number and R Z(36th month) is the smoothed monthly mean sunspot number 36 months after cycle?minimum. For the current sunspot cycle?24, the 36th month following the cycle?minimum occurred in November 2011, measuring?61.1. Hence, cycle?24 likely will have a maximum amplitude of about 77.0±13.4 (the one-sigma prediction interval), a value well below the average R Z(max) for the modern era sunspot cycles (about 119.7±39.5).  相似文献   

16.
Until now a simple Photometric Sunspot Index (PSI) model was used (e.g. Willsonet al., 1981) to describe the contribution of sunspots to the solar irradiance deficit measurement by ACRIM. In this work we replace this model by a photometry of sunspot pictures for the period of 19 August to 4 September, 1980 taking into account the individual features, like lightbridges or umbral dots, of each spot. The main results of this preliminary analysis are: (1) theA u/A p ratios and alsos the values vary in a wide range and are by no means constant as in the PSI model; (2) the general trend of the irradiance deficit from our analysis agrees well with the ACRIM measurements; (3) on some days there are differences of more than 50% between the deficits derived from our measurements and from the PSI model.Paper presented at the 11th Eurpean Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain  相似文献   

17.
The electron collision excitation rates recently calculated for transitions in Si xiii by Keenan et al. (1987) are used to derive the electron temperature sensitive ratio G(=(f + i)/r and the density sensitive ratio R(=f/i), where i, f, and r are the intercombination (1s 2 1 S – 1s2p 3 P 1, 2) forbidden (1s 2 1 S – 1s2s 3 S), and resonance (1s 2 1 S – 1s2p 1 P), transitions respectively. Also estimated are the values of R in the low-density limit (R 0) as a function of electron temperature. The theoretical G ratio at the temperature of maximum emissivity for Si xiii, G(T m) = 0.70, is in much better agreement with the observed G for the 1985, May 5 flare determined by McKenzie et al. (G = 0.60 ± 0.07) than is the earlier calculation of Pradhan, who derived G(T m) = 0.85. The error in the observed R 0 ratio is so large that both our result and Pradhan's fall within the acceptable limits of uncertainty and hence one cannot estimate which of the two is the more accurate.  相似文献   

18.
We report on eight X-ray bursts detected by ASTRON from the Rapid Burster (RB) on 13 and 28 April and 16 August, 1983. Six of them (trailing bursts), with durations of 1.5–2 min, rise times of 5–10 s and intervals of 1–1.5 hours, exhibit spectral softening during the burst decay and may be related to the type I bursts. Two of the bursts (triangle bursts) observed on 28 April at interval of 28 min with much longer rise times (30–50 s) and longer durations (3 min), do not show distinct spectral softening. Persistent flux from RB on 16 August was estimated asF p(2.0–2.4)×10–9 erg cm–2 s–1. Spectral evolution of two trailing bursts was investigated by fitting their spectra in consecutive time intervals with the blackbody (BB), isothermal scattering photosphere (SP) and thermal bremsstrahlung (TB) models. Around the burst maxima the SP model fits the data best whereas in the burst tails the TB model is generally better. The BB model is worse than at least one of the two others. Interpretation of the burst spectra in terms of the BB radiation leads to improbably small neutron star mass and radius (M<0.86M ,R NS<5 km) if the peak luminosity does not exceed the Eddington limit. Interpretation of the spectra around the burst maxima (3–15 s from the burst onset) in terms of an isothermal SP yields reasonable constraints onM,R NS, and distanceD. For instance, for the hydrogen photosphere we obtainedM=(1.0–2.1)M R NS=(7.1–16.4) km ifD=11 kpc. If one postulatesM=1.4M , thenD=(8.5–13) kpc for hydrogen photosphere; if, besides,D=11 kpc, thenR NS=(8.1–13.3) km. It follows also from the SP-interpretation that the photosphere radius may increase up to 20–30 km in maxima of the trailing bursts when the luminosity becomes close to the Eddington luminosity.  相似文献   

19.
Mordvinov  A.V.  Plyusnina  L.A. 《Solar physics》2000,197(1):1-9
Time–frequency variability of the solar mean magnetic field (SMMF) was studied, based on a continuous wavelet analysis. The rotational modulation of the SMMF dominates the wavelet spectrum at 27–30 and 13.5-day time scales. The rotational variation, in turn, is amplitude-modulated by the quasi-biennial periodicity in the SMMF. This is caused by magnetic field eruptions. Rigidly rotating modes appear in the time–longitude distribution of the large-scale magnetic field that is plotted from a deconvolution of the SMMF time series with a Carrington period. These rotational modes coexist and transform into one another over an 11-yr cycle. The modes with periods of 27.8–28.0 days dominate the phase of activity rise, whereas the 27-day rotational mode dominates the declining phase of the 11-yr cycle. The rotational modes with periods of 29–30 days occurred episodically. Most of the features in the time–longitude distribution of the SMMF are identifiable with those in similar diagrams of the solar background magnetic fields. They represent a combined effect of the background magnetic fields from both hemispheres. Eruptions of magnetic fields lead to dramatic changes in the picture of solar rotation and correlate well with the polarity asymmetry in the SMMF signal. The polarity asymmetry in the SMMF time series exhibits both long-term changes and a 22-yr cyclic behaviour, depending on the reversals of the global magnetic field in cycles 20–23.  相似文献   

20.
In this work, the evolution of the relationship between Solar Cycle Length of solar cycle n (SCL n ) and Solar Cycle Amplitude of the solar cycle n+1 (SCA n+1) is studied by using the R Z and R G sunspot numbers. We conclude that this relationship is only strongly significant in a statistical sense during the first half of the historical record of R Z sunspot number whereas it is considerably less significant for the R G sunspot number. In this sense we assert that these simple lagged relationships should be avoided as a valid method to predict the following solar activity amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号