首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The tropical storm database used in this study was obtained from the National Oceanic and Atmospheric Administration’s (NOAA) Coastal Service Center, using the Historical Hurricane Tracks tool. Queries were used to determine the number of storms of tropical origin that have impacted the State and each of its counties. A total of 76 storms of tropical origin passed over New York State between 1851 and 2005. Of these storms, 14 were classified as hurricanes. The remaining hurricanes passed over New York State as weaker or modified systems—27 tropical storms, 7 tropical depressions, and 28 extratropical storms (ET). Long Island experiences a disproportionate number of hurricanes and tropical storms. The average frequency of hurricanes and storms of tropical origin (all types) is one in every 11 years and one in every 2 years, respectively. September is the month of greatest frequency for storms of tropical origin, although the storms of greatest intensity tend to arrive later in the hurricane season and follow different poleward tracks. While El Nino Southern Oscillation (ENSO) cycles appear to show some influence, the frequency and intensity of storms of tropical origin appear to follow a multidecadal cycle. Storm activity was greatest in both the late 19th and 20th centuries. During periods of increased storm frequency and intensity storms reached New York State at progressively later dates. While the number and timing of storms of tropical origin is likely to increase, this increase appears to be attributed to a multidecadal cycle, as opposed to a trend in global warming.  相似文献   

2.
This study examines rainfall thresholds for erosion and sediment yield in the upper Yangtze River basin. Sediment reduction effects of soil conservation measures depend on the magnitudes of rainstorm. When the latter is less than a critical threshold, sediment reduction effects of soil conservation measures are positive; when this magnitude is exceeded, the effect is negative. An analysis based on data from the Jialingjiang River shows that the sediment reduction by soil conservation measures increased with annual precipitation to a peak, and then decreased to a negative value. The annual precipitation at the peak and zero values of sediment reduction are 970 and 1,180 mm, respectively, which can be regarded as two thresholds. Annual precipitation at the zero-value of sediment reduction has a return period of 25 years. In general, the design standard of soil conservation works in China is related with rainstorms with return periods of 10–20 years. When the magnitude of rainstorm exceeds this, the soil conservation works may be partly or totally destroyed by rainstorms, and the previously trapped sediment may be released, resulting in a sharp increase in sediment yield. It was also found in the lower Jinshajiang River that when annual precipitation exceeds 1,050 mm or high-flow season precipitation exceeds 850 mm, the annual sediment yield increased sharply. These can also be regarded as key rainfall thresholds for erosion and sediment yields. When precipitation is less than the two thresholds, dominant erosion types are sheet, rill and gully erosions. When precipitation crosses the two thresholds, debris flows may occur more frequently. As a result, the previously stored loose sediment is released and sediment yield increases sharply.  相似文献   

3.
In order to explore the consequences of precipitation increase on soil erosion in Uruguay, the monthly Fournier Index (FI) and the annual Modified Fournier Index (MFI) were developed as a preliminary approach, covering consecutive decadal periods from 1931 to 2000. Rainfall data were used from 13 stations distributed all over the country. MFI shows a decrease in the 1940s, an increase during the 1950s, then a little decrease during the 1960s and 1970s and an increase in the 1980s, remaining near these last values during the 1990s. FI behavior in July and October in the last two decades shows a decrease in the Northeast region of the country—the region with highest annual precipitation—and a slight increase over the Southeast—the region with the lowest annual precipitation and the only region with a winter rainfall maximum. For the core months of winter and early spring there is a decline in erosivity in the Northeast, but an increase in the Southeast. January shows erosivity decreasing in the South during the last two decades. In April there is a peak in precipitation variability all across the country. FI shows an early increase during the 1940s in the Northwest, and generally very low values during the 1970s, with the return of high values in the 1990s, especially in the Northern corner. Results pose a challenge in order to improve research on the erosion problem, since the main source of freshwater nationwide remains surface river flow, which is prone to higher turbidity problems in areas of high soil erosion.  相似文献   

4.
The return periods and occurrence probabilities related to medium and large earthquakes (M w 4.0–7.0) in four seismic zones in northeast India and adjoining region (20°–32°N and 87°–100°E) have been estimated with the help of well-known extreme value theory using three methods given by Gumbel (1958), Knopoff and Kagan (1977) and Bury (1999). In the present analysis, the return periods, the most probable maximum magnitude in a specified time period and probabilities of occurrences of earthquakes of magnitude M ≥ 4.0 have been computed using a homogeneous and complete earthquake catalogue prepared for the period between 1897 and 2007. The analysis indicates that the most probable largest annual earthquakes are close to 4.6, 5.1, 5.2, 5.5 and 5.8 in the four seismic zones, namely, the Shillong Plateau Zone, the Eastern Syntaxis Zone, the Himalayan Thrusts Zone, the Arakan-Yoma subduction zone and the whole region, respectively. The most probable largest earthquakes that may occur within different time periods have been also estimated and reported. The study reveals that the estimated mean return periods for the earthquake of magnitude M w 6.5 are about 6–7 years, 9–10 years, 59–78 years, 72–115 years and 88–127 years in the whole region, the Arakan-Yoma subduction zone, the Himalayan Thrusts Zone, the Shillong Plateau Zone and the Eastern Syntaxis Zone, respectively. The study indicates that Arakan-Yoma subduction zone has the lowest mean return periods and high occurrence probability for the same earthquake magnitude in comparison to the other zones. The differences in the hazard parameters from zone to zone reveal the high crustal heterogeneity and seismotectonics complexity in northeast India and adjoining regions.  相似文献   

5.
Losses resulting from winter storms contribute a significant part to the overall losses among all natural hazards in most mid-latitude European countries. A realistic assessment of storm risk is therefore essential for prevention and coping measures. The paper presents a framework for probabilistic storm risk assessment for residential buildings which is exemplarily performed for Germany. Two different approaches are described, and results are presented. The hazard-based approach brings together hazard, vulnerability and building assets to calculate risk curves for each community. The storm-based approach uses loss information from past storm events to calculate statistical return periods of severe storms. As a result, a return period of 83 years to the most severe storm series in 1990 is calculated. Average annual losses of €170 million to residential buildings are calculated for all over Germany. The study demonstrates how the approaches complement each other and how validation is performed.  相似文献   

6.
7.
Phenomenal storm surge levels associated with cyclones are common in East Coast of India. The coastal regions of Andhra Pradesh are in rapid stride of myriad marine infrastructural developments. The safe elevations of coastal structures need a long-term assessment of storm surge conditions. Hence, past 50 years (1949–1998), tropical cyclones hit the Bay are obtained from Fleet Naval Meteorological & Oceanographic Center, USA, and analyzed to assess the storm surge experienced around Kakinada and along south Andhra Pradesh coast. In this paper, authors implemented Rankin Hydromet Vortex model and Bretschneider’s wind stress formulation to hindcast the surge levels. It is seen from the hindcast data that the November, 1977 cyclone has generated highest surge of the order of 1.98 m. Extreme value analysis is carried out using Weibull distribution for long-term prediction. The results reveal that the surge for 1 in 100-year return period is 2.0 m. Further the highest surge in 50 years generated by the severe cyclone (1977) is numerically simulated using hydrodynamic model of Mike-21. The simulation results show that the Krishnapatnam, Nizampatnam and south of Kakinada have experienced a surge of 1.0, 1.5 and 0.75 m, respectively.  相似文献   

8.
Many physico-chemical variables like rock-type, climate, topography and exposure age affect weathering environments. In the present study, an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering profiles in west coast of India, which receives about 3 m rainfall through two monsoons and those from the inland rain-shadow zones (<200 cm rainfall) are studied using X-ray diffraction technique. In the west coast, 1:1 clays (kaolinite) and Fe—Al oxides (gibbsite/goethite) are dominant clay minerals in the weathering profiles while 2:1 clay minerals are absent or found only in trace amounts. Weathering profiles in the rain shadow region have more complex clay mineralogy and are dominated by 2:1 clays and kaolinite. Fe—Al oxides are either less or absent in clay fraction. The kaolinite—smectite interstratified mineral in Banasandra profiles are formed due to transformation of smectites to kaolinite, which is indicative of a humid paleoclimate. In tropical regions receiving high rainfall the clay mineral assemblage remains the same irrespective of the parent rock type. Rainfall and availability of water apart from temperature, are the most important factors that determine kinetics of chemical weathering. Mineral alteration reactions proceed through different pathways in water rich and water poor environments.  相似文献   

9.
根据水文系统雨量站网的逐时量资料,分析1991年6月~7月江淮流域下游两次连续暴雨过程中太湖及里下河地区的雨团活动特征.结果表明,在太湖及里下河地区均有频繁的雨团活动,雨团以自西向东移动为主,且停滞较频繁,两地区的雨团活动特征存在一定差异.雨团降水在暴雨总量中占有较大比例,对洪涝的形成和发展有重要作用.雨团活动与中尺度切交线、辐合中心、辐合线等中尺度天气系统相配合.  相似文献   

10.
An overview is provided of some of the significant storm tide modelling and risk assessment studies undertaken over the past few years within Australia and the nearby oceanic regions for government and industry. Emphasis is placed on the need for integrated planning and forecasting approaches for storm tide risk assessment. The importance of the meteorological forcing and the appropriate modelling of each of the storm tide components, namely, astronomical tide, storm surge, breaking wave setup and coastal inundation is discussed. The critical role of tropical cyclone “best track” datasets for risk assessment studies and the potential impacts on design criteria and risk assessment studies is highlighted, together with the challenge of developing credible enhanced-greenhouse climate change scenarios. It is concluded that storm tide modelling needs to be undertaken in a holistic framework that considers the relative uncertainties in each of the various elements—atmospheric, hydrodynamic and data, as well as addressing operational forecasting, design and planning needs.  相似文献   

11.
In September 1998 tropical storm “Earl” swept southern Mexico, producing intense rainfall in the states of Oaxaca and Chiapas. Among the most devastated cities was Motozintla, located in the drainage basin of the Allende, La Mina and Xelajú Grande Rivers. The rainfall from the tropical storm totaled 175 mm on September 8 and 130 mm on September 9, duplicating in two days the average monthly precipitation in the region. Numerous landslides occurred in the vicinity of Motozintla, depositing large volumes of material into the Xelajú Grande stream. Much of this sediment was subsequently remobilized, yielding debris flows, hyperconcentrated flows, and sediment-laden flows that inundated most sections of Motozintla city. The flows covered an approximate area of 3.15 km2 with a minimum volume of 4.4 × 106 m3 of sediment. Communication of Motozintla with the rest of the Chiapas State was interrupted for about a month, as was the supply of potable water, food, electricity, and fuel. The geologic record around Motozintla indicates that the Xelajú Grande River has been a pathway for similar large floods during the last 6000 years. The oldest deposit yielded a radiocarbon age of 5320 ± 100 14C years. B.P. At least two historic floods have occurred during the last 100 years, a time period defined by a stratigraphically distinct tephra of 1902. Frequency analysis of the historical record of daily rainfall in the Motozintla area suggests that events like that of September, 1998, have a recurrence interval of about 25 years. After the catastrophic flows of 1998, the mitigation measures by Municipal Authorities were made without regard to geological and environmental factors, or to taking into consideration the flow magnitude and appropriate hazard-mitigation techniques, with the result that Motozintla remains at serious risk for future floods. Unfortunately, prior to the publication of this study, in early October 2005, Motozintla was seriously damaged again by intense rain provoked by Hurricane Stan.  相似文献   

12.
In this study, we discuss the first cosmogenic 10Be dating of river terraces located in the lower reaches of the Santo Domingo river (Southeastern flank of the Mérida Andes, Western Venezuela). The geomorphic observations and dating allowed the restoration of the temporal evolution of incision rate, which was analysed in terms of tectonic, climatic and geomorphic processes. The long-term incision rate in the area has been constantly around 1.1 mm/a over the last 70 ka. Taking into account the geologic and geomorphologic setting, this value can be converted into the Late Pleistocene uplift rate of the Southeastern flank of the Mérida Andes. Our results show that the process of terraces formation in the lower reaches of the Santo Domingo river occurred at a higher frequency (103–104 years) than a glacial/interglacial cycle (104–105 years). According to the global and local climate curve, these terraces were abandoned during warm to cold transitions.  相似文献   

13.
We examine the relationship between three tropical and two subtropical western Indian Ocean coral oxygen isotope time series to surface air temperatures (SAT) and rainfall over India, tropical East Africa and southeast Africa. We review established relationships, provide new concepts with regard to distinct rainfall seasons, and mean annual temperatures. Tropical corals are coherent with SAT over western India and East Africa at interannual and multidecadal periodicities. The subtropical corals correlate with Southeast African SAT at periodicities of 16–30 years. The relationship between the coral records and land rainfall is more complex. Running correlations suggest varying strength of interannual teleconnections between the tropical coral oxygen isotope records and rainfall over equatorial East Africa. The relationship with rainfall over India changed in the 1970s. The subtropical oxygen isotope records are coherent with South African rainfall at interdecadal periodicities. Paleoclimatological reconstructions of land rainfall and SAT reveal that the inferred relationships generally hold during the last 350 years. Thus, the Indian Ocean corals prove invaluable for investigating land–ocean interactions during past centuries. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Simulation of a Himalayan cloudburst event   总被引:5,自引:0,他引:5  
Intense rainfall often leads to floods and landslides in the Himalayan region even with rainfall amounts that are considered comparatively moderate over the plains; for example, ‘cloudbursts’, which are devastating convective phenomena producing sudden high-intensity rainfall (∼10 cm per hour) over a small area. Early prediction and warning of such severe local weather systems is crucial to mitigate societal impact arising from the accompanying flash floods. We examine a cloudburst event in the Himalayan region at Shillagarh village in the early hours of 16 July 2003. The storm lasted for less than half an hour, followed by flash floods that affected hundreds of people. We examine the fidelity of MM5 configured with multiple-nested domains (81, 27, 9 and 3 km grid-resolution) for predicting a cloudburst event with attention to horizontal resolution and the cloud microphysics parameterization. The MM5 model predicts the rainfall amount 24 hours in advance. However, the location of the cloudburst is displaced by tens of kilometers  相似文献   

15.
The majority of landsliding episodes in the area north of Lisbon are associated with rainfall events of short (less than 5 days) medium (5–20 days) or long duration (more than 20 days). The precipitation regime in Portugal is highly irregular, with large differences between wet and dry years. We have assessed the impact of the North Atlantic Oscillation (NAO) on both the winter precipitation and the timing and magnitude of associated landslide events. Results show that the large inter-annual variability of winter precipitation is largely modulated by the NAO mode. The precipitation composite corresponding to high NAO index presents a considerable lower median value (47 mm/month) than the corresponding low NAO index class (134 mm/month). The entire precipitation distribution associated with the low NAO index composite encompasses a wider range of values than the corresponding high NAO index composite. This non-linear behavior is reflected in the probability of occurrence of a very wet month (precipitation above the 90% percentile) that is just 1% for the positive NAO class and 23% for low NAO index months. Results for the low NAO class are crucial because these months are more likely associated with long-lasting rainfall episodes responsible for large landslide events. This is confirmed by the application of a 3-month moving average to both NAO index and precipitation time series. This procedure allowed the identification of many months with landslide activity as being characterized by negative average values of the NAO index and high values of average precipitation (above 100 mm/month). Finally, using daily data we have computed the return periods associated with the entire set of landslide episodes and, based on these results, obtained a strong linear relationship between critical cumulative rainfall and the corresponding critical rainfall event duration.  相似文献   

16.
编制适用于不同历时的综合暴雨公式是协调城市管网排水与区域防洪治涝的重要基础。选用上海市代表雨量站徐家汇站65 a实测雨量资料,建立不同重现期暴雨强度与历时关系,解析暴雨衰减规律,编制单一重现期暴雨公式,结合雨力公式推求适用不同重现期的长历时综合暴雨公式,并推导出暴雨重现期公式。结果表明:不同重现期1~24 h历时暴雨强度均以0.74的衰减指数衰减,据此推求的长历时综合暴雨公式可计算1~24 h任意历时、2~100 a任意重现期的设计暴雨,且平均相对和平均绝对均方根误差分别为1.9%和0.009 mm/min,符合规范要求;暴雨重现期公式可估算1~24 h历时内任意场次暴雨的重现期,高效地服务于城市洪涝防治决策。成果已纳入上海市治涝地方标准,对其他城市具有参考价值。  相似文献   

17.
Rocky desertification, a process of land degradation characterized by soil erosion and bedrock exposure, is one of the most serious land degradation problems in karst areas, and is regarded as an obstacle to local sustainable development. It is well known that human activities can accelerate rocky desertification; however, the effects of climate change on rocky desertification in karst areas are still unclear. This study focused on the effects of temperature and precipitation changes and human activities on rocky desertification in karst areas to determine the impacts of climate change and human disturbances on rocky desertification. Areas of different level of rocky desertification were obtained from Landsat TM (1987) and Landsat ETM+ (2000) images. The results show that, although the total desertification area increased by only 1.27% between 1987 and 2000, 17.73% of the slightly desertified land had degraded to a moderate or intense level, 2.01 and 15.71%, respectively. Meanwhile, between 1987 and 2000, the air temperature increased by 0.7°C, and precipitation increased by 170 mm. Statistical results indicate that the increase in precipitation was caused by heavy rainfall. In addition, under the interactive influences of heavy rainfall and temperature, the average karst dissolution rate was about 87 m3 km−2 a−1 during the 14 years in the study area. Further analysis indicated that rocky desertification was positively related with the increase in temperature and precipitation and especially with the heavy rainfall events. Climate change accelerated rocky desertification in the karst areas. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Groundwater is the major source of water supply for most uses in the rural settlements in Ghana. A groundwater flow model was calibrated for some aquifers of the southern Voltaian sedimentary system under steady-state conditions. The objective was to determine estimates of the hydraulic conductivities of the different hydrostratigraphic units of the southern Voltaian, and the distribution of recharge from precipitation. Data on the stable isotopes of oxygen and hydrogen from the study area suggest that groundwater recharge in the area is from rainfall. The calibrated steady-state model suggests that aquifer hydraulic conductivities in the study area range from 1.19 to 6.3 m/day. Hydrostratigraphic unit specific hydraulic conductivities are discussed. The calibrated recharge ranges from 3.81e−05 m/day to 6.0e−04 m/day, which represents 0.9–6% of the precipitation in the form of rainfall. Six distinct flowpaths have been defined using particle tracking. The particle tracking simulation suggests travel times in the range of 380 to 5,199 years from recharge areas to discharge areas along the flowpaths identified. A contaminant dropped at the recharge areas in the central sections of the model area would travel at these rates along the flowpaths, assuming that advection is the dominant transport process. Inverse geochemical modeling indicates the dissolution of albite, K-feldspars and anorthite, respectively, along flowpaths I and IV. The inverse modeling along flowpaths I and IV suggest the dissolution of albite, K-feldspar and anorthite, respectively, at 1.085e−06, 3.16e−08 and 3.168e−07 mmol/year.  相似文献   

19.
The distribution of mangrove biomass and forest structure along Shark River estuary in the Florida Coastal Everglades (FCE) has been correlated with elevated total phosphorus concentration in soils thought to be associated with storm events. The passage of Hurricane Wilma across Shark River estuary in 2005 allowed us to quantify sediment deposition and nutrient inputs in FCE mangrove forests associated with this storm event and to evaluate whether these pulsing events are sufficient to regulate nutrient biogeochemistry in mangrove forests of south Florida. We sampled the spatial pattern of sediment deposits and their chemical properties in mangrove forests along FCE sites in December 2005 and October 2006. The thickness (0.5 to 4.5 cm) of hurricane sediment deposits decreased with distance inland at each site. Bulk density, organic matter content, total nitrogen (N) and phosphorus (P) concentrations, and inorganic and organic P pools of hurricane sediment deposits differed from surface (0–10 cm) mangrove soils at each site. Vertical accretion resulting from this hurricane event was eight to 17 times greater than the annual accretion rate (0.30 ± 0.03 cm year−1) averaged over the last 50 years. Total P inputs from storm-derived sediments were equivalent to twice the average surface soil nutrient P density (0.19 mg cm−3). In contrast, total N inputs contributed 0.8 times the average soil nutrient N density (2.8 mg cm−3). Allochthonous mineral inputs from Hurricane Wilma represent a significant source of sediment to soil vertical accretion rates and nutrient resources in mangroves of southwestern Everglades. The gradient in total P deposition to mangrove soils from west to east direction across the FCE associated with this storm event is particularly significant to forest development due to the P-limited condition of this carbonate ecosystem. This source of P may be an important adaptation of mangrove forests in the Caribbean region to projected impacts of sea-level rise.  相似文献   

20.
《Quaternary International》2006,142(1):140-146
This paper deals with the possible occurrence, within the next 100–1000 years, and under the same geomorphological conditions, of meteorological events similar to the precipitation which triggered the hydric erosion that initiated Corralito ravine. The study area is located in the central part of Córdoba Province (32° 05′–31° 45′S; 64°10′–63°30′W) in the Plains region. The erosive process was started by the storm of September 1978. Five years later, two extreme rains took place in the same humid period (1983/84), with recurrence intervals of 10 and 25 years, respectively, and in the year 2000 another extreme rainstorm with a 100-year return period occurred. Each event can be correlated with the main reactivation surfaces, visible as successive deepening levels at the gully. Although there is a positive climatic tendency in annual rainfall, due to an increasing number of rainy days, the annual maximum of daily rainfall remained constant. Hence, the dominant factor in the ravine development was the occurrence of convectively generated extreme hydrometeorologic events. Prediction of 24-h maximum rainfall through the DIT Model is applicable to the future, allowing the design of structures required to control overflowing and sediment production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号