首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the prolonged injection of the high-energy (> 10 MeV) protons during the three successive events observed by GOES in October 1989. We apply a solar-rotation-stereoscopy approach to study the injection of the accelerated particles from the CME-driven interplanetary shock waves in order to find out how the effectiveness of the particle acceleration and/or escape depends on the angular distance from the shock axis. We use an empirical model for the proton injection at the shock and a standard model of the interplanetary transport. The model can reproduce rather well the observed intensity-time profiles of the October 1989 events. The deduced proton injection rate is highest at the nose of the shock; the injection spectrum is always harder near the Sun. The results seem to be consistent with the scheme that the CME-driven interplanetary shock waves accelerate a seed particle population of coronal origin.  相似文献   

2.
WIND observations of coherent electrostatic waves in the solar wind   总被引:4,自引:0,他引:4  
The time domain sampler (TDS) experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s.) waves: coherent wave packets of Langmuir waves with frequencies ffpe, coherent wave packets with frequencies in the ion acoustic range fpiffpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF) ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES) and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ≃25D, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations). The type (wave packet or IES) of the observed LF waves is mainly determined by the proton temperature and by the direction of the magnetic field, which themselves depend on the latitude of WIND with respect to the heliospheric current sheet.  相似文献   

3.
Compressional waves with periods greater than 2 min (about 10–30 min) at low geomagnetic latitudes, namely compressional Pc5 waves, are studied. The data set obtained with magnetometer MIF-M and plasma analyzer instrument CORALL on board the Interball-1 are analyzed. Measurements performed in October 1995 and October 1996 in the dawn plasma sheet at −30 RE ≤ XGSM and |ZGSM| ≤ 10 RE are considered. Anti-phase variations of magnetic field and ion plasma pressures are analyzed by searching for morphological similarities in the two time series. It is found that longitudinal and transverse magnetic field variations with respect to the background magnetic field are of the same order of magnitude. Plasma velocities are processed for each time period of the local dissimilarity in the pressure time series. VeloCity disturbances occur mainly transversely to the local field line. The data reveal the rotation of the veloCity vector. Because of the field line curvature, there is no fixed position of the rotational plane in the space. These vortices are localized in the regions of anti-phase variations of the magnetic field and plasma pressures, and the vortical flows are associated with the compressional Pc5 wave process. A theoretical model is proposed to explain the main features of the nonlinear wave processes. Our main goal is to study coupling of drift Alfven wave and magnetosonic wave in a warm inhomogeneous plasma. A vortex is the partial solution of the set of the equations when the compression is neglected. A compression effect gives rise to a nonlinear soliton-like solution.  相似文献   

4.
We present two case studies in the night and evening sides of the auroral oval, based on plasma and field measurements made at low altitudes by the AUREOL-3 satellite, during a long period of stationary magnetospheric convection (SMC) on November 24, 1981. The basic feature of both oval crossings was an evident double oval pattern, including (1) a weak arc-type structure at the equatorial edge of the oval/polar edge of the diffuse auroral band, collocated with an upward field-aligned current (FAC) sheet of ≈1.0 μA m−2, (2) an intermediate region of weaker precipitation within the oval, (3) a more intense auroral band at the polar oval boundary, and (4) polar diffuse auroral zone near the polar cap boundary. These measurements are compared with the published magnetospheric data during this SMC period, accumulated by Yahnin et al. and Sergeev et al., including a semi-empirical radial magnetic field profile BZ in the near-Earth neutral sheet, with a minimum at about 10–14 RE. Such a radial BZ profile appears to be very similar to that assumed in the “minimum B/cross-tail line current” model by Galperin et al. (GVZ92) as the “root of the arc”, or the arc generic region. This model considers a FAC generator mechanism by Grad-Vasyliunas-Boström-Tverskoy operating in the region of a narrow magnetic field minimum in the near-Earth neutral sheet, together with the concept of ion non-adiabatic scattering in the “wall region”. The generated upward FAC branch of the double sheet current structure feeds the steady auroral arc/inverted-V at the equatorial border of the oval. When the semi-empirical BZ profile is introduced in the GVZ92 model, a good agreement is found between the modelled current and the measured characteristics of the FACs associated with the equatorial arc. Thus the main predictions of the GVZ92 model concerning the “minimum-B” region are consistent with these data, while some small-scale features are not reproduced. Implications of the GVZ92 model are discussed, particularly concerning the necessary conditions for a substorm onset that were not fulfilled during the SMC period.  相似文献   

5.
An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR) (14°N, 80°E, dip 14°N) along with other experiments, as a part of equatorial spread F (ESF) campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT) and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160/190 km, 210/257 km and 290/330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km), in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210/257 km) showed a tendency to become slightly flatter (spectral index n = –2.1 ± 0.7) as compared to the valley region (n = –3.6 ± 0.8) and the region below the F peak (n = –2.8 ± 0.5). Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160/330 km region.  相似文献   

6.
Observations of a flux transfer event (FTE) have been made simultaneously by the Equator-S spacecraft near the dayside magnetopause whilst corresponding transient plasma flows were seen in the near-conjugate polar ionosphere by the CUTLASS Finland HF radar. Prior to the occurrence of the FTE, the magnetometer on the WIND spacecraft ≈226 RE upstream of the Earth in the solar wind detected a southward turning of the interplanetary magnetic field (IMF) which is estimated to have reached the subsolar magnetopause ≈77 min later. Shortly afterwards the Equator-S magnetometer observed a typical bipolar FTE signature in the magnetic field component normal to the magnetopause, just inside the magnetosphere. Almost simultaneously the CUTLASS Finland radar observed a strong transient flow in the F region plasma between 78° and 83° magnetic latitude, near the ionospheric region predicted to map along geomagnetic field lines to the spacecraft. The flow signature (and the data set as a whole) is found to be fully consistent with the view that the FTE was formed by a burst of magnetopause reconnection.  相似文献   

7.
We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid) of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth’s bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M) and charge (Q) dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep) increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.  相似文献   

8.
Pc3 geomagnetic field fluctuations detected at low latitude (L’Aquila, Italy) during the passage of a high velocity solar wind stream, characterized by variable interplanetary magnetic field conditions, are analyzed. Higher frequency resonant fluctuations and lower frequency phenomena are simultaneously observed; the intermittent appearance and the variable frequency of the longer period modes can be well interpreted in terms of the variable IMF elements; moreover their polarization characteristics are consistent with an origin related to external waves propagating in antisunward direction. A comparison with simultaneous observations performed at Terra Nova Bay (Antarctica) provides additional evidence for a clear relationship between the IMF and Pc3 pulsations also at very high latitudes.  相似文献   

9.
Abstract

We study the nonlinear stability of MHD waves propagating in a two-dimensional, compressible, highly magnetized, viscous plasma. These waves are driven by a weak, shear body force which could be imposed by large scale internal fluctuations present in the solar atmosphere.

The effects of anisotropic viscosity (leading to a cubic damping) and of the nonlinear coupling of the Alfven and the magnetoacoustic waves are analysed using Galerkin and multiple-scale analysis: the MHD equations are reduced to a set of nonlinear ordinary differential equations which is then suitably truncated to give a model dynamical system, representing the interaction of two complex Galerkin modes.

For propagation oblique to the background magnetic field, analytical integration shows that the low-wavenumber mode is physically unstable. For propagation parallel to the background magnetic field the high-wavenumber wave can undergo saddlenode bifurcations, in way that is similar to the van der Pol oscillator; these bifurcations lead to the appearance of a hysteresis cycle.

A numerical integration of the dynamical system shows that a sequence of Hopf bifurcations takes place as the Reynolds number is increased, up to the onset of nonperiodic behaviour. It also shows that energy can be transferred from the low- wavenumber to the high-wavenumber mode.  相似文献   

10.
The electron component of intensive electric currents flowing along the geomagnetic field lines excites turbulence in the thermal magnetospheric plasma. The protons are then scattered by the excited electromagnetic waves, and as a result the plasma is stable. As the electron and ion temperatures of the background plasma are approximately equal each other, here electrostatic ion-cyclotron (EIC) turbulence is considered. In the nonisothermal plasma the ion-acoustic turbulence may occur additionally. The anomalous resistivity of the plasma causes large-scale differences of the electrostatic potential along the magnetic field lines. The presence of these differences provides heating and acceleration of the thermal and energetic auroral plasma. The investigation of the energy and momentum balance of the plasma and waves in the turbulent region is performed numerically, taking the magnetospheric convection and thermal conductivity of the plasma into account. As shown for the quasi-steady state, EIC turbulence may provide differences of the electric potential of δ V ≈ 1–10 kV at altitudes of 500 < h < 10 000 km above the Earth’s surface. In the turbulent region, the temperatures of the electrons and protons increase only a few times in comparison with the background values.  相似文献   

11.
Satellite measurements show that ion beams above the auroral acceleration region are heated to hundreds of eV in a direction perpendicular to the magnetic field. We show that ion acoustic waves may be responsible for much of this heating. Even in the absence of a positive slope in the velocity distribution of the beam ions, ion acoustic waves can be generated by a fan instability. We present analytical estimates of the wave growth rate and ion beam heating rate. These estimates, which are confirmed by particle simulations, indicate that the perpendicular temperature of the beam ions will increase by 30 eV/s, or by 1 eV in 20–25 km. From the simulations we also conclude that the heating saturates at a perpendicular temperature around 200 eV, which is consistent with observations.  相似文献   

12.
To improve the accuracy of the numerical evaluation through the 3-D finite difference method, the surface boundary conditions are added to modify the old program. The author has tested the new program by making calculations for the model constructed by Wanamaker, et al (1984). The comparison between the numerical results obtained from this paper and those by Wannamaker, et al (1984) indicates that a pronounced improvement is realized in the evaluation of the horizontal magnetic components. Moreover, better calculations for the vertical magnetic components are also obtainable by using the new program.  相似文献   

13.
M. Gedalin  E. Griv 《Annales Geophysicae》1999,17(10):1251-1259
It is widely believed that electron dynamics in the shock front is essentially collisionless and determined by the quasistationary magnetic and electric fields in the shock. In thick shocks the electron motion is adiabatic: the magnetic moment is conserved throughout the shock and v21B. In very thin shocks with large cross-shock potential (the last feature is typical for shocks with strong electron heating), electrons may become demagnetized (the magnetic moment is no longer conserved) and their motion may become nonadiabatic. We consider the case of substantial demagnetization in the shock profile with the small-scale internal structure. The dependence of electron dynamics and downstream distributions on the angle between the shock normal and upstream magnetic field and on the upstream electron temperature is analyzed. We show that demagnetization becomes significantly stronger with the increase of obliquity (decrease of the angle) which is related to the more substantial influence of the inhomogeneous parallel electric field. We also show that the demagnetization is stronger for lower upstream electron temperatures and becomes less noticeable for higher temperatures, in agreement with observations. We also show that demagnetization results, in general, in non-gyrotropic down-stream distributions.  相似文献   

14.
Day-time Pc 3–4 (≃5–60 mHz) and night-time Pi 2 (≃5–20 mHz) ULF waves propagating down through the ionosphere can cause oscillations in the Doppler shift of HF radio transmissions that are correlated with the magnetic pulsations recorded on the ground. In order to examine properties of these correlated signals, we conducted a joint HF Doppler/magnetometer experiment for two six-month intervals at a location near L = 1.8. The magnetic pulsations were best correlated with ionospheric oscillations from near the F region peak. The Doppler oscillations were in phase at two different altitudes, and their amplitude increased in proportion to the radio sounding frequency. The same results were obtained for the O- and X-mode radio signals. A surprising finding was a constant phase difference between the pulsations in the ionosphere and on the ground for all frequencies below the local field line resonance frequency, independent of season or local time. These observations have been compared with theoretical predictions of the amplitude and phase of ionospheric Doppler oscillations driven by downgoing Alfvén mode waves. Our results agree with these predictions at or very near the field line resonance frequency but not at other frequencies. We conclude that the majority of the observations, which are for pulsations below the resonant frequency, are associated with downgoing fast mode waves, and models of the wave-ionosphere interaction need to be modified accordingly.  相似文献   

15.
In nonstationary, strong inhomogeneous or open plasmas particle orbits are rather complicated. If the nonstationary time scale is smaller than the gyration period, if the inhomogeneity scale is smaller than the gyration radius, i.e. at magnetic plasma boundaries, or if the plasma has sources and sinks in phase space, then nongyrotropic distribution functions occur. The stability of such plasma configurations is studied in the framework of linear dispersion theory. In an open plasma nongyrotropy drives unstable waves parallel and perpendicular to the background magnetic field, whereas in the gyrotropic limit the plasma is stable. In nonstationary plasmas nongyrotropy drives perpendicular unstable waves only. Temporal modulation couples a seed mode with its side lobes and thus it renders unstable wave growth more difficult. As an example of an inhomogeneous plasma a magnetic halfspace is discussed. In a layer with thickness of the thermal proton gyroradius a nongyrotropic distribution is formed which may excite unstable parallel and perpendicular propagating waves.  相似文献   

16.
The IESP experiment implemented onboard the Interball auroral probe measures the six components (3B, 3E) of the waves in the ULF range: 0.1–10 Hz and from time to time 0–30 Hz. Two different kinds of waves have been observed in the auroral region at altitudes between 10 000 and 20 000 km: (1) electrostatic emissions which consist of quasi-monochromatic structures with frequencies above the oxygen gyrofrequency, superimposed on a wide band signal interpreted as a Doppler broadening, (2) electromagnetic wide band spectrum fluctuations. These emissions are interpreted as current-driven electromagnetic or electrostatic ion cyclotron waves. The electromagnetic/electrostatic character is controlled by the plasma parameter i and by the O+ concentration.  相似文献   

17.
In Kim et al. (Kim, E., Hughes, D.W. and Soward, A.M., “An investigation into high conductivity dynamo action driven by rotating convection”, Geophys. Astrophys. Fluid Dynam. 91, 303–332 ().) we investigated kinematic dynamo action driven by rapidly rotating convection in a cylindrical annulus. Here we extend this work to consider self-consistent nonlinear dynamo action in which the back-reaction of the Lorentz force on the flow is taken into account. In particular, we investigate, as a function of magnetic Prandtl number, the evolution of an initially weak magnetic field in two different types of convective flow – one chaotic and the other integrable. On saturation, the latter shows a systematic dependence on the magnetic Prandtl number whereas the former appears not to. In addition, we show how, in keeping with the findings of Cattaneo et al. (Cattaneo, F., Hughes, D.W. and Kim, E., “Suppression of chaos in a simplified nonlinear dynamo model”, Phys. Rev. Lett. 76, 2057–2060 ().), saturation of the growth of the magnetic field is brought about, for the originally chaotic flow, by a strong suppression of chaos.  相似文献   

18.
The DOPE (Doppler Pulsation Experiment) HF Doppler sounder located near Tromsø, Norway (geographic: 69.6°N 19.2°E; L = 6.3) is deployed to observe signatures, in the high-latitude ionosphere, of magnetospheric ULF waves. A type of wave has been identified which exhibits no simultaneous ground magnetic signature. They can be subdivided into two classes which occur in the dawn and dusk local time sectors respectively. They generally have frequencies greater than the resonance fundamentals of local field lines. It is suggested that these may be the signatures of high-m ULF waves where the ground magnetic signature has been strongly attenuated as a result of the scale size of the waves. The dawn population demonstrate similarities to a type of magnetospheric wave known as giant (Pg) pulsations which tend to be resonant at higher harmonics on magnetic field lines. In contrast, the waves occurring in the dusk sector are believed to be related to the storm-time Pc5s previously reported in VHF radar data. Dst measurements support these observations by indicating that the dawn and dusk classes of waves occur respectively during geomagnetically quiet and more active intervals.  相似文献   

19.
Low frequency electrostatic waves are studied in magnetized plasmas with an electron temperature which varies with position in a direction perpendicular to the magnetic field. For wave frequencies below the ion cyclotron frequency, the waves need not follow any definite dispersion relation. Instead a band of phase velocities is allowed, with a range of variation depending on the maximum and minimum values of the electron temperature. Simple model equations are obtained for the general case which can be solved to give the spatial variation of a harmonically time varying potential. A simple analytical model for the phenomenon is presented and the results are supported by numerical simulations carried out in a 2.5-dimensional particle-in-cell numerical simulation. We find that when the electron temperature is striated along B0 and low frequency waves (ci) are excited in this environment, then the intensity of these low frequency waves will be striated in a manner following the electron temperature striations. High frequency ion acoustic waves (ci) will on the other hand have a spatially more uniform intensity distribution.  相似文献   

20.
Low frequency stochastic variations of the geomagnetic AE-index characterized by 1/fb-like power spectrum (where f is a frequency) are studied. Based on the analysis of experimental data we show that the Bz-component of IMF, velocity of solar wind plasma, and the coupling function of Akasofu are insufficient factors to explain these behaviors of the AE-index together with the 1/fb fluctuations of geomagnetic intensity. The effect of self-organized criticality (SOC) is proposed as an internal mechanism to generate 1/fb fluctuations in the magnetosphere. It is suggested that localized spatially current instabilities, developing in the magnetospheric tail at the initial substorm phase can be considered as SOC avalanches or dynamic clusters, superposition of which leads to the 1/fb fluctuations of macroscopic characteristics in the system. Using the sandpile model of SOC, we undertake numerical modeling of space-localized and global disturbances of magnetospheric current layer. Qualitative conformity between the disturbed dynamics of self-organized critical state of the model and the main phases of real magnetospheric substorm development is demonstrated. It is also shown that power spectrum of sandpile model fluctuations controlled by real solar wind parameters reproduces all distinctive spectral features of the AE fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号