首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An auroral arc system excited by soft electrons was studied with a combination of in situ rocket measurements and optical tomographic techniques, using data from a photometer on a horizontal, spinning rocket and a line of three meridian scanning photometers. The ground-based scanner data at 4709, 5577, 8446 and 6300 Å were successfully inverted to provide a set of volume emission rate distributions in the plane of the rocket trajectory, with a basic time resolution of 24 s. Volume emission rate profiles, derived from these distributions peaked at about 150 km for 5577 and 4709 Å, while the 8446 Å emission peaked at about 170 km with a more extended height distribution. The rocket photometer gave comparable volume emission rate distributions for the 3914 Å emission as reported in a separate paper by McDade et al. (1991, Planet. Space Sci. 39, 895). Instruments on the rocket measured the primary electron flux during the flight and, in particular, the flux precipitating into the auroral arc overflown at apogee (McEwen et al., 1991; in preparation). The local electron density and temperature were measured by probes on the rocket (Margot and McNamara (1991; Can. J. Phys. 69, 950). The electron density measurements on the downleg were modelled using ion production rate data derived from the optical results. Model calculations of the emission height profile based on the measured electron flux agree with the observed profiles. The height distribution of the N2+ emission in the equatorward band, through which the rocket passed during the descent, was measured by both the rocket and the ground-based tomographic techniques and the results are in good agreement. Comparison of these profiles with model profiles indicates that the exciting primary spectrum may be represented by an accelerated Maxwellian or a Gaussian distribution centered at about 3 keV. This distribution is close to what would be obtained if the electron flux exciting the poleward form were accelerated by a 1–2 kV upward potential drop. The relative height profiles for the volume emission rate of the 5577 Å OI emission and the 4709 Å N2+ emission were almost indistinguishable from each other for both the forms measured, with ratios in the range 38–50; this is equivalent to I(5577)/I(4278) ratios of 8–10. The auroral intensities and intensity ratios measured in the magnetic zenith from the ground during the period before and during the rocket flight are consistent with the primary electron fluxes and height distributions measured from the rocket. Values of I(5577)/I(4278) in the range 8–10 were also measured directly by the zenith ground photometers over which the arc system passed. These values are slightly higher than those reported by Gattinger and Vallance-Jones (1972) and this may possibly indicate an enhancement of the atomic oxygen concentration at the time of the flight. Such an enhancement would be consistent with our result, that the observed values of I(5577) and I(8446) are also significantly higher than those modelled on the basis of the electron flux spectrum measured at apogee.  相似文献   

2.
The time scale of the response of the high-latitude dayside ionospheric flow to changes in the North-South component of the interplanetary magnetic field (IMF) has been investigated by examining the time delays between corresponding sudden changes. Approximately 40 h of simultaneous IMF and ionospheric flow data have been examined, obtained by the AMPTE-UKS and -IRM spacecraft and the EISCAT “Polar” experiment, respectively, in which 20 corresponding sudden changes have been identified. Ten of these changes were associated with southward turnings of the IMF, and 10 with northward turnings. It has been found that the corresponding flow changes occurred simultaneously over the whole of the “Polar” field-of-view, extending more than 2° in invariant latitude, and that the ionospheric response delay following northward turnings is the same as that following southward turnings, though the form of the response is different in the two cases. The shortest response time, 5.5 ± 3.2 min, is found in the early- to mid-afternoon sector, increasing to 9.5 ± 3.0 min in the mid-morning sector, and to 9.5 ± 3.1 min near to dusk. These times represent the delays in the appearance of perturbed flows in the “Polar” field-of-view following the arrival of IMF changes at the subsolar magnetopause. Overall, the results agree very well with those derived by Etemadi et al. (1988, Planet. Space Sci. 36, 471) from a general cross-correlation analysis of the IMF Bz and “Polar” beam-swinging vector flow data.  相似文献   

3.
We describe the method and the result of a new experiment to obtain velocity distribution of fine ejecta fragments, from a few to a hundred microns in size, produced from basalt targets by impacts of nylon projectiles at a velocity of 3.7 km s−1. The size distribution of holes perforated by the ejecta fragments on thin films and foils placed around the targets was investigated, and the size-velocity relation was determined with the aid of an empirical formula for threshold penetration (McDonnell and Sullivan, Hypervelocity Impacts in Space, Unit for Space Sciences, University of Kent, 1992). The velocity of the fastest fragments, at a given size, is from the extrapolation of the size-velocity relation for 1–100 mm fragments (Nakamura and Fujiwara, Icarus92, 132–146, 1991; Nakamura et al, Icarus100, 127–135, 1992). The laboratory results are also compared with those obtained from the study of secondary craters around large lunar craters (Vickery, Icarus67, 224–236, 1986, Geophys. Res. Lett. 14, 726–729, 1987). All these data provide a smooth size-velocity relationship in the normalized fragment size range of four orders of magnitude.  相似文献   

4.
Previous studies of the residual masses resulting from ablation of small meteoroid grains have been concerned with the ablation of particles which enter the atmosphere independently. There is widespread evidence that fragmentation is a common occurrence for meteors ranging from bright fireballs to the smallest meteors recorded with optical techniques. According to a widely accepted model, meteoroids can be considered to be a collection of tiny grains, with these grains being detached from the meteoroid during atmospheric flight. This investigation numerically solves the differential equations governing ablation of grains detached at different heights. Initial velocities from 12 to 70km s−1, and initial masses from 10−5 to 10−13kg, are considered. The ablation equations allow for thermal heating prior to the onset of intensive evaporation, and thermal reradiation throughout. The atmospheric density profile used is one based on the U.S. Standard Atmosphere (1962, U.S. Government Printing Office, Washington). Calculations were completed for grains detached at 120, 100, 95, 90, 85, 80 and 75km height. For the purposes of the ablation model it is assumed that grains are ejected with an initial temperature of 1300 K, and that intensive grain evaporation begins at 2100 K. These values are consistent with grains emitted according to the model of Hawkes and Jones (1975a, Mon. Not. R. astr. Soc. 173, 339; Mon. Not. R. astr. Soc. 185, 727). For comparison purposes, calculations were also completed for grains entering the atmosphere independently (initial height 140km and beginning temperature 280 K assumed).

It is found that particles ejected at heights of 100km and above behave essentially as independent particles incident from infinity. Hence the results of earlier studies (e.g. Nicol et al., 1985, Planet. Space Sci.33, 315) can be applied. For ejection at lower heights the resultant residual mass is somewhat less than that corresponding to grains of the same initial mass and velocity. The difference is greatest for high velocity, low mass meteors. For initial masses near 10−5kg, residual mass is almost independent of ejection height, at least down to an ejection height of 75km. The significant finding of Nicol et al. (1985, Planet. Space Sci.33, 315) that residual mass is almost independent of initial mass for a fairly wide range of initial masses is only loosely followed when in-flight ejection of particles at heights below about 95 km is considered.

Typical calculations are presented to show that in-flight fragmentation of dustballs can be an important source of macroscopic ablation product micrometeorites. The astronomical and atmospheric implications of this finding are briefly discussed.  相似文献   


5.
The empirical model of disturbed magnetosphere of Tsyganenko and Usmanov (1982) and the semi-empirical model of the storm-time magnetospheric configuration of Tsyganenko (1981) are used to find the critical energy for non-adiabatic particle scattering in the midnight sector. Computed values of Ecrit vs L are compared with the appropriate experimental data of Imhof et al. (1977). It is found that none of the considered models is able to reproduce the observed steep decrease of Ecrit with L. The steepest slope is given by the Tsyganenko model which includes a current sheet with the finite thickness. The current sheet thickness is a crucial parameter in the non-adiabatic scattering problem. In discussion we point to natural limitations of an empirical model as far as the current sheet thickness is to be determined. Imhof et al.'s data as well as some magnetic field data sets seem to indicate that magnetosphere models incorporating a thin current sheet and allowing for the thickness dependence on the geocentric distance would probably be closer to reality than the considered models, at least during higher levels of magnetic activity.  相似文献   

6.
A chemical model of negative ions in the troposhere (0–15 km) is presented. This model is an extension of the negative ion composition model in the lower stratosphere (Kawamoto and Ogawa, 1984, Planet. Space Sci. 32, 1223) with some modifications. The computed result shows that the predominant ions are NO3HNO3H2O below 10km and NO3(HNO3)2 above 10km, and that the fractional abundance of cluster ions having a HSO4 core increases with height below 12km and decreases with height above it. The ions having CO3 cores are at most 2% in fractional abundance. The other kinds of negative ions are far smaller in fractional abundance than the NO3, HSO4 and CO3 core ions. The result is compared with the two mass spectrometric observed results (Heitmann and Arnold, 1983, Nature, Lond. 306, 747; Perkins and Eisele, 1984, J. geophys. Res. 89, 9649). The problems on the tropospheric negative ions which arose are discussed.  相似文献   

7.
Current knowledge of the chemistry of the stratosphere is reviewed using measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment to test the accuracy of our treatment of processes at mid-latitudes, and results from the Airborne Antarctic Ozone Experiment (AAOE) to examine our understanding of processes for the polar environment. It is shown that, except for some difficulties with N2O5 and possibly ClNO3, gas phase models for nitrogen and chlorine species at 30°N in spring are in excellent agreement with the data from ATMOS. Heterogeneous processes may have an influence on the concentrations of NO2, N2O5, HNO3, and ClNO3 for the lower stratosphere at 48°S in fall. Comparison of model and observed concentrations of O3 indicate good agreement at 30°N, with less satisfactory results at 48°S. The discrepancy between the loss rate of O3 observed over the course of the AAOE mission in 1987 and loss rates calculated using measured concentrations of ClO and BrO is found to be even larger than that reported by Anderson et al. (1989, J. geophys. Res. 94, 11480). There appear to be loss processes for removal of O3 additional to the HOC1 mechanism proposed by Solomon et al. (1986, Nature 321, 755), the ClO-BrO scheme favored by McElroy et al. (1986, Nature 321, 759), and the ClO dimer mechanism introduced by Molina and Molina (1987, J. phys. Chem. 91, 433). There is little doubt that industrial halocarbons have a significant impact on stratospheric O3. Controls on emissions more stringent than those defined by the Montreal Protocol will be required if the Antarctic Ozone Hole is not to persist as a permanent feature of the stratosphere.  相似文献   

8.
Stress models for Tharsis formation, Mars   总被引:1,自引:0,他引:1  
A critical survey is presented of most stress models proposed for the formation of the tectonic structures in the Tharsis volcano-tectonic province on Mars and provides new constraints for further models. First papers, in the 1970s, attempted to relate the Tharsis formation to asthenospheric movements and lithosphere loading by magma bodies. These processes were then quantified in terms of stress trajectory and magnitude models in elastic lithosphere (e.g. Banerdt et al., J. Geophys. Res. 87(B12), 9723–9733, 1982). Stresses generated by dynamic lithosphere uplift were rapidly dismissed because of the poor agreement between the stress trajectories provided by the elastic models and the structural observations. The preferred stress models involved lithosphere loading, inducing isostatic compensation, and then lithosphere flexure. Some incomsistency with structural interpretation of Viking imagery has been found. In the early 1990s, an attempt to solve this problem resulted in a model involving the existence of a Tharsis-centred brittle crustal cap, deteched from the strong mantle by a weak crustal layer (Tanaka et al., J. Geophys. Res. 96(E1), 15617–15633, 1991). Such a configuration should produce loading stresses akin to those predicted by some combination of the two loading modes. This model has not been quantified yet, however it is expected to reconcile stress trajectories and most structural patterns. Nevertheless, some inconsistencies with observed structures are also expected to remain. Parallel to this approach focused on loading mechanisms, the idea that volcanism and tectonic structures could be related to mantle circulation began to be considered again through numerical convection experiments, whose results have however not been clearly correlated with surface observations. Structural clues to early Tharsis dynamic uplift are reported. These structures have little to do with those predicted by elastic stress modelling of dynamic lithosphere uplift. They denote the existence of unsteady stress trajectories responsible for surface deformations that cannot be readily predicted by elastic models. These structures illustrate that improving current stress models for Tharsis formation shall come from deeper consideration of rock failure criterion and load growth in the lithosphere (e.g. Schultz and Zuber, J. Geophys. Res. 99(E7), 14691–14702, 1994). Improvements should also arise from better understanding rheological layering in the lithosphere and its evolution with time, and from consideration of stress associated to magma emplacement in the crust, which may have produced many tectonic structures before loading stress resulting from magma freezing became significant (Mège and Masson, Planet. Space Sci. 44, 1499–1546, 1996a).  相似文献   

9.
The semi-empirical model of catastrophic breakup events developed by Paolicchi et al. (Icarus77, 187–212, 1989) has recently been improved by means of new algorithms allowing the generation of sets of nonoverlapping fragments, and to take into account gravitational effects. In this paper we give the results of simulations aimed specifically at reproducing laboratory experiments. A comparison with both the experimental evidence and the results of the previous version of the model is presented, and particular attention is devoted to the problem of the shape distribution of the fragments. The results seem encouraging, and allow us to undertake more detailed investigations in order to analyse in detail the capability of the model for reproducing both the laboratory results and the properties exhibited by the asteroidal population, in particular, asteroid families.  相似文献   

10.
Measurements of the O2(A3Σ − X3Σ) Herzberg system in the night airglow have been made with the ESRO TD-1 satellite in the wavelength range 2400–3100 A. The slant emission rate varies from 3.5 to 15 kR, indicating an irregular structure of the atomic oxygen near the turbopause. A statistical maximum intensity is found near the tropic in the winter hemisphere. The intensity profile is consistent with excitation by three-body recombination of oxygen atoms. The observed total emission rate can be accounted for by reasonable atomic oxygen densities and an O2(A3Σ) production efficiency of about 20% if quenching by N2 occurs at the rate deduced from laboratory and other airglow measurements.  相似文献   

11.
O+(4S) + H2O charge-transfer cross-section and product-ion time-of-flight measurements are presented over a center-of-mass collision energy range of 0.2–15 eV. The results are obtained with a newly constructed guided-ion beam experiment. The measured energy dependence of the charge-transfer crosssection agrees well with previous measurements and ADO model predictions of Bates [Chem. Phys. Lett. 82, 396 (1981) Proc. R. Soc. Lond. A384, 289 (1982) Chem. Phys. Lett. 111, 428 (1984)] at low collision energies, but exhibits significant differences at collision energies above 2 eV. The product kinetic energy analysis shows that most of the product ions are produced with near-thermal kinetic energies. At low collision energies, a significant backscattered channel is observed that is associated with complex formation. This channel exhibits a cross-section of approximately 1.4 Å2at a collision energy of 2.65 eV, corresponding to a laboratory ion energy of 5 eV.  相似文献   

12.
Depending on such factors as (a) the probabilities of exciting the various vibrational states in ClO formed in the reaction of Cl with O3, (b) the radiative lifetime of ClO*, (c) ΔHƒ(ClO3), and (d) the rate coeffic`ient of the relevant three-body reaction, the production of ClO3 via the reaction ClO* +O2 +M→ClO3 +M may be quite substantial in the stratosphere. The significance of this result lies in the subsequent elimination (from the stratosphere) of ClO3 and its associated chlorine atom as HClO4, in the manner recently suggested by Samonaitis and Heicklen. In the stratosphere, ClO3 most probably photodissociates primarily into OClO and O. Upon photodissociation, OClO may also yield atomic oxygen. Thus the formation of ClO3 from ClO* and O2, and the above-mentioned photodissociation steps constitute an interesting, indirect mechanism of O2 dissociation into two odd oxygen species. Other aspects of ClO* chemistry, applicable in stratospheric conditions, also deserve attention in view of Nicholl's recent interpretation of the Umkehr measurements by Brewer et al. The reactions of ClO with HO2, and NO2, possess the potential of significantly obstructing the completion of the C1-ClO-Cl cycle, at least in the region below 35 km. An accurate and critical study of the chemistry of oxyacids, higher oxides, and nitrates of chlorine in the stratospheric environment is needed. Obviously, this is only a partial list of the difficult problems associated with a proper understanding of stratospheric chlorine chemistry which appears to be far more complex than what is implied in the literature. (See also notes added in proof stage.)  相似文献   

13.
A substorm after a prolonged quiet period may differ from the typical one, as reported recently by Pellinen et al. (1982). The present knowledge on imperfect coupling between the magnetosphere and the ionosphere can explain qualitatively such a difference in terms of the role played by the initial conductivity of the ionosphere on substorm onset.  相似文献   

14.
New measurements of the Herzberg I emission height profile in the night airglow are reported and indicate a peak emission height near 96 km in agreement with previous measurements. Using an atomic oxygen concentration profile determined from the oxygen green line profile measured on the same rocket it is concluded that the O2(A3Σu+) state is not excited in the direct three body recombination of atomic oxygen. It is suggested that the excitation mechanism is a two step process, similar to the Barth mechanism for the atomic oxygen green lineand that the excited intermediate state is C3Δu.  相似文献   

15.
Atmospheric densities derived from the spin decay of Explorer 6 are used to study the corpuscular heating effect at low and middle latitudes near the time of sunspot maximum. The dependence of atmospheric temperature on ap is found to be quite similar to the recently revised curve of Jacchia et al., which applies to later times in the sunspot cycle, but also at low and middle latitudes. Both curves are very different from those found by polar satellites in orbits of low eccentricity. Averaging ap over half a day instead of delaying it by a quarter day improves the fit of the models to the data.  相似文献   

16.
A detailed analysis of the D-region ion composition measurements performed by Zbinden et al. (1975), during a winter day of high ionospheric absorption, has been carried out. The study examines the interactive mesosphere-D-region processes which occur in such anomalous conditions and their implication for water cluster ion chemistry. Two clustering regimes for NO+ have been observed in the data. Association with N2 is identified as the dominant process below 76 km. Between 76 and 78 km altitude the effective loss rate of NO+ drops by two orders of magnitude. Above 77 km, the three-body reaction NO+ + CO2+M→NO+CO2+M seems to be the main NO+ loss. A mesospheric temperature profile could be derived from the ion composition data. This indicates the presence of a strong inversion above 76 km altitude. The wavelike structure obtained, is shown to be consistent with in situ winter temperature measurements. The sharp suppression of the N2 association reaction could, thus, be explained by an increase in the collisional break-up of the NO+N2 ion because of the enhanced temperature. In conclusion, our study indicates that, besides the increase in the production of NO+ and O2+, due to an enhancement in the minor ionizable constituents, an additional thermal mesosphere-D-region interaction seems necessary to explain this winter anomalous ion composition data.  相似文献   

17.
We discuss the parameter D in the Goertz et al. (1979) magnetic field model as it relates to the scale height of the current sheet.  相似文献   

18.
A general analysis of the absorption of the Schumann-Runge bands of molecular oxygen has been made in order to compare the various experimental and theoretical results which have been obtained for an application to the O2 atmospheric absorption and its photodissociation in the mesosphere and stratosphere. The different values of the oscillator strengths deduced from the laboratory absorption spectra and of the predissociation linewidths used for the calculation of the absorption have been compared.Calculations based on a Voight profile of the O2 rotational lines have led to simple formulas for atmospheric applications taking into account that the total photodissociation rate in the stratosphere depends strongly on the absorption of solar radiation in the spectral range of the O2 Herzberg continuum. Specific examples are given.  相似文献   

19.
Since the first satellite ozone measurements in 1960, basically three methods have been developed: backscattered solar ultraviolet, infrared emission, and occultation. In a review article by Krueger et al. (1980, Phil. Trans. R. Soc. Lond. A296, 191), the authors examine the above satellite methods and data covering the period up to about 1980. Our purpose is to review the development of the satellite ozone methodology since about 1980 with particular emphasis on the relationship of satellite data to the continued need for ground-based observations. Finally, we look toward the future to the Upper Atmosphere Research Satellite, to be launched in about 1991, and the view that this is to be a collective experiment, not a series of independent measurements, focusing on the photochemistry and dynamics of the stratosphere.  相似文献   

20.
Recent rocket observations of the N2 V-K (Vegard-Kaplan) system in the aurora have been reinterpreted using an atmospheric model based on mass spectrometer measurements in an aurora of similar intensity at the same time of year. In contrast to the original interpretation, we find that population by cascade from the C3Πu and B3Πg states in the A3Σu+v=0,1 levels, as calculated using recently measured electron excitation cross sections, accurately accounts for the observed relative emission rates (IV-K/12PG0.0). In addition there is no need to change the production rate of A 3 Σ u+ molecules relative to that of C3Πuv=0 as a function of altitude in order to fit the profile of the deactivation probability to the atmospheric model. Quenching of A 3 Σ u+ molecules at high altitudes is dominated by atomic oxygen. The rate constants for the v=0 and v=1 levels are 8 × 10−11 cm3 sec−1 and 1.7 × 10−10 cm3 sec−1 respectively, as determined using the model atmosphere mentioned above. Recent observations with a helium cooled mass spectrometer suggest that conventional mass spectrometer measurements tend to underestimate the atomic oxygen relative concentration. The rate coefficients may therefore be too large by as much as a factor of 3. Below 130 Km we find that it is possible to account for the deactivation in bright auroras by invoking large nitric oxide concentrations, similar to those recently observed mass spectrometrically and using a rate constant of 8 × 10−11 cm3 sec−1 for both the v=1 levels. This rate constant is very nearly the same as that measured in the laboratory (7 × 10−11 cm3 sec−1). Molecular oxygen appears not to play a significant role in deactivating the lower A 3 Σ u+ levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号