首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran   总被引:1,自引:0,他引:1  
Mineralisation at the Zarshuran, NW Iran, occurs on the flank of an inlier of Precambrian rocks hosted in black silty calcareous and carbonaceous shale with interbedded dolomite and limestone varying in thickness from 5 to 60 m and extending along strike for approximately 5–6 km. Two major, steeply dipping sets of faults with distinct trends occur in the Zarshuran: (1) northwest (310–325) and (2) southwest (255–265). The main arsenic mineralisation occurs at the intersection of these faults. The mineral assemblage includes micron to angstrom-size gold, orpiment, realgar, stibnite, getchellite, cinnabar, thallium minerals, barite, Au-As-bearing pyrite, base metal sulphides and sulphosalts. Hydrothermal alteration features are developed in black shale and limestone around the mineralisation Types of alteration include: (1) decalcification, (2) silicification, (3) argillisation, (4) dolomitisation, (5) oxidation and acid leaching and (6) supergene alteration. The early stage of mineralisation involved removal of carbonates from the host rocks, followed by quartz precipitation. The main stage includes massive silicification associated with argillic alteration. In the late stage veining became more dominant and the main arsenic ore was deposited along fault cross cuts and gouge. These characteristics are typical of Carlin-type sediment-hosted disseminated gold deposits. The early stage of mineralisation contains only two-phase aqueous fluid inclusions. The main stage has two groups of three-phase CO2-bearing inclusions with minor CH4 ± N2, associated with high temperature, two-phase aqueous inclusions. During the late stage, fluids exhibit a wide range in composition, salinity and temperature, and CH4 becomes the dominant carbonic fluid with minor CO2 associated with a variety of two-phase aqueous fluid inclusions. The characteristics of fluids at the Zarshuran imply the presence of at least two separate fluids during mineralisation. The intersections of coexisting carbonic and aqueous inclusion isochores, together with stratigraphic and mineral stability evidence, indicate that mineralisation occurred at 945 ± 445 bar and 243 ± 59 °C, implying a depth for mineralisation of at least 3.8 ± 1.8 km (assuming a lithostatic pressure gradient). Fluid density fluctuations and the inferred depth of formation suggest that the mineralisation occurred at the transition between overpressured and normally pressured regimes. Geochronologic studies utilising K/Ar and Ar/Ar techniques on hydrothermal argillic alteration (whole rock and separated clay size fractions) and on volcanic rocks, indicates that mineralisation at Zarshuran formed at 14.2 ± 0.4 Ma, and was contemporaneous with nearby Miocene volcanic activity, 13.7 ± 2.9 Ma. It is proposed that mineralisation was the result of the infiltration of hydrothermal fluids containing a magmatic gas component, and that it was localised in the Zarshuran Unit because of the redox boundary that it provided and/or because it lay between an overpressured region at depth and a zone of circulating, hydrostatically pressured fluids above. Received: 10 December 1997 / Accepted: 5 March 1999  相似文献   

2.
The disseminated gold deposit of Agdarreh (24.5 t at 3.7 g/t Au) is hosted in hydrothermally leached Miocene reefal limestone in the Takab geothermal field, which is part of the Cenozoic Urumieh–Dokhtar volcanic arc of NW Iran. Alteration and mineralisation are largely bedding controlled blanket-like and include: (1) pre-ore decalcification; (2) first-stage silicification associated with pyrite (early pyrite with 3–4 wt% As, late pyrite with <1–3 wt% As) and sphalerite; (3) second-stage silicification with precipitation of galena, Pb–Sb–As sulphides, sulphosalts, tellurides and native bismuth; (4) late-stage cinnabar and barite in vugs; (5) oxide ore stage and carbonate alteration (complex Mn–Fe-rich oxyhydroxides, arsenates, sulphates, APS minerals and rutile in residual leached rock and infill of karstic cavities). Gold occurs invisibly in the jasperoids and is enriched in the Mn–Fe oxyhydroxide surface cap of the jasperoids. Gold mineralisation is associated with the hydrothermal metal suite of As, Sb, Hg, Te, Se, Tl, Ba, Zn, Ag, Cd, Bi and Pb, and is characterised by very low Cu contents. Arsenian pyrite probably carried most of the primary (invisible) gold. Native gold occurs in association with the late-stage cinnabar and the oxide ore. The Agdarreh deposit shows many similarities with Carlin-type ore and is interpreted to have resulted from near-surface hydrothermal activity related to the Cenozoic arc volcanism that developed within the extensional Takab graben. The extensive oxidation at Agdarreh may be partly due to the waning stages of hydrothermal activity. Active H2S-bearing thermal springs are locally depositing extremely high contents of Au and Ag, and travertine is present over large areas, suggesting that ore-forming hydrothermal activity occurred periodically from the Miocene to Recent in the Takab geothermal field. The present paper deals with the geological framework, host rocks, characteristic features of hydrothermal alteration and mineralisation, and genesis of the Agdarreh deposit. The results of fluid inclusion and stable isotope studies are in progress and will be given in a forthcoming paper.  相似文献   

3.
We report here new sulfur isotope analyses from the Betze-Post-Screamer deposit, the largest Carlin-type gold deposit in the world. Carlin-type deposits contain high concentrations of arsenic, antimony, mercury, tellurium and other elements of environmental interest, and are surrounded by large volumes of crust in which these elements are also enriched. Uncertainty about the source of sulfur and metals in and around Carlin-type deposits has hampered formulation of models for their origin, which are needed for improved mineral exploration and environmental assessment. Previous studies have concluded that most Carlin-type deposits formed from sulfide sulfur that is largely of sedimentary origin. Most of these studies are based on analyses of mineral separates consisting of pre-ore diagenetic pyrite with thin overgrowths of ore-related arsenian pyrite rather than pure, ore-related pyrite. Our SIMS spot analyses of ore-related pyrite overgrowths in the Screamer zone of the Betze-Post-Screamer deposit yield δ34S values of about −1 to 4‰ with one value of about 7‰. Conventional analyses of realgar and orpiment separates from throughout the deposit yield δ34S values of about 5–7‰ with one value of 10‰ in the Screamer zone. These results, along with results from an earlier SIMS study in the Post zone of the deposit and phase equilibrium constraints, indicate that early arsenian pyrite were formed from fluids of magmatic origin with variable contamination from sulfur in Paleozoic sedimentary rocks. Later arsenic sulfides were formed from solutions to which sulfur of sedimentary origin had been added. The presence of Paleozoic sedimentary sulfur in Carlin-type deposits does not require direct involvement of hydrothermal solutions of sedimentary origin. Instead, it could have been added by magmatic assimilation of Paleozoic sedimentary rocks or by hydrothermal leaching of sulfur from wall rocks to the deposit. Thus, the dominant process delivering sulfur, arsenic, gold and mineralizing fluids to Carlin-type systems and their surrounding country rocks was probably separation of fluids from a magmatic source. Editorial handling: G. Beaudoin  相似文献   

4.
The Golden Pride gold deposit (∼3 Moz) is located in the central part of the Nzega Greenstone Belt at the southern margin of the Lake Victoria Goldfields in Tanzania. It represents an inferred Late Archaean, orogenic gold deposit and is hosted in intensely deformed meta-sedimentary rocks in the hanging wall of the approximately E–W striking Golden Pride Shear Zone. The hanging-wall sequence also includes felsic (quartz porphyritic) to mafic (lamprophyric) intrusions, as well as banded iron formations. Hydrothermal alteration phases associated with mineralisation are dominated by sericite and chlorite. Two main ore types can be distinguished, chlorite and silica ore, both occupying dilational sites and structural intersections in the hanging wall of the main shear zone. Sulphide minerals in both ore types include pyrrhotite, arsenopyrite, pyrite and accessory sphalerite, galena, sulphosalts and Ni–Co–Bi sulphides. Gold and tellurides are late in the paragenetic sequence and associated with a secondary phase of pyrrhotite deposition. Sulphur isotope compositions range from −6 to 7 per mil and are interpreted to reflect contributions from two distinct sources to the mineralising fluids in the Golden Pride gold deposit. A redox change, potentially induced by the intrusion of mafic melts, together with structural elements in the hanging wall of the Golden Pride Shear Zone, are interpreted to be the main controls on gold mineralisation in this deposit.  相似文献   

5.
The Lady Bountiful granitoid-hosted lode gold deposit, located in the mid-greenschist facies metamorphosed Ora Banda greenstone sequence, is hosted predominantly by the late-tectonic Liberty Granodiorite. Gold mineralisation is localised along quartz-veined, sinistral, brittle fault-zone(s) that transect the boundary between the Liberty Granodiorite and Mt Pleasant sill. Quartz vein textures indicate two stages of a single gold-related vein-development event, with high-grade gold mineralisation restricted to the second stage. Ore minerals include pyrite, chalcopyrite, pyrrhotite, galena, sphalerite, Au−Ag−Bi−Pb-tellurides, and native gold. Fluid infitration has resulted in narrow (<1 m) bleached wallrock alteration envelopes to the fault zones comprising albite-K-mica ±chlorite±calcite±rutile assemblages. Temperature-pressure conditions varied from Stage I (300°±50°C, ≈2 kbar) to Stage II (250°±50°C, ≈0.5 to 2 kbar), with the hydrothermal fluid in both stages characterised by X(CO2)≤0.15 and moderate salinity (≈1.28 m NaCl). Intermittent phase separation of Stage II mineralising fluids, initiated by pressure fluctuations in dilational sites, and/or fluid-dominated fluid: wallrock interaction, are invoked as the dominant depositional mechanisms. The granitoid-hosted Lady Bountiful lode gold deposit shares many features with other granitoid-hosted lode gold deposits in the Yilgarn Craton and the Superior Province. Granitoid-hosted lode gold deposits, such as the Lady Bountiful deposit, provide additional evidence that the dominant control on the localisation of gold mineralisation within a granitoid host is structure, with competency contrasts playing a significant role. Furthermore, the hydrothermal wallrock alteraction and orefluid chemistry characteristics of the granitoid-hosted lode gold deposits are comparable to those established for greenstone-hosted lode gold mineralisation.  相似文献   

6.
Hydrothermal sulfide–oxide–gold mineral assemblages in gold deposits in the Archaean St. Ives gold camp in Western Australia indicate extremely variable redox conditions during hydrothermal alteration and gold mineralization in space and time. Reduced alteration assemblages (pyrrhotite–pyrite) occur in deposits in the southwest of the camp (e.g., Argo, Junction deposits) and moderately to strongly oxidized assemblages (magnetite–pyrite, hematite–pyrite) occur in deposits in the Central Corridor in the northeast (e.g., North Orchin, Revenge deposits). Reduced mineral assemblages flank the Central Corridor of oxidized deposits and, locally, cut across it along E–W trending faults. Oxidized mineral assemblages in the Central Corridor are focused on gravity lows which are interpreted to reflect abundant felsic porphyritic intrusions at about 1,000 m below present surface. Hydrothermal magnetite predates and is synchronous with early phases of gold-associated albite–carbonate–pyrite–biotite–chlorite hydrothermal alteration. Later-stage, gold-associated pyrite is in equilibrium with hematite. The spatial distribution and temporal sequence of iron sulfides and oxides with gold indicate the presence of at least two spatially restricted but broadly synchronous hydrothermal fluids with contrasting redox states. Sulfur isotope constraints support the argument that the different mineral assemblages reflect differences in redox conditions. The δ 34S values for pyrite for the St. Ives gold camp range between −8.4‰ and +5.1‰ with the negative values occurring in oxidized magnetite-rich domains and slightly negative or positive values occurring in reduced, pyrrhotitic domains. Preliminary spatial and paragenetic analysis of the distribution of iron sulfides and oxides in the St. Ives camp suggests that gold grades are highest where the redox state of the hydrothermal alteration assemblages switches from relatively reduced pyrrhotite–pyrite to relatively oxidized magnetite–pyrite and hematite–pyrite both in space and time. Gold deposition is inferred to have occurred where fluids of contrasting redox state mixed.  相似文献   

7.
http://www.sciencedirect.com/science/article/pii/S1674987111000430   总被引:8,自引:0,他引:8  
Mineral assemblages formed during hydrothermal alteration reflect the geochemical composition of ore-forming fluids. Gold is mainly transported in solution as AueCl and AueS complexes. The change of physicochemical conditions such as temperature, pressure, oxygen fugacity, and sulfur fugacity are effective mechanisms for gold precipitation. Gold tends to be concentrated in the vapor phase of fluids at high temperatures and pressures. AueAs and AueSb associations are common in gold deposit. Native antimony and/or arsenic e native gold assemblages may precipitate from hydrothermal fluids with low sulfur fugacity. Hydrothermal fluids forming epithermal gold deposits are Au-saturated in most cases, whereas fluids of Carlin-type are Au-undersaturated. Quasi-steady As-bearing pyrite extracts solid solution Au from hydrothermal fluids through absorption. The capability of As-bearing pyrite to absorb Au from under-saturated fluid is the key to the formation of large-scale Carlin-type deposits. With increasing new data, studies on the geochemistry of gold deposits can be used to trace the origin of ore-forming fluids, the source of gold, and the transporting form of Au and other ore-forming elements, such as Si, S, F, Cl, As and Ag.  相似文献   

8.

At the well-preserved Yubileynoe VMS deposit (Southern Urals), sulfide breccias and turbidites host abundant tellurides represented by hessite, coloradoite, altaite, volynskite, stützite, petzite, and calaverite, as well as phases of the intermediate tellurobismuthite → rucklidgeite solid solution. Three telluride generations were highlighted: (1) primary hydrothermal tellurides in fragments of chalcopyrite and sphalerite of chalcopyrite-rich black smoker chimneys; (2) authigenic tellurides in pseudomorphic chalcopyrite and chalcopyrite veins after fragments of colloform and granular pyrite; and (3) authigenic tellurides in pyrite nodules. Authigenic tellurides are widespread in pyrite-chalcopyrite turbidites. Primary hydrothermal and authigenic tellurides are less common in sulfide turbidites and gritstones with fragments of sphalerite-pyrite, pyrite-sphalerite paleosmoker chimneys and clasts of colloform and fine-grained seafloor hydrothermal crusts. Siliceous siltstones intercalated with sulfide turbidites contain pyrite nodules, whose peripheral parts contain inclusions of epigenetic tellurides. It is assumed that Te for authigenic tellurides originated from fragments of colloform pyrite and hydrothermal chalcopyrite of pyrite-chalcopyrite chimneys, which dissolved during the postsedimentation processes. The main Te concentrators in clastic ores include pseudomorphic chalcopyrite, which inherits high Te, Bi, Au, Ag, Co, Ni, and As contents from the substituted colloform pyrite, and varieties of granular pyrite containing microinclusions of tellurobismuthite (Bi, Te), petzite (Au, Ag, Te), altaite (Pb, Te), coloradoite, and hessite (Ag, Te).

  相似文献   

9.
The Ratatotok district in the Minahasa Regency of North Sulawesi, Indonesia is an area of significant gold mineralisation. Gold has been mined in the district since at least the 1850s, and intensively by the Dutch between 1900 and 1921 with a recorded production of 5,060 kg of gold. Newmont began exploring the district in 1986, and has delineated a major sediment-hosted replacement-style deposit at Mesel, and other smaller deposits in an 8×5 km area. A total drill-indicated resource of over 60 metric tonnes of gold (+2 Moz) is reported for Mesel, and three of the smaller deposits. Approximately 80% of this resource is refractory. Silver grades are usually low (<10 g/t). The Mesel deposit is similar to many Carlin-type deposits in carbonate hostrocks, alteration, geochemical signature and ore mineralogy, but is distinct in tectonic setting. The discovery of replacement-style mineralisation at Mesel, in an impure limestone within a Tertiary island arc environment, demonstrates that deposits with outward characteristics similar to Carlin-type mineralisation are not restricted to a continental setting.Carbonate sediments in the Ratatotok district were deposited in a Late Miocene restricted basin. Later compressional tectonics caused uplift that resulted in karst development in the limestone and erosion of the adjacent volcanic arc with deposition of a thick epiclastic unit. This was followed by intrusion of shallow level pre-mineral andesite into the sequence. Mineralisation at Mesel, and probably elsewhere in the district, is synchronous with the late-stage reactivation of strike-slip faults. Mineralising fluids at Mesel were focussed along steep structures sympathetic to these faults, and trapped below a relatively impermeable andesite cap rock. Hydrothermal fluids caused decalcification of the silty, more permeable carbonate units with the formation of secondary dolomite, deposition of fine arsenian pyrite, silica veinlets and gold. Volume loss due to decalcification and dolomite formation caused collapse brecciation which enhanced fluid flow and further mineralisation. This locally culminated in total decarbonation and deposition of massive silica. Late-stage stibnite occurs in structural zones within the ore deposit, whereas arsenic (as realgar and orpiment) and mercury (as cinnabar) are concentrated on the periphery.Elsewhere in the Ratatotok district, gold mineralisation is restricted to replacement-style mineralisation in permeable zones along limestone-andesite contacts, open-space filling quartz-calcite veins and stockworks, and residual quartz-clay breccias. The residual breccias are developed in-situ, and are interpreted to form by dissolution of the wallrock limestone from around pre-existing mineralisation. This has resulted in widespread eluvial gold occurrences.  相似文献   

10.
The eastern Lachlan Orogen in southeastern Australia is noted for its major porphyry–epithermal–skarn copper–gold deposits of late Ordovician age. Whilst many small quartz vein-hosted or orogenic lode-type gold deposits are known in the region, the discovery of the Wyoming gold deposits has demonstrated the potential for significant lode-type mineralisation hosted within the same Ordovician volcanic stratigraphy. Outcrop in the Wyoming area is limited, with the Ordovician sequence largely obscured by clay-rich cover of probable Quaternary to Cretaceous age with depths up to 50 m. Regional aeromagnetic data define a north–south trending linear belt interpreted to represent the Ordovician andesitic volcanic rock sequence within probable Ordo-Silurian pelitic metasedimentary rocks. Drilling through the cover sequence in 2001 to follow up the trend of historically reported mineralisation discovered extensive alteration and gold mineralisation within an andesitic feldspar porphyry intrusion and adjacent volcaniclastic sandstones and siltstones. Subsequent detailed resource definition drilling has identified a substantial mineralised body associated with sericite–carbonate–albite–quartz–(±chlorite ± pyrite ± arsenopyrite) alteration. The Wyoming deposits appear to have formed as the result of a rheological contrast between the porphyry host and the surrounding volcaniclastic rocks, with the porphyry showing brittle fracture and the metasedimentary rocks ductile deformation. The mineralisation at Wyoming bears many petrological and structural similarities to orogenic lode-style gold deposits. Although the timing of alteration and mineralisation in the Wyoming deposits remain problematic, a relationship with possible early to middle Devonian deformation is considered likely.  相似文献   

11.
Gold mineralisation in the White River area, 80 km south of the highly productive Klondike alluvial goldfield, is hosted in amphibolite facies gneisses in the same Permian metamorphic pile as the basement for the Klondike goldfield. Hydrothermal fluid which introduced the gold was controlled by fracture systems associated with middle Cretaceous to early Tertiary extensional faults. Gold deposition occurred where highly fractured and chemically reactive rocks allowed intense water–rock interaction and hydrothermal alteration, with only minor development of quartz veins. Felsic gneisses were sericitised with recrystallisation of hematite and minor arsenic mobility, and extensively pyritised zones contain gold and minor arsenic (ca 10 ppm). Graphitic quartzites (up to 5 wt.% carbon) caused chemical reduction of mineralising fluids, with associated recrystallisation of metamorphic minerals (graphite, pyrrhotite, pyrite, chalcopyrite) in host rocks and veins, and introduction of arsenic (up to 1 wt.%) to form arsenopyrite in veins and disseminated through host rock. Veins have little or no hydrothermal quartz, and up to 19 wt.% carbon as graphite. Late-stage oxidation of arsenopyrite in some graphitic veins has formed pharmacosiderite. Gold is closely associated with disseminated and vein sulphides in these two rock types, with grades of up to 3 ppm on the metre scale. Other rock types in the White River basement rocks, including biotite gneiss, hornblende gneiss, pyroxenite, and serpentinite, have not developed through-going fracture systems because of their individual mineralogical and rheological characteristics, and hence have been little hydrothermally altered themselves, have little hydrothermal gold, and have restricted flow of fluids through the rock mass. Some small post-metamorphic quartz veins (metre scale) have been intensely fractured and contain abundant gold on fractures (up to 40 ppm), but these are volumetrically minor. The style of gold mineralisation in the White River area is younger than, and distinctly different from, that of the Klondike area. Some of the mineralised zones in the White River area resemble, mineralogically and geochemically, nearby coeval igneous-hosted gold deposits, but this resemblance is superficial only. The White River mineralisation is an entirely new style of Yukon gold deposit, in which host rocks control the mineralogy and geochemistry of disseminated gold, without quartz veins.  相似文献   

12.
Detailed hydrothermal alteration investigations, including petrography, infrared reflectance spectroscopy (IRS) and XRD of the low sulfidation epithermal Co–O mine, located in Eastern Mindanao (Philippines) revealed that both distal and intermediate hydrothermal alteration zones contain dominantly illite and chlorite, whereas the proximal alteration zone comprises mainly illite, chalcopyrite and pyrite. The gold-bearing veins and the proximal hydrothermal alteration zone display a distinct absence of K-rich hydrothermal alteration minerals such as K-feldspar (adularia).Gold mineralization in the Co–O mine is controlled by an extensive quartz-breccia vein system, which is characterized by three distinct stages of vein (incl. breccias) formation. Gold is mainly observed in stages 2 and 3 veins. Stage 1 veins appear as fragments in stage 2 veins and display boiling textures such as quartz pseudomophs after bladed calcite. These veins further display colloform to crustiform banding and contain pyrite, chalcopyrite and minor gold located in the colloform bands and between bladed quartz pseudomorphs. Stage 2 veins comprise mostly banded to massive quartz and contains sulfides parallel to bands or disseminated. These veins are fine-grained with mosaic/jigsaw quartz and contain calcite blebs and/or fragments of stage 1 veins. Gold is in textural equilibrium with chalcopyrite, sphalerite, and locally pyrite. Stage 3 veins consist of quartz and carbonate (locally Mn-rich), and display irregular banded and comb textures. In auriferous veins of this stage gold is in textural equilibrium with chalcopyrite and pyrite (with local abundance of sphalerite). Other sulfide minerals observed with gold in stages 2 and 3 are galena, acanthite and locally jalpaite.The XRD and IRS provide inconsistent results regarding the abundance of K-rich clays (e.g., illite) associated with auriferous veins. Illite, with possibly interlayered swelling clays, such as Al-smectite, was identified in auriferous vein stages 2 and 3 using IRS, but could not be confirmed by XRD. Comparative analysis of the results of these techniques with respect to the ordering of micaceous minerals, suggest less ordered white mica proximal to the veins.Vein textures such as banded quartz, the absence of K-feldspar and the abundance of illite (interlayered Al-smectite) suggest relatively low temperatures of formation of the hydrothermal alteration system and point to a potential boiling horizon located deeper or marginal to the currently exploited levels of the Co–O mine. The absence of K-feldspar may also be related to relatively low temperatures of the hydrothermal fluid, the medium potassium-rich magma series of the host rocks, and/or a relatively low oxidation state of the hydrothermal fluid.  相似文献   

13.
The early Palaeozoic Macquarie Arc, southeastern Australia, hosts a variety of major late Ordovician to earliest Silurian subduction-related deposits (e.g., Cadia East, Ridgeway, Cadia Hill, Cowal and Northparkes). However, there is uncertainty about whether coeval high-sulfidation epithermal deposits, which occur in intra-oceanic metallogenic belts elsewhere in the West Pacific, (e.g., Lepanto and Chinkuashih), are also present in the Macquarie Arc. This has led to suggestions that their absence may be due to the poor preservation potential of deposits that form at relatively shallow crustal levels in ancient rocks. We present here an interpretation for evolution of the Peak Hill Au–Cu deposit based on the distribution of alteration facies, sulfur isotope data from several textural forms of pyrite and barite, and an assessment of the regional volcanic and sedimentary facies architecture. These data show that the Peak Hill deposit displays a distinct sub-vertical zoning with a pyrophyllite and vuggy-quartz core, that today extends about 350 m east–west and at least 550 m north–south, which grades out through paragonite+muscovite, kaolinite to a chlorite+epidote alteration zone at the margin. The alteration zoning reflects both lower temperatures and neutralisation of acid fluids with increasing distance from the core, which represents the conduit along which hot acidic hydrothermal fluids were channelled. Several temporally overlapping events of silicification, bladed-quartz-pyrite veining, brecciation and pyrite veining occurred during the last stages of hydrothermal alteration, although most appear to predate mineralisation. Au–Cu mineralisation was associated with late quartz-pyrite-barite veins, and the highest gold grades occur mainly in microcrystalline-quartz-altered rocks in the paragonite+muscovite alteration zone, generally within 50 m outward from the boundary of the pyrophyllite and vuggy-quartz core. Sulfur- and lead-isotope data, and the characteristic zoning of ore minerals and alteration assemblages support a magmatic source for the hydrothermal fluids. Similarities in many of the isotopic signatures between Peak Hill and deposits such as Northparkes support generation of the high-sulfidation mineralisation during the Late Ordovician to earliest Silurian (possibly ca. 440 Ma) metallogenic event. The Late Ordovician to Early Silurian volcanic and sedimentary facies associations at Peak Hill are consistent with alteration and mineralisation occurring in rocks deposited in a submarine setting.  相似文献   

14.
The Neo-Archean Dominion Reefs (~3.06 Ga) are thin meta-conglomerate layers with concentrations of U- and Th-bearing heavy minerals higher than in the overlying Witwatersrand Reefs. Ore samples from Uranium One Africa’s Rietkuil and Dominion exploration areas near Klerksdorp, South Africa, were investigated for their mineral paragenesis, texture and mineral chemical composition. The ore and heavy mineral assemblages consist of uraninite, other uraniferous minerals, Fe sulphides, Ni–Co sulfarsenides, garnet, pyrite, pyrrhotite, monazite, zircon, chromite, magnetite and minor gold. Sub-rounded uraninite grains occur associated with the primary detrital heavy mineral paragenesis. U–Ti, U–Th minerals, pitchblende (colloform uraninite) and coffinite are of secondary, re-mobilised origin as evidenced by crystal shape and texture. Most of the uranium mineralisation is represented by detrital uraninite with up to 70.2 wt.% UO2 and up to 9.3 wt.% ThO2. Re-crystallised phases such as secondary pitchblende (without Th), coffinite, U–Ti and U–Th phases are related to hydrothermal overprint during low-grade metamorphism and are of minor abundance.  相似文献   

15.
Gold deposits at El Sid are confined to hydrothermal quartz veins which contain pyrite, arsenopyrite, sphalerite and galena. These veins occur at the contact between granite and serpentinite and extend into the serpentinite through a thick zone of graphite schist. Gold occurs in the mineralized zone either as free gold in quartz gangue or dissolved in the sulfide minerals. Ore-microscopic study revealed that Au-bearing sulfides were deposited in two successive stages with early pyrite and arsenopyrite followed by sphalerite and galena. Gold was deposited during both stages, largely intergrown with sphalerite and filling microfractures in pyrite and arsenopyrite.Spectrochemical analyses of separated pyrite, arsenopyrite, sphalerite and galena showed that these sulfides have similar average Au contents. Pyrite is relatively depleted in Ag and Te. This suggests that native gold was deposited in the early stage of mineralization. Arsenopyrite and galena show relatively high concentrations of Te. They are also respectively rich in Au and Ag. Tellurides are, thus, expected to be deposited together with arsenopyrite and galena.  相似文献   

16.
A distinct vertical zonation very similar to that described for the Kuroko deposits of Japan, is displayed by both mineralogy and textures of sulphides from the Lahanos and Kzlkaya massive sulphide deposits of northeastern Turkey. A deeper erosional level is exposed at the Kzlkaya deposit, so that only remnants of the massive sulphide ore zone are present. The zonation is from an upper zone of massive Cu and Zn sulphides (black and yellow ore) with fine-grained, colloform, banded, framboidal, and spherulitic textures, downwards through an intermediate zone of low Cu-Zn massive pyrite with transitional textures, to a lower zone of stockwork and impregnated pyrite displaying euhedral, zoned textures. The fine-grained and colloform pyrite of the upper zones is progressively overgrown by, and recrystallized to, the massive and euhedral pyrite of lower zones. The original textures of these deposits are best preserved by pyrite. The previous interpretation of these textures, of sulphide deposition from colloidal solutions ponded by an impermeable pyroclastic horizon, is reexamined in the light of present observations. Although ultra-fine-grained sulphides, framboids, and radially-cracked spherules could have formed by replacement of pre-existing minerals by a colloidal solution, the colloform and banded textures are indicative of growth in open spaces. It thus seems likely that the fine-grained colloform sulphides, including chalcopyrite, sphalerite, and tennantite as well as pyrite, were initially deposited on or near the surface of the sea-floor. Additional evidence for this interpretation is seen in the progressive recrystallization of the sulphide textures to massive, much coarser, pyrite in the lower zones. This recrystallization may in part be due to diagenetic and hydrothermal processes operating after formation of the original layered sulphides. These conclusions are in agreement with those reached for the similar, but larger Madenköy deposit 100 km to the east.  相似文献   

17.
Ore deposits of the Charters Towers Goldfield (CTGF) are mainly hosted by fault-fill veins. Extensional (∼8% of all veins) and stockwork-like (∼3%) veins are less common and of little economic significance. Crosscutting relationships and published structural and geochronological data indicate a Late Silurian to Early Devonian timing of gold mineralization, coincident with regional shortening (D4) and I-type magmatism. Paragenetic relationships, which are uniform in veins everywhere within the CTGF, suggest that vein formation commenced with the deposition of large volumes of buck quartz (stage I), followed by buck and comb quartz, and significant pyrite and arsenopyrite precipitation (stage II). Gold was introduced during stage III, after earlier sphalerite and coincident with galena and chalcopyrite. Narrow, discontinuous calcite veins of stage IV mark the waning of gold-related hydrothermal activity or a later unrelated episode. Ore zones within the veins are everywhere composed of comb and/or gray quartz, calcite and/or ankerite and bands or clusters of fractured pyrite that are spatially associated with galena, sphalerite or chalcopyrite. Low-grade or barren vein sections, on the other hand, are mainly composed of milky buck quartz with little evidence for modification, overprinting or interaction with later fluids. Gold-related hydrothermal wall-rock alteration is symmetrically zoned, displaying proximal sericite–ankerite and distal epidote–chlorite–hematite assemblages that may be taken to imply wall-rock interaction with near neutral fluids (pH 5–6). Isocon plots assuming immobile Al, P, Ti, Y and Zr consistently indicate As, K, Pb, S and Zn enrichment and Na, Si and Sr depletion in altered wall-rock specimens relative to the least altered rocks. Alteration assemblages, quartz textures, fault rocks and published fluid inclusion and stable isotope data imply that the veins were formed under conditions of episodic fluid overpressuring (∼0.9–3.8 kbar), at a depth of ∼7 km and a temperature of ∼310°C. The published fluid inclusion data also imply that gold precipitation may have been brought about by fluid mixing. However, physi- and chemisorption of gold complexes onto sulfide surfaces may have been important depositional processes and controls on gold enrichment at the millimeter to centimeter scale, given that most gold particles are attached to the surfaces of pyrite crystals of stage II or to etch-pits and fracture surfaces within the earlier pyrite.  相似文献   

18.
Gold deposits in the Syama and Tabakoroni goldfields in southern Mali occur along a north-northeast trending mineralised litho-structural corridor that trends for approximately 40 km. The deposits are interpreted to have formed during a craton-wide metallogenic event during the Eburnean orogeny. In the Syama goldfield, gold mineralisation in 9 deposits is hosted in the hanging-wall of the Syama-Bananso Shear Zone in basalt, greywacke, argillite, lamprophyre, and black shale. Gold is currently mined primarily from the oxidised-weathered zone of the ore bodies. In the Syama deposit, mineralisation hosted in altered basalt is associated with an intense ankerite–quartz–pyrite stockwork vein systems, whereas disseminated style mineralisation is also present in greywackes. In contrast, the Tellem deposit is hosted in quartz–porphyry rocks.In the Tabakoroni goldfield, gold mineralisation is hosted in quartz veins in tertiary splay shears of the Syama-Bananso Shear Zone. The Tabakoroni orebody is associated with quartz, carbonate and graphite (stylolite) veins, with pyrite and lesser amounts of arsenopyrite. There are four main styles of gold mineralisation including silica-sulphide lodes in carbonaceous fault zones, stylolitic quartz reefs in fault zones, quartz–Fe–carbonate–sulphide lodes in mafic volcanics, and quartz–sulphide stockwork veins in silicified sediments and porphyry dykes. The several deposit styles in the goldfield thus present a number of potential exploration targets spatially associated with the regional Syama-Bananso Shear Zone and generally classified as orogenic shear-hosted gold deposits.  相似文献   

19.
At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold–sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite–siderite±biotite; Stage II consisting of thin quartz–pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite–chlorite–sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340–380°C estimated from quartz–albite stable isotope thermometry. δ18O values of Stage II and III vein quartz range from +12 and +17‰ and have a bimodal distribution (+14.5 and +16‰) with Stage II vein quartz accounting for the lower values. Siderite in Stage III veins have δ18O (+12 to +16‰) and δ13C values (−5‰, relative to VPDB), unlike those from Wangapeka Formation metasediments (δ13Cbulk carbon values of −24 to −19‰) and underlying Arthur Marble marine carbonates (δ18O = +25‰ and δ13C = 0‰). Calculated δ18Owater (+8 to +11‰, at 340°C) and (−5‰) values from vein quartz and siderite are consistent with a magmatic hydrothermal source, but a metamorphic hydrothermal origin cannot be excluded. δ34S values of sulphides range from +5 to +10‰ (relative to CDT) and also have a bimodal distribution (modes at +6 and +9‰, correlated with Stage II and Stage III mineralisation, respectively). The δ34S values of pyrite from the Arthur Marble marine carbonates (range from +3 to +13‰) and Wangapeka Formation (range from −4 to +9.5‰) indicate that they are potential sources of sulphur for sulphides in the Sams Creek veins. Another possible source of the sulphur is the lithospheric mantle which has positive values up to +14‰. Ages of the granite, lamprophyre, alteration/mineralisation, and deformation in the region are not well constrained, which makes it difficult to identify sources of mineralisation with respect to timing. Our mineralogical and stable isotope data does not exclude a metamorphic source, but we consider that the source of the mineralisation can best be explained by a magmatic hydrothermal source. Assuming that the hydrothermal fluids were sourced from crystallisation of the Sams Creek granite or an underlying magma chamber, then the Sams Creek gold deposit appears to be a hybrid between those described as reduced granite Au–Bi deposits and alkaline intrusive-hosted Au–Mo–Cu deposits.  相似文献   

20.
The Jupiter gold deposit in the northeastern Eastern Goldfields Province of the Yilgarn Craton of Western Australia is hosted in greenschist facies metamorphosed tholeiitic basalt, quartz–alkali-feldspar syenite, and quartz–feldspar porphyry. Syenite intrudes basalt as irregularly shaped dykes which radiate from a larger stock, whereas at least three E–W and NE–SW striking quartz–feldspar porphyries intrude both syenite and basalt. Brittle–ductile shear zones are shallow-dipping, NW to NE striking, or are steep-dipping to the south and west. Quartz ± carbonate veins that host gold at Jupiter occur in all lithologies and are divided into: (1) veins that are restricted to the shear zones, (2) discrete veins that are subparallel to shear zone-hosted veins, and (3) stockwork veins that form a network of randomly oriented microfractures in syenite wallrock proximal to shallow-dipping shear zones. The gold-bearing veins comprise mainly quartz, calcite, ankerite, and albite, with minor sericite, pyrite, chalcopyrite, galena, sphalerite, molybdenite, telluride minerals, and gold. Proximal hydrothermal alteration zones to the mineralised veins comprise quartz, calcite, ankerite, albite, and sericite. High gold grades (>2 g/t Au) occur mainly in syenite and in the hanging walls to shallow-dipping shear zones in syenite where there is a greater density of mineralised stockwork veins. The Jupiter deposit has structural and hydrothermal alteration styles that are similar to both granitoid-hosted, but post-magmatic Archaean lode-gold deposits in the Yilgarn Craton and intrusion-related, syn-magmatic, syenite-hosted gold deposits in the Superior Province of Canada. Based on field observations and petrologic data, the Jupiter deposit is considered to be a post-magmatic Archaean lode-gold deposit rather than a syn-intrusion deposit. Received: 5 January 1999 / Accepted: 24 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号