首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exchange of dissolved nutrients between marshes and the inundating water column was measured using throughflow marsh flumes built, in two microtidal Louisiana estuaries: the Barataria Basin estuary and Fourleague Bay. The flumes were sampled between September 1986 and April 1988, coincident with an extended period of low sea level on the Louisiana coast. The Barataria Basin estuary is in the later, deteriorating stage of the deltaic cycle, characterized by low freshwater inputs and subsiding marshes. Both brackish and saline marshes supplied dissolved organic nitrogen (DON), inorganic nitrogen (ammonium + nitrate + nitrite = DIN), dissolved organic carbon (DOC), and total nitrogen (as total Kjeldahl nitrogen = TKN) to the water column. The export of DIN is probably related to the N accumulated in earlier stages of deltaic development and released as these marshes deteriorate. Coastal brackish marshes of Fourleague, Bay, part of an accreting marsh system in an early, developmental stage of the deltaic cycle, exported TKN to the open water estuary in all samplings. This marsh apparently acted as a short-term buffer of DIN by taking up NH4 + in spring, when baywide concentrations were high, and supplying DIN to the estuary in summer and fall, when concentrations, in the bay were lower. Differences in phosphorus (P), DOC, and DON fluxes between these two estuaries were also observed. The Fourleague Bay site exported soluble reactive phosphorus (SRP) and total phosphorus (TP) and imported DOC. This P export may be related to remobilization of sediment-bound riverine P by the reducing, soils of the marshes. Fluxes of SRP at the Barataria Basin sites were variable and low while DOC was imported. Most imports of dissolved nutrients were correlated with higher upstream [source] concentrations, and flux rates were fairly consistent throughout the tide. Dissolved nutrient exports, did not correlate with upstream concentrations, though, and in many cases the flux was dominated by early, flood tide nutrient release. This pulsed behavior may be caused by rapid diffusion from the sediments early in the tidal cycle, when the sediment-water concentration gradient is largest. Interestuary differences were also seen in particulate organic matter fluxes, as the Fourleague Bay marsh exported POC and PON during all samplings while Barataria Basin imported these nutrients. In general, the magnitude and direction of nutrient exchanges in Louisiana marshes, seem to reflect the deltaic successional stage of the estuary.  相似文献   

2.
Oceanic upwelling results in the intermittent intrusion of cold ocean water enriched in nitrate, and to a lesser extent soluble reactive phosphorus (SRP), into the Kariega Estuary (South Africa). Laboratory measocosm experiments were conducted to determine the effects of such changes on fluxes of dissolved nutrients across the surface of a salt marsh within the estuary. When replicate mesocosms of the tidal creek and salt marsh were inundated with nonupwelled water (at 25°C and nitrate concentrations of 4.5 μmoll?1), nitrate fluxes in both regions were small, and the tidal creek exhibited net uptake (negative value) of nitrate from the water column (?85 μmol m?2 tide?1), and the marsh, net release (positive values; 113 μmol m?2 tide?1). When the mesocosms were inundated with upwelled water, at 16°C and with nitrate concentrations of 24.2 μmol l?1, both regions exhibited large net uptakes of nitrate (?514 μmol m?2 tide?1 and ?226 μmol m?2 tide?1 for the tidal creek and salt marsh, respectively). In contrast to nitrate, the fluxes of nitrite, ammonium, and SRP were not significantly different under upwelling and nonupwelling conditions, probably because initial concentrations in the two water types were similar. To determine the extent to which the nitrate uptakes were caused by decreased water temperatures or increased concentrations of nitrate, experiments were conducted in which mesocosms were inundated with water with a range of nitrate concentrations (1.8–25 μmol l?1), at two temperatures representative of summer upwelling (16°C) and nonupwelling conditions (25°C). In both regions, the net fluxes of nitrate were positively correlated with initial concentrations of nitrate in the water column. For any given concentration, the fluxes at 16°C fell within the range of values at 25°C, indicating that the shifts in fluxes caused by upwelling occurred in response to increased concentrations in the water column and not reduced temperatures.  相似文献   

3.
Tidal marshes act as a buffer system for nutrients in the pore water and play important roles in controlling the budget of nutrients and pollutants that reach the sea. Spatial and seasonal dynamics of pore water nutrients were surveyed in three tidal marshes (Chongming Island, Hengsha Island, and Fengxian tidal flat) near the Yangtze Estuary and Hangzhou Bay from August 2007 to May 2008. Nutrient variations in pore water closely followed seawater quality in the estuaries, while the average concentration of NH4 +–N, the main form of inorganic nitrogen in pore water, was over two orders of magnitude higher than that in seawater which was dominated by nitrate. NH4 +–N export (13.81 μmol m?2 h?1) was lower than the import of (NO3 ?+NO2 ?)–N (?24.17 μmol m?2 h?1) into sediment over the 1-year period, hence reducing N-eutrophication in coastal waters. The export of SiO3 2?–Si and PO4 3?–P from tidal marshes regulated nutrient level and composition and lifted the ratio beyond potentidal element limitation in the coastal system. Moreover, macrophyte plants (Spartina alterniflora and Phragmites australis) played significant roles in controlling nutrient concentration in pore water and its exchange between marshes and estuaries. Fengxian marsh was characterized by higher nutrient concentrations and fluxes than other marshes in response to the more serious eutrophication in Hangzhou Bay than in the Yangtze Estuary.  相似文献   

4.
The objective of this study was to examine the interaction between the Atchafalaya River and the Atchafalaya Delta estuarine complex. Measurements of suspended sediments, inorganic nutrients (NO3 ?, NH4 +, PO4 3?), chlorophylla (chla), and-salinity were taken monthly from December 1996 to January 1998. These data were compiled by season, and the Atchafalaya River plume data were also analyzed using the Generalized Additive Model technique. There were significant decreases in NO3 ? concentrations during summer, fall, and winter as river water passed through the estuary, that were attributable to chemical and biological processes rather than dilution with ambient water. In some regions there were higher chla concentrations during summer and fall compared to winter and spring, when river discharge and the introduction of inorganic nutrients were highest, suggesting biological processes were active during this study. The presence of NH4 +, as a percentage of available dissolved inorganic nitrogen, increased with distance from the Atchafalaya River, indicative of remineralization processes and NO3 ? reduction. Mean PO4 3? concentrations were often higher in the estuarine regions compared to the Atchafalaya River. During summer total suspended solid (TSS) concentrations increased with distance from the river mouth, suggesting a turbidity maximum. Highest chla concentrations were found in the bayous and shallow water bodies of the Terrebonne marshes, as were the lowest TSS concentrations. The low chla concentrations found in other areas of this study, despite high inorganic nutrient concentrations, suggest light limitation as the major control of phytoplankton growth. Salinity reached near seawater concentrations at the outer edge of the Atchafalaya River plume, but much lower salinities (<10 psu) were observed at all other regions. The Atchafalaya Delta estuarine complex buffers the impact of the Atchafalaya River on the Louisiana coastal shelf zone, with a 41% of 47% decrease in Atchafalaya River NO3 ? concentrations before reaching Gulf waters.  相似文献   

5.
Throughflow marsh flumes were used to measure total sediment exchanges (TSS) between the marshes and water column of two Louisiana estuaries. One, the Barataria Basin estuary, is isolated from significant riverine sediment input. There were significant (p<0.05) imports of 33.9 to 443 mg TSS m?2 h?1 at the Barataria Basin brackish marsh (BM) site. The Barataria Basin saltmarsh (SM) site exported TSS in two summer samplings, but significant uptake was measured in April (166 mg m?2 h?1) and November (45 mg m?2 h?1) during a winter frontal passage event. The other estuary, Fourleague Bay, receives large sediment inputs from the Atchafalaya River, and TSS imports of 22.5 to 118.5 mg m?2 h?1 were measured at the BM site here. We calculated sediment accumulation from fluxes quantified in marsh flumes using site-specific sedimentological data and flooding regimes at each site. Water level records from May 1987 to April 1989 showed an extended period of unusually low flooding frequencies. As a result, calculated accretion rates were low, with monthly rates of 0.02 to 0.11 mm and ?0.06 to 0.06 mm at the Barataria BM and SM sites, respectively, and ?0.18 to 0.08 mm at the Fourleague Bay marsh flume site. Actual net sediment deposition, determined by feldspar marker horizon analysis, was 0.7–1.6 mm mo?1 at the Barataria SM and 0.2–1.3 mm mo?1 at the Fourleague Bay BM. Even the highest calculated accretion rates, based on flume measurements, were half to one order of magnitude lower than actual measured sediment deposition. This discrepancy was probably because: 1) most sedimentation occurs during episodic events, such as Hurricane Gilbert in September 1988, which deposited 3.5–15.5 mm of sediment on the Barataria Basin saltmarsh, or 2) most vertical accretion in Louisiana marshes occurs via deposition of in situ organic matter rather than by influx of allochthonous sediment. Our results affirm the variability of short-term sediment transport and depositional processes, the close coupling of meteorologic forcing and flooding regime to sediment dynamics, and the importance of understanding these interrelated mechanisms in the context of longer term measurements.  相似文献   

6.
The supply of nutrients from surface and subsurface water flow into the root zone was measured in a developing barrier island marsh in Virginia. We hypothesize that high production of tall-formSpartina alterniflora in the lower intertidal zone is due to a greater nitrogen input supplied by a larger subsurface flux. Individual nitrogen inputs to the tall-form and short-formS. alterniflora root zones were calculated from water flow rates into the root zone and the nutrient concentration corresponding to the source of the flow. Total dissolved inorganic nitrogen (DIN) input (as ammonium and nitrate) was then calculated using a summation of the hourly nutrient inputs to the root zone over the entire tidal cycle based on hydrologic and nutrient data collected throughout the growing season (April–August) of 1993 and 1994. Additionally, horizontal water flow into the lower intertidal marsh was reduced experimentally to determine its effects on nutrient input and plant growth. Total ammonium (NH4 +) input to the tall-formS. alterniflora root zone (168 μmoles 6 h?1) was significantly greater relative to the short-form (45 μmoles 6 h?1) during flood tide. Total NH4 + input was not significantly different between growth forms during ebb tide, and total nitrate (NO3 ?) and total DIN input were not significantly different between growth forms during either tidal stage. During tidal flooding, vertical flow from below the root zone accounted for 71% and horizontal flow from the adjacent mudflat accounted for 19% of the total NH4 + input to the tall-formS. alterniflora root zone. Infiltration of flooding water accounted for 15% more of the total NO3 ? input relative to the total NH4 + input at both zones on flood tide. During ebb tide, vertical flow from below the root zone still accounted for the majority of NH4 + and NO3 ? input to both growth forms. After vertical flow, horizontal subsurface flow from upgradient accounted for the next largest percentages of NH4 + and NO3 ? input to both growth forms during ebb tide. After 2 yr of interrupted subsurface horizontal flow to the tall-formS. alterniflora root zone, height and nitrogen content of leaf tissue of treatment plants were only slightly, but significantly, lower than control plants. The results suggest that a dynamic supply of DIN (as influenced by subsurface water flows) is a more accurate depiction of nutrient supply to macrophytes in this developing marsh, relative to standing stock nutrient concentrations. The dynamic subsurface supply of DIN may play a role in spatial patterns of abovegroundS. alterniflora production, but determination of additional nitrogen inputs and the role of belowground production on nitrogen demand need to also be considered.  相似文献   

7.
This paper aims to reveal the reciprocal influence of Kürtün Dam and wastewaters from the settlements on the water quality in the stream Har?it, NE Turkey. Several key water-quality indicators were measured: water temperature (T), pH, dissolved oxygen (DO), electrical conductivity, water hardness, chemical oxygen demand (COD), ammonium nitrogen (NH4 +–N), nitrite nitrogen (NO2 ?–N), nitrate nitrogen (NO3 ?–N), total Kjeldahl nitrogen (TKN), total nitrogen (TN), orthophosphate phosphorus (PO4 3?–P), and methylene blue active substances (MBAS). The monitoring and sampling studies were conducted every 15 days from March 2009 to February 2010 at two stations selected in the upstream and downstream of the Kürtün Dam. It was concluded that the Kürtün Dam Lake had a high-quality water in terms of T, pH, DO, COD, NH4 +–N, NO2 ?–N and NO3 ?–N values, but slightly polluted water with respect to TKN, PO4 3?–P, and MBAS according to the Turkish Water Pollution Control Regulation. The dam improved the stream water quality by increasing the DO concentration, and decreasing the NO2 ?–N and PO4 3?–P concentrations thanks to its hydraulic residence time despite the wastewater discharge by the nearby settlements. However, the wastewater discharge deteriorated the stream water quality increasing the COD, NH4 +–N, NO3 –N, and TN concentrations.  相似文献   

8.
Benthic macroinvertebrate biomass and ammonium excretion rates were measured at four stations in the Gulf of Mexico near the Mississippi River mouth. Calculated areal excretion rates were then compared to sediment-water nitrogen fluxes measured in benthic bottom lander chambers at similar stations to estimate the potential importance of macroinvertebrate excretion to sediment nitrogen mineralization. Excretion rates for individual crustaceans (amphipods and decapods) was 2–21 nmoles NH4 + (mg dry weight)?1 h?1. The mean excretion rates for the polychaetes, Paraprionaspio pinnata [6–12 nmoles NH4 + (mg dry weight)?1h?1] and Magelona sp. [27–53 nmoles NH4 + (mg dry weight)?1h?1], were comparable or higher than previous measurements for similar size benthic or pelagic invertebrates incubated at the same temperature (22±1°C). Although the relatively high rates of excretion by these selective feeders may have been partially caused by experimental handling effects (e.g., removal from sediment substrates), they probably reflected the availability of nitrogen-rich food supplies in the Mississippi River plume. When the measured weight-specific rates were extrapolated to total areal biomass, areal macroinvertebrate excretion estimates ranged from 7 μmole NH4 + m?2h?1 at a 40-m deep station near the river mouth to 18 μmole NH4 + m?2h?1 at a shallower (28-m deep) station further from the river mouth. The net flux of ammonium and nitrate from the sediments to the water measured in bottom lander chambers in the same region were 15–53 μmole NH4 + m?2h?1 and ?25–21 μmole NO3 ? m?2h?1. These results suggest that excretion of NH4 + by macroinvertebrates could be a potentially important component of benthic nitrogen regeneration in the Mississippi River plume-Gulf shelf region.  相似文献   

9.
Submarine groundwater discharge (SGD) was quantified at select sites in San Francisco Bay (SFB) from radium (223Ra and 224Ra) and radon (222Rn) activities measured in groundwater and surface water using simple mass balance box models. Based on these models, discharge rates in South and Central Bays were 0.3?C7.4?m3?day?1?m?1. Although SGD fluxes at the two regions (Central and South Bays) of SFB were of the same order of magnitude, the dissolved inorganic nitrogen (DIN) species associated with SGD were different. In the South Bay, ammonium (NH 4 + ) concentrations in groundwater were three-fold higher than in open bay waters, and NH 4 + was the primary DIN form discharged by SGD. At the Central Bay site, the primary DIN form in groundwater and associated discharge was nitrate (NO 3 ? ). The stable isotope signatures (??15NNO3 and ??18ONO3) of NO 3 ? in the South Bay groundwater and surface waters were both consistent with NO 3 ? derived from NH 4 + that was isotopically enriched in 15N by NH 4 + volatilization. Based on the calculated SGD fluxes and groundwater nutrient concentrations, nutrient fluxes associated with SGD can account for up to 16?% of DIN and 22?% of DIP in South and Central Bays. The form of DIN contributed to surface waters from SGD may impact the ratio of NO 3 ? to NH 4 + available to phytoplankton with implications to bay productivity, phytoplankton species distribution, and nutrient uptake rates. This assessment of nutrient delivery via groundwater discharge in SFB may provide vital information for future bay ecological wellbeing and sensitivity to future environmental stressors.  相似文献   

10.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

11.
Quarterly field sampling was conducted to characterize variations in water column and sediment nutrients in a eutrophic southern California estuary with a history of frequent macroalgal blooms. Water column and sediment nutrient measures demonstrated that Upper Newport Bay (UNB) is a highly enriched estuary. High nitrate (NO3 ) loads from the river entered the estuary at all sampling times with a rainy season (winter) maximum estimated at 2,419 mol h−1. This resulted in water NO3 concentration in the estuary near the river mouth at least one order of magnitude above all other sampling locations during every seasons; maximum mean water NO3 concentration was 800 μM during springer 1997. Phosphorus (P)-loading was high year round (5.7–90.4 mol h−1) with no seasonal pattern. Sediment nitrogen (N)-content showed a seasonal pattern with a spring maximum declining through fall. sediment and water nutrients, as well as percent cover of three dominant macroalgae, varied between the main channel and tidal creeks. During all seasons, water column NO3 concentrations were higher in the main channel than in tidal creeks while tidal creeks had higher levels of sediment total Kjeldhal nitrogen (TKN) and P. During each of the four sampling periods, percent cover ofEntermorpha intestinalis andCeramium spp. was higher in tidal creeks than in the main channel, while percent cover ofUlva expansa was always higher in the main channel. Decreases in sediment N in both creek and channel habitats were concurrent with increases in macroalgal cover, possibly reflecting use of stored sediment TKN by macroalgae. Our data suggest a shift in primary nutrient sources for macroalgae in UNB from riverine input during winter and spring to recycling from sediments duirng summer and fall.  相似文献   

12.
A series of seasonal cores was taken in a high marsh near the terminus of Delaware Bay, U.S.A. A seasonal harmonic diffusion model was successfully fit to the concentration profiles of chloride ion in the salt marsh pore waters yielding a calculated sedimentary diffusion coefficient.Virtually all other chemical reactions within salt marsh sediments are directly linked to the rate and stoichiometry of organic decomposition. The rich organic input from the grass Spartina alterniflora is oxidized anaerobically through the process of sulfate reduction. Over 90% of this net decomposition of organic matter takes place in the uppermost 20 cm. The model for sulfate reduction proposed yields an internally consistent set of both pore water (HCO?3, NH+4, HPO2?4, HS?, SO2?4) and solid phase (FeS2) distribution profiles for these sediments. Steady state assumptions and the use of mean annual constants can be employed to model the net rates of diagenetic processes in salt marshes. The pore water concentrations of sulfate ion as well as those ions released by sulfate reduction (HCO?3, NH+4, HPO2?4, HS?) are modeled by a system composed of an upper zone, where extensive reconsumption of these metabolite ions occurs, and a lower zone where steady state production and no ion reconsumption occurs.A major product of the sulfate reduction is pyrite, whose accumulation rate is greatest between 7 and 9 cm depth, where it equals the net rate of sulfate reduction. Above this zone little pyrite accumulates due to extensive reoxidation. Below 9 cm the rate of pyritization is controlled by the rate of sulfidation of a refractory iron phase.  相似文献   

13.
The potential mineralization and immobilization of soil nitrogen (N), phosphorus (P) and sulfur (S) are relatively high in natural ecosystems. This study was conducted to investigate the changes in essential plant macronutrients; N, P, and S status in response to different soil depth in rangeland ecosystems in vitro. The net nutrient mineralization was measured during 90 days at different depths (0–15, 15–30, 30–45 and 45–60 cm), using kinetic models to estimate the release rate. The net ammonification and mineralization of P and S were described using parabolic diffusion equation, while the power function equation was used to describe the net nitrification. The results indicated that the amount of released ammonium (NH4 +) decreased with time and depth and the rates of net ammonification were negative in all samples. Conversely, nitrification increased with time and depth and the rates were all positive. The net mineralization for both P and S reduced with time. The concentration of mineralized SO4 2? increased with depth like nitrate (NO3 ?). Accumulation of SO4 2? and NO3 ? in subsurface soils and NH4 + and P at surface horizons can increase the potential of their loss by leaching or volatilization.  相似文献   

14.
Tidal freshwater marshes are diverse habitats that differ both within and between marshes in terms of plant community composition, sediment type, marsh elevation, and nutrient status. Because our knowledge of the nitrogen (N) biogeochemistry of tidal freshwater systems is limited, it is difficult to assess how these marshes will respond to long-term progressive nutrient loading due to watershed development and urbanization. We present a process-based mass balance model of N cycling in Sweet Hall marsh, a pristine (i.e., low nutrient)Peltandra virginica-Pontederia cordata dominated tidal freshwater marsh in the York River estuary, Virginia. The model, which was based on a combination of field and literature data, revealed that N cycling in the system was largely conservative. The mineralization of organic N to NH4 + provided almost twice as much inorganic N as was needed to support marsh macrophyte and benthic microalgal primary production. Efficient utilization of porewater NH4 + by nitrifiers and other microbes resulted in low rates of tidal NH4 + export from the marsh and little accumulation of NH4 + in marsh porewaters. Inputs of N from the estuary and atmosphere were not critical in supporting marsh primary production, and served to balance N losses due to denitrification and burial. A comparison of these results with the literature suggests that the relative importance of tidal freshwater marsh N cycling processes, including plant productivity, organic matter mineralization, microbial immobilization, and coupled nitrification-denitrification, are largely independent of small changes in water column N loading. Although very high (millimolar) concentrations of dissolved inorganic N can affect processes including denitrification and plant productivity, the factors that cause the switch from efficient N recycling to a more open N cycle have not yet been identified.  相似文献   

15.
Benthic fluxes of soluble reactive phosphorus (SRP) and dissolved inorganic carbon (DIC) were measured in situ using autonomous landers in the Gulf of Finland in the Baltic Sea, on four expeditions between 2002 and 2005. These measurements together with model estimates of bottom water oxygen conditions were used to compute the magnitude of the yearly integrated benthic SRP flux (also called internal phosphorus load). The yearly integrated benthic SRP flux was found to be almost 10 times larger than the external (river and land sources) phosphorus load. The average SRP flux was 1.25?±?0.56?mmol?m?2?d?1 on anoxic bottoms, and ?0.01?±?0.08?mmol?m?2?d?1 on oxic bottoms. The bottom water oxygen conditions determined whether the SRP flux was in a high or low regime, and degradation of organic matter (as estimated from benthic DIC fluxes) correlated positively with SRP fluxes on anoxic bottoms. From this correlation, we estimated a potential increase in phosphorus flux of 0.69?±?0.26?mmol?m?2?d?1 from presently oxic bottoms, if they would turn anoxic. An almost full annual data set of in situ bottom water oxygen measurements showed high variability of oxygen concentration. Because of this, an estimate of the time which the sediments were exposed to oxygenated overlying bottom water was computed using a coupled thermohydrodynamic ocean?Csea and ecosystem model. Total phosphorus burial rates were calculated from vertical profiles of total phosphorus in sediment and sediment accumulation rates. Recycling and burial efficiencies for phosphorus of 97 and 3%, respectively, were estimated for anoxic accumulation bottoms from a benthic mass balance, which was based on the measured effluxes and burial rates.  相似文献   

16.
Fate of riverine nitrate entering a well defined turbid estuary receiving discharges from the Atchafalaya River, a distributary of the Mississippi River, was determined. Seasonal distribution of NO3 and its transformations were measured in Four League Bay (9,300 ha). Denitrification was estimated by incubating wet samples in the presence of acetylene and monitoring N2O production. The annual sediment accumulation of N was also determined within the bay and within the adjacent marshes. Nitrogen accumulation ranged from 6.0 to 23 gN per m2 per yr on the marsh and 6.1 to 11.2 gN per m2 per yr in the bay. Denitrification in this system was controlled by the availability of NO3 ? with fluxes ranging from 2 to 70 ngN per g per hr. The annual (N2O +N2)-N emission was equivalent to 142 and 120 μg per g or 2.1 and 1.7 gN per m2 from the 5 bay and 5 marsh stations, respectively. Approximately 1.95×105 kgN, predominantly as N2, is being returned to the atmosphere via denitrification. We estimate this to be equivalent to 50% of the riverine NO3 ? entering this estuary. A significant amount was also assimilated within the estuary.  相似文献   

17.
Assessing nitrogen dynamics in the estuarine landscape is challenging given the unique effects of individual habitats on nitrogen dynamics. We measured net N2 fluxes, sediment oxygen demand, and fluxes of ammonium and nitrate seasonally from five major estuarine habitats: salt marshes, seagrass beds (SAV), oyster reefs, and intertidal and subtidal flats. Net N2 fluxes ranged from 332?±?116 μmol?N-N2?m?2?h?1 from oyster reef sediments in the summer to ?67?±?4 μmol?N-N2?m?2?h?1 from SAV in the winter. Oyster reef sediments had the highest rate of N2 production of all habitats. Dissimilatory nitrate reduction to ammonium (DNRA) was measured during the summer and winter. DNRA was low during the winter and ranged from 4.5?±?3.0 in subtidal flats to 104?±?34 μmol?15NH 4 + ?m?2?h?1 in oyster reefs during the summer. Annual denitrification, accounting for seasonal differences in inundation and light, ranged from 161.1?±?19.2 mmol?N-N2?m?2?year?1 for marsh sediments to 509.9?±?122.7 mmol?N-N2?m?2?year?1 for SAV sediments. Given the current habitat distribution in our study system, an estimated 28.3?×?106?mol of N are removed per year or 76 % of estimated watershed nitrogen load. These results indicate that changes in the area and distribution of habitats in the estuarine landscape will impact ecosystem function and services.  相似文献   

18.
Sediment-water exchanges of ammonium (NH4 +), nitrate + nitrite (NOx ?), filterable reactive phosphorus (FRP, primarily ortho-phosphate), and oxygen (O2) under aphotic (heterotrophic) conditions were determined at 2–5 stations in the Neuse River Estuary, from 1987 to 1989. Shallow (1 m), sandy stations were sampled along the salinity gradient. Fluxes from deep (>2 m) sites were compared to the shallow sites in two salinity zones. Grain size became finer and organic content increased with depth in the oligohaline zone but not in the mesohaline zone. Net release of NH4 + and FRP occurred at all sites. Fluxes varied from slight uptake to releases of 200–500 μmol m?2 h?1 (NH4 +) and 150–900 μmol m?2 h?1 (FRP). Net NOx ? exchange was near zero, but were ±100 μmol m?2 h?1 over the year. Release of NH4 + and FRP from the shallow sandy stations decreased with distance down the estuary, but O2 uptake did not change. The deeper oligohaline site had twofold higher rates of NH4 + and FRP release and O2 uptake than the shallow site, but no differences occurred between depths in the mesohaline zone. Temperature and organic content were important controls for all fluxes, but water column NOx ? concentration was also important in regulating NOx ? exchanges. Ratios of oxygen consumption to NH4 + release were near the predicted ratio (Redfield model) at oligohaline sites but increased down estuary at mesohaline sites. This may be due to greater nitrification rates promoted by autotrophy in the sediments.  相似文献   

19.
Rainfall events cause episodic discharges of groundwaters contaminated with septic tank effluent into nearshore waters of the Florida keys, enhancing eutrophication in sensitive coral reef communities. Our study characterized the effects of stormwater discharges by continuously (30-min intervals) measuring salinity, temperature, tidal stage, and dissolved oxygen (DO) along an offshore eutrophication gradient prior to and following heavy rainfall at the beginning of the 1992 rainy season. The gradient included stations at a developed canal system (PP) on Big Pine Key, a seagrass meadow in a tidal channel (PC), a nearshore patch reef (PR), a bank reef at Looe Key National Marine Sanctuary (LK), and a blue water station (BW) approximately 9 km off of Big PIne Key. Water samples were collected at weekly intervals during this period to determine concentrations of total nitrogen (TN), ammonium (NH4 +), nitrate plus nitrite NO3 ? plus NO2 ?), total phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP), and chlorophyll a (chl a). Decreased salinity immediately followed the first major rainfall at Big Pine Key, which was followed by anoxia (DO <0.1 mg I?1), high concentrations of NH4 + (≈24 μM), TDP (≈1.5 μM), and chl a (≈20 μg I?1). Maximum concentration of TDP (≈0.30 μM) also followed the initial rainfall at the PC, PR, and LK stations. In contrast, NH4 + (≈4.0 μM) and chl a (0.45 μg I?1) lagged the rain event by 1–3 wk, depending on distance from shore. The highest and most variable concentrations of NH4 +, TDP, and chl a occurred at PP, and all nutrient parameters correlated positively with rainfall. DO at all stations was positively correlated with tide and salinity and the lowest values occurred during low tide and low salinity (high rainfall) periods. Hypoxia (DO <2.5 mg I?1) was observed at all stations follwing the stormwater discharges, including the offshore bank reef station LK. Our study demonstrated that high frequency (daily) sampling is necessary to track the effects of episodic rainfall events on water quality and that such effects can be detected at considerable distances (12 km) from shore. The low levels of DO and high levels of nutrients and chl a in coastal waters of the Florida Keys demand that special precautions be exercised in the treatment and discharge of wastewaters and land-based runoff in order to preserve sensitive coral reef communities.  相似文献   

20.
Sediment oxygen uptake and net sediment-water fluxes of dissolved inorganic and organic nitrogen and phosphorus were measured at two sites in Fourleague Bay, Louisiana, from August 1981, through May 1982. This estuary is an extension of Atchafalaya Bay which receives high discharge and nutrient loading from the Atchafalaya River. Sediment O2 uptake averaged 49 mg m?2 h?1. On the average, ammonium (NH4 +) was released from the sediments (mean flux =+129 μmol m?2 h?1), and NO3 ? was taken up (mean flux =?19 μmol m?2h?1). However, very different NO3 ? fluxes were observed at the two sites, with sediment uptake at the upper, river-influenced, high NO3 ? site (mean flux =?112 μmol m?2 h?1) and release at the lower, marine-influenced low NO3 ? site (mean flux =+79 μmol m?2 h?1). PO4 3? fluxes were low and often negative (mean flux =?8 μmol m?2 h?1), while dissolved organic phosphorus fluxes were high and positive (mean flux =+124 μmol m?2 h?1). Dissolved organic nitrogen fluxes varied greatly, ranging from a mean of +305 μmol m?2 h?1 at the lower bay, to ?710 μmol m?2 h?1 at the upper bay. Total dissolved nitrogen and phosphorus fluxes indicated the sediments were a nitrogen (mean flux =+543 μmol m?2 h?1) and phosphorus source (mean flux =+30 μmol m?2 h?1) at the lower bay, and a nitrogen sink (mean flux =?553 μmol m?2 h?1) and phosphorus source (mean flux =+17 μmol m?2 h?1) in the upper bay. Mean annual O∶N ration of the positive inorganic sediment fluxes were 27∶1 at the upper bay and 18∶1 at the lower bay. Based on these data we hypothesize that nitrification and denitrification are important sediment processes in the upper bay. We further hypothesize that Atchafalaya River discharge affects sediment-water fluxes through seasonally high nutrient loading which leads to net nutrient uptake by sediments in the upper bay and release in the lower bay, where there is less river influnces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号