首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In light of widespread coastal eutrophication, identifying which nutrients limit vegetation and the community consequences when limitation is relaxed is critical to maintaining the health of estuarine marshes. Studies in temperate salt marshes have generally identified nitrogen (N) as the primary limiting nutrient for marsh vegetation, but the limiting nutrient in low salinity tidal marshes is unknown. I use a 3-yr nutrient addition experiment in mid elevation,Spartina patens dominated marshes that vary in salinity along two estuaries in southern Maine to examine variation in nutrient effects. Nutrient limitation shifted across estuarine salinity gradients; salt and brackish marsh vegetation was N limited, while oligohaline marsh vegetation was co-limited by N and phosphorus (P). Plant tissue analysis ofS. patens showed plants in the highest salinity marshes had the greatest percent N, despite N limitation, suggesting that N limitation in salt marshes is partially driven by a high demand for N to aid in salinity tolerance. Fertilization had little effect on species composition in monospecificS. patents stands of salt and brackish marshes, but N+P treatments in species-rich oligohaline marshes significantly altered community composition, favoring dominance by high aboveground producing plants. Eutrophication by both N and P has the potential to greatly reduce the characteristic high diversity of oligohaline marshes. Inputs of both nutrients in coastal watersheds must be managed to protect the diversity and functioning of the full range of estuarine marshes.  相似文献   

2.
Hummock-hollow microtopography is characteristic of many freshwater wetland systems. It is comprised of elevated, vegetated hummocks and lower elevation hollows; the latter are usually unvegetated, with reducing conditions in sediments unfavorable for plant growth. This microtopography is also often found in interior regions of brackish marshes, where flood duration is high and salinity fluctuations are prominent. Previous investigation showed this spatial patterning to be relatively stable over time and suggested that these microenvironments are produced by the plants themselves. This study investigates the possible mechanisms and controlling factors of this microtopography and considers the effect of different salinity regimes. We examined microtopographic variability of vegetation and sediment biogeochemistry in two interior tidal marshes, a freshwater-oligohaline marsh and a mesohaline marsh, both of which exhibited fine-scale spatial variability. Within a 2-yr period, the freshwater-oligohaline site demonstrated a labile response of both vegetation and sediment chemistry to interannual variability in salinity and sulfide concentrations, whereas the microscale spatial variability of the mesohaline system persisted. Geochronological assessment of the mesohaline marsh, where microtopographic variability was relatively stable, supported the hypothesis that the formation of the hummock-hollow topography is driven by the plants, rather than developing as a result of underlying physical variability. We propose that brackish marsh vegetation alters the sedimentary environment in such a way as to maximize growth under high-stress, variable conditions. The adaptive advantage of this strategy was illustrated in the accretion rates measured at the higher salinity marsh, which were indistinguishable between the interior hummock sediments and those of an adjacent homogeneous bank marsh.  相似文献   

3.
Tidal freshwater marshes exist in a dynamic environment where plant productivity, subsurface biogeochemical processes, and soil elevation respond to hydrological fluctuations over tidal to multi-decadal time scales. The objective of this study was to determine ecosystem responses to elevated salinity and increased water inputs, which are likely as sea level rise accelerates and saltwater intrudes into freshwater habitats. Since June 2008, in situ manipulations in a Zizaniopsis miliacea (giant cutgrass)-dominated tidal freshwater marsh in South Carolina have raised porewater salinities from freshwater to oligohaline levels and/or subtly increased the amount of water flowing through the system. Ecosystem-level fluxes of CO2 and CH4 have been measured to quantify rates of production and respiration. During the first 20 months of the experiment, the major impact of elevated salinity was a depression of plant productivity, whereas increasing freshwater inputs had a greater effect on rates of ecosystem CO2 emissions, primarily due to changes in soil processes. Net ecosystem production, the balance between gross ecosystem production and ecosystem respiration, decreased by 55% due to elevated salinity, increased by 75% when freshwater inputs were increased, and did not change when salinity and hydrology were both manipulated. These changes in net ecosystem production may impact the ability of marshes to keep up with rising sea levels since the accumulation of organic matter is critical in allowing tidal freshwater marshes to build soil volume. Thus, it is necessary to have regional-scale predictions of saltwater intrusion and water level changes relative to the marsh surface in order to accurately forecast the long-term sustainability of tidal freshwater marshes to future environmental change.  相似文献   

4.
The rapid spread ofPhragmites australis in the coastal marshes of the Northeastern United States has been dramatic and noteworthy in that this native species appears to have gained competitive advantage across a broad range of habitats, from tidal salt marshes to freshwater wetlands. Concomitant with the spread has been a variety of human activities associated with coastal development as well as the displacement of nativeP. australis with aggressive European genotypes. This paper reviews the impacts caused by pure stands ofP. australis on the structure and functions of tidal marshes. To assess the determinants ofP. australis expansion, the physiological tolerance and competitive abilities of this species were examined using a field experiment.P. australis was planted in open tubes paired withSpartina alterniflora, Spartina patens, Juncus gerardii, Lythrum salicaria, andTypha angustifolia in low, medium, and high elevations at mesohaline (14‰), intermediate (18‰), and salt (23‰) marsh locations. Assessment of the physiological tolerance ofP. australis to conditions in tidal brackish and salt marshes indicated this plant is well suited to colonize creek banks as well as upper marsh edges. The competitive ability ofP. australis indicated it was a robust competitor relative to typical salt marsh plants. These results were not surprising since they agreed with field observations by other researchers and fit within current competition models throught to structure plant distribution within tidal marshes. Aspects ofP. australis expansion indicate superior competitive abilities based on attributes that fall outside the typical salt marsh or plant competition models. The alignment of some attributes with human impacts to coastal marshes provides a partial explanation of how this plant competes so well. To curb the spread of this invasive genotype, careful attention needs to be paid to human activities that affect certain marsh functions. Current infestations in tidal marshes should serve as a sentinel to indicate where human actions are likely promoting the invasion (e.g., through hydrologic impacts) and improved management is needed to sustain native plant assemblages (e.g., prohibit filling along margins).  相似文献   

5.
An analysis of data relatingSpartina alterniflora Loisel. to tidal elevations along the Atlantic and Gulf coasts demonstrated that although this species is primarily confined to the intertidal zone, its elevational limits. of occurrence do not correspond to a consistent elevation relative to a tidal datum in all marsh locations. The variation in the vertical distribution of this species reported among marsh studies was attributed primarily to differences in mean tide range (MTR). A positive correlation between MTR and elevational growth range (r=0.91) demonstrated that theSpartina alterniflora zone expands with increasing tidal amplitude. Differences in MTR among marsh locations accounted for 70 and 68% of the statistical variation in the upper and lower limits, respectively, ofS. alterniflora growth. Among marshes of similar tidal amplitudes, the upper limit of occurrence ofS. alterniflora in northern marshes was significantly lower than that in marshes at lower latitudes. These results, in combination with regional differences in plant species distribution across the upper intertidal zone, suggested that some of the variation in the upper limit was due to latitudinal differences in growth conditions and/or differences in interspecific competition. Local and regional differences in other factors such as salinity, nutrients, or physical disturbance may have also contributed to the variation in the limits of growth relative to a tidal plane within and among marshes.  相似文献   

6.
Tidal freshwater marshes are critical buffers that exist at the interface between watersheds and estuaries. Little is known about the physical dynamics of tidal freshwater marsh evolution. Over a 21-mo period, July 1995 to March 1997, measurements were made of biweekly sediment deposition at 23 locations in a 3.8-ha tidal freshwater marsh in the Bush River subestuary of the upper Chesapeake Bay. Biweekly accumulation showed high spatial and temporal variability, ranging from ?0.28 g cm?2 to 1.15 g cm?2. Spatial variability is accounted for by habitat differences including plant associations, elevation, and hydrology. Temporal variability is accounted for by interannual climate variability, the growth cycles of marsh plants, stream-marsh interactions, forest-marsh interactions, and animal activity.  相似文献   

7.
Salt marsh zonation patterns generate different abiotic and biotic conditions that can accentuate species inherent differences in primary production and biomass. In South West Atlantic marshes, there are two Spartina species: Spartina alterniflora in the low intertidal and Spartina densiflora in the high intertidal. These two species are generally found in all marshes but with different dominance: In some marshes, the S. densiflora zone occupies higher extents, and in others, the S. alterniflora zone is the one that prevails. We found through field sampling that, in six studied marshes, there is greater S. densiflora live and total (i.e., dead+live) aboveground biomass (g m?2) in the marshes dominated by S. densiflora than in the ones dominated by S. alterniflora. Spartina alterniflora had similar aboveground biomass in the six marshes, regardless of the dominance of each species. When comparing the two Spartina species within each marsh, S. densiflora had greater live and total biomass in the marshes it dominates. In the marshes dominated by S. alterniflora, both species had similar live and total biomass. In all marshes, there was greater dead S. densiflora biomass. A multivariate analysis using selected abiotic factors (i.e., salinity, latitude, and tidal amplitude) showed that S. alterniflora aboveground biomass patterns are mainly correlated with salinity, while S. densiflora live biomass is mainly correlated with salinity and latitude, dead biomass with salinity and tidal amplitude, and total biomass with salinity alone. We conclude that in S. densiflora dominated marshes, the main processes of that species zone (i.e., nutrient accumulation) will be accentuated because of its higher biomass. We also conclude that climatic conditions, in combination with specific Spartina biotic and ambient abiotic parameters, can affect marsh ecological functions.  相似文献   

8.
Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.  相似文献   

9.
10.
Field experiments were completed to determine patterns of evapotranspirative water loss from salt and tidal freshwater marshes in Virginia. Water losses from “Mariotte systems” attached to open-water lysimeters and lysimeters vegetated by dominant marsh macrophytes were used to calculate hourly rates of open-water evaporation (Eo) and evapotranspiration (ET), respectively, during low tide. In the tidal freshwater marsh, ET was significantly greater than Eo (p=0.002, n=6); in the salt marsh, there were no differences between mean rates of ET and Eo (p=0.200, n=3). The ratio ET:Eo was highly correlated with leaf area index (LAI) (r2=0.82). In the tidal freshwater marsh, the amount of water loss due to plant transpiration was partitioned from total evapotranspiration by covering the water surface of the lysimeters with styrofoam beads. Measured transpiration rates in the tidal freshwater marsh were strongly correlated with leaf area index according to the following linear regression equation: T=0.355(LAI)?0.084 (r2=0.797, n=10). Because LAI was shown to be a good predictor of the relative increase in ET over Eo, it is likely that in vegetated tidal freshwater marshes with high leaf densities most atmospheric water loss comes from plants, not from the surface of the marsh. In salt marshes, low plant densities do not contribute substantially to atmospheric water loss, suggesting that paths of water transport and patterns of solute concentration in the subsurface environment are different compard to the tidal freshwater marsh.  相似文献   

11.
Food habits of two species of dolichopodid fly larvae, from two Gulf Coast oligohaline tidal marshes, were analyzed from monthly collections taken between June 1979 and May 1980. Larvae ofPelastoneurus abbreviatus Loew andThinophilus frontalis Van Duzee, taken from aJuncus roemerianus Scheele dominated marsh, fed predominantly on oligochaetes and nematodes.Pelastoneurus abbreviatus, collected in a nearbySpartina cynosuroides (L.) Roth marsh, also fed on oligochaetes but consumed more polychaetes than nematodes. By being predators and prey in turn, these larvae serve in the transfer of energy between benthic, aquatic, and terrestrial components of the marsh, system.  相似文献   

12.
Aboveground production and tissue element composition of Spartina alterniflora were compared in bareier island marshes of different age off the Eastern Shore of Virginia. The marshes were also characterized by physical and chemical parameters of the substrate. The results suggest that sediment nutrient stock do not directly control the spatial pattern of element content or production of S. alterniflora between these marshes. Elevated salinity likely limits the nitrogen uptake capability of S. alterniflora in the high marsh, which, in turn, controls leaf tissue nitrogen content of plants within individual sites. Low substrate redox potential may control the spatial pattern of nitrogen uptake between the different-age marsh sites, loading to more favorable growing conditions at the low stations of the young marsh sites where values of tissue nitrogen and production are highest. Tissue phosphorus did not differ between, or within the marsh sites. The result of a fertilization experiment suggest that nitrogen, and not phosphorus, is the primary limiting nutrient in this sytem. This indicates that nutrient limitation and other stresses work in conjunction to control tissue element content and macrophyte production at these marsh sites. Spatial variability of factors that control leaf tissue nitrogen and production is likely related to topography and grain size of an individual marsh, which is a function of marsh age. Most studies in different-age marshes have compared transplanted marshes to older, natural marshes. This work is one of few studies comparing developing and mature natural, marshes on barrier islands.  相似文献   

13.
Benthic macroinvertebrate abundance, taxonomic composition, and surface flooding dynamics were compared among high and low elevation stands of narrow-leaved cattail (Typha angustifolia) and invasive common reed (Phragmites australis) at Iona Island Marsh, an oligohaline wetland, and Piermont Marsh, a mesohaline wetland, within the Hudson River National Estuarine Research Reserve during 1999 and 2000. Overall, the benthic macroinvertebrate community at both sites was similar in composition and abundance to those documented from other low-salinity systems. Macroinvertebrate taxa richness was lowest in mesohaline common reed, but similar among common reed and cattail habitats in oligohaline wetlands. Total macroinvertebrate densities were greater at high-elevation compared to low-elevation reed stands at the mesohaline site during summer 1999 and spring 2000. Total macroinvertebrate densities were similar among both oligohaline vegetation types during all seasons, except for spring 2000, when lower densities were observed in low-elevation common reed. A weak positive relationship between macroinvertebrate density and depth of flooding suggests that surface hydrology may be influencing the observed patterns of macroinvertebrate density among the vegetation stands. These results suggest that benthic macroinvertebrate abundance and diversity may not necessarily be impaired in low-salinity wetlands experiencing invasion by common reed unless the change in vegetation is accompanied by a measurable alteration to physical conditions on the marsh surface (i.e., elevation and flooding dynamics).  相似文献   

14.
Through their physiological effects on ion, oxygen, and carbon balance, respectively, salinity, sulfide, and prolonged flooding combine to constrain the invasion and spread ofPhragmites in tidal wetlands. Initial sites of vigorous invasion by seed germination and growth from rhizome fragments appear limited to sections of marsh where salinity is <10‰, sulfide concentrations are less than 0.1 mM, and flooding frequency is less than 10%. In polyhaline tidal wetlands the invasion sites include the upland fringe and some high marsh creek banks. The zones of potential invasion tend to be larger in marshes occupying lower-salinity portions of estuaries and in marshes that have been altered hydrologically. Owing to clonal integration and a positive feedback loop of growth-induced modification of edaphic soil conditions, however, a greater total area of wetland is susceptible toPhragmites expansion away from sites of establishment. Mature clones have been reported growing in different marshes with salinity up to 45‰, sulfide concentration up to 1.75 mM, and flooding frequency up to 100%. ForPhragmites establishment and expansion in tidal marshes, windows of opportunity open with microtopographic enhancement of subsurface drainage patterns, marsh-wide depression of flooding and salinity regimes, and variation in sea level driven by global warming and lunar nodal cycles. To avoidPhragmites monocultures, tidal wetland creation, restoration, and management must be considered within the context of these different scales of plant-environment interaction.  相似文献   

15.
Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year?1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year?1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.  相似文献   

16.
Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r 2?=?0.96; p?=?0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt marshes are already experiencing deterioration and fragmentation in response to sea level rise and may not be stable as tidal flooding increases in the future.  相似文献   

17.
Rates of sea level rise associated with climate change are predicted to increase in the future, potentially altering ecosystems at all ecological levels. Sea level rise can increase the extent of brackish water intrusion into freshwater ecosystems, which in turn can affect the structure and function of resident microbial communities. In this study, we performed a year-long mesocosm experiment using intact tidal freshwater marsh sediment cores to examine the effect of a 5-part per thousand (ppt) salinity increase on the diversity and community composition of sulfate-reducing prokaryotes. We used a clone library approach to examine the dsrA gene, which encodes an important catalytic enzyme in sulfate reduction. Our results indicate that tidal freshwater marshes contain extremely diverse communities of sulfate-reducing bacteria. Members of these communities were, on average, only 71 % similar to known cultured sulfate reducers and 81 % similar to previously sequenced environmental clones. Salinity and associated increases in sulfate availability did not significantly affect the diversity or community composition of sulfate-reducing prokaryotes. However, carbon quality and quantity, which correlated with depth, were found to be the strongest drivers of sulfate-reducing community structure. Our study demonstrates that the sulfate-reducing community in tidal freshwater marsh sediments appears resistant to increased salinity in the face of sea level rise. Additionally, the microorganisms that comprise this sulfate-reducing community appear to be unique to tidal freshwater marsh sediments and may represent novel lineages of previously undescribed sulfate reducers.  相似文献   

18.
Many tidally influenced freshwater forested wetlands (tidal swamps) along the south Atlantic coast of the USA are currently undergoing dieback and decline. Salinity often drives conversion of tidal swamps to marsh, especially under conditions of regional drought. During this change, alterations in nitrogen (N) uptake from dominant vegetation or timing of N recycling from the canopy during annual litter senescence may help to facilitate marsh encroachment by providing for greater bioavailable N with small increases in salinity. To monitor these changes along with shifts in stand productivity, we established sites along two tidal swamp landscape transects on the lower reaches of the Waccamaw River (South Carolina) and Savannah River (Georgia) representing freshwater (≤0.1 psu), low oligohaline (1.1–1.6 psu), and high oligohaline (2.6–4.1 psu) stands; the latter stands have active marsh encroachment. Aboveground tree productivity was monitored on all sites through monthly litterfall collection and dendrometer band measurements from 2005 to 2009. Litterfall samples were pooled by season and analyzed for total N and carbon (C). On average between the two rivers, freshwater, low oligohaline, and high oligohaline tidal swamps returned 8,126, 3,831, and 1,471 mg N?m?2 year?1, respectively, to the forest floor through litterfall, with differences related to total litterfall volume rather than foliar N concentrations. High oligohaline sites were most inconsistent in patterns of foliar N concentrations and N loading from the canopy. Leaf N content generally decreased and foliar C/N generally increased with salinization (excepting one site), with all sites being fairly inefficient in resorbing N from leaves prior to senescence. Stands with higher salinity also had greater flood frequency and duration, lower basal area increments, lower tree densities, higher numbers of dead or dying trees, and much reduced leaf litter fall (103 vs. 624 g?m?2 year?1) over the five study years. Our data suggest that alternative processes, such as the rate of decomposition and potential for N mineralization, on tidal swamp sites undergoing salinity-induced state change may be more important for controlling N biogeochemical cycling in soils than differences among sites in N loading via litterfall.  相似文献   

19.
In Louisiana, plant production rates and associated decomposition rates may be important in offsetting high rates of land loss and subsidence in organic marsh soils. Decomposition ofSpartina patens shoot and leaf material was studied by using litter bags in mesohaline marshes in the Barataria and Terrebonne basins of coastal Louisiana.Spartina patens decomposed very slowly with an average decay constant of 0.0007, and approximately 50% of the material remained after 2 years in the field. Material at the Barataria site decomposed faster than did Terrebonne material with trend differences apparent during the first 150 days. This difference might be explained by the higher content of phosphorus in the Barataria material or a flooding period experienced by the Barataria bags during their first 10 days of deployment. Nitrogen and carbon content of the plant material studied did not differ between the two basins. We detected no consistent significant differences in decomposition above, at, or below sediment/water level. BecauseS. patens is the dominant plant in these marshes, and because it is so slow to decompose, we believe thatS. patens shoots are an important addition to vertical accretion and, therefore, marsh elevation.  相似文献   

20.
Currently, the largest tidal wetlands restoration project on the US Pacific Coast is being planned and implemented in southern San Francisco Bay; however, knowledge of baseline conditions of salt marsh extent in the region prior to European settlement is limited. Here, analysis of 24 sediment cores collected from ten intact southern San Francisco Bay tidal marshes were used to reconstruct spatio-temporal patterns of marsh expansion to provide historic context for current restoration efforts. A process-based marsh elevation simulation model was used to identify interactions between sediment supply, sea-level rise, and marsh formation rates. A distinct age gradient was found: expansion of marshes in the central portion of southern San Francisco Bay dated to 500 to 1500 calendar years before present, while expansion of marshes in southernmost San Francisco Bay dated to 200 to 700 calendar years before present. Thus, much of the tidal marsh area mapped by US Coast Survey during the 1853–1857 period were in fact not primeval tidal marshes that had persisted for millennia but were recently formed landscapes. Marsh expansion increased during the Little Ice Age, when freshwater inflow and sediment influx were higher than during the previous millennium, and also during settlement, when land use changes, such as introduction of livestock, increased watershed erosion, and sediment delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号